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Summary

A model of nuclear shape oscillations is set up for an arbitrary nuclear charge distri-
bution. For a uniform charge distribution the model reduces to the liquid drop model.
The model is used to consider y-transitions and electron excitation of nuclei. Explicit
expressions are obtained for four charge distributions: (@) uniform, (b) Gaussian,
(c) exponential, (d) uniform with Gaussian ‘‘ edge ”’. The theory predicts a relative
angular distribution of electrons scattered by the 4-43 MeV level of 12C in agreement
with the experimental results of Fregeau and Hofstadter (1955), but gives a scattered
intensity seven times too large.

I. INTRODUCTION

The liquid drop model (Fierz 1943 ; Bohr 1952 ; Jekeli 1952) of the nucleus
involves the assumption that the nucleus has a well-defined surface and a
uniform charge and mass density. Experiments on the elastic scattering of
high energy electrons (Hofstadter, Fechter, and MecIntyre 1953 ; Hofstadter
et al. 1954) have demonstrated that these assumptions are not valid even for
heavy nuclei. An attempt is made to obtain a modified hydrodynamical
model which allows for non-uniform nuclear charge and mass density distribu-
tions. In the liquid drop model distortions of the surface of the nucleus are
congidered ; in this model similar distortions are considered not of the surface
but of the shape of the nucleus, the distortions having effect throughout the
whole nucleus. Excited states of the nucleus are then due to oscillations of
the shape of the nucleus, i.e. oscillations involving departures from spherical
symmetry of the mass and charge distributions of the nucleus.

Longitudinal compressional waves may be expected in the nucleus, involving
nodes in the radial density distributions. As in the liquid drop model (Bohr
1952), the energy of excitation of these modes of radial oscillation should be
much greater than the energy of excitation of the shape oscillations. Thus, in
treating low-lying nuclear energy levels, it is assumed that the radial dependence
of the density distributions does not alter appreciably.

This shape oscillation model is then used to consider +y-transitions and
electron excitation of nuclei. For a uniform charge distribution this model
reduces to the usual liquid drop model.
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IT. FORMULATION OF THE MODEL
Tt is assumed that the nucleus is spherically symmetric in the equilibrium
position. This confines our treatment to nuclei with spin 0 in the ground
state. (To treat other nuclei similar modifications to those used to incorporate
the liquid drop model in the collective model (Bohr 1952 ; Bohr and Mottelson
1953) would be necessary.) The charge and mass density distributions are

Zep§(r), .
and et (1)
Amol(r)

respectively, allowing for a possible difference in these two distributions. For
convenience, the  size ”’ of a distribution is defined as the root mean square
radius S, ’ ‘

8= f Po)AV. i (2)

From the analysis (Yennie, Ravenhall, and Wilson 1954 ; Brown and Elton
1955) of high energy electron scattering experiments (Hofstadter, Fechter, and
MecIntyre 1953 ; Hofstadter ef al. 1954) S is given approximately by

S=(3/5)ix1:204}x10-Bem.  ............ (3)

For the excited states of the nucleus, shape oscillations occur. The dis-
tortion throughout the nucleus is treated in the same way as the distortion
of the nuclear surface in the liquid drop model. We assume that under
distortion, an element of mass and charge moves from r, to r without alteration
of the volume it occupies, i.e. '

p(r)=pp(Tg): vrevierii i (4)

This assumes that each element of mass and charge is incompressible, i.e. the
nucleus is composed of an inhomogeneous incompressible fluid. The ¢ shape
of the distortion can be given by '
r—rg= 2 ;)Y im0, @)rb Y, il (5)
I=2,m
where r and 7, are as shown in Figure 1, and Y,, is the spherical harmonic.
. As in the liquid drop model, it is assumed that the motion in the nucleus is

irrotational. Then _
v=V®D, ...... i, (6)

where @ is the velocity potential. We have

0D/or=(0r[0t)g. «ovvviiiiiiiiiit (6a)
The equation of continuity
V. (pv)+dp/0t=0,
becomes
Ve.VO®+4pV2D+0p/ot=0.
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We assume that the deformations of the nucleus are small, i.e. o, small, and
congider all expressions only to the first non-vanishing term in «;,. Then to
the first order in o,

(9p/0r)(0®@[0r) +pV @ +0p/0t=0.
Using equation (6a),
(0p/0r),(9®/0r),=(p/0r),(0r|0t)y = —0p/0t,

and thus
V2D=0. ....iiiiiiiiannnnnnn. (7)
Then :
O(r)=21"6,,Y,,,0, o), ..., (8)
and from equation (6a)
Bim=0Cims  veceeentintiatanaan. (9)

and «,, is independent of ».

~ -

Fig. 1.—The shells of charge and mass in the

equilibrium position of the nucleus, shown as

continuous lines, move to the positions shown by
the dotted lines in the distorted nucleus.

Since in the following, p will always appear multiplied by terms of the first
order in «,,, we need take p(r) only to the zeroth order in «,,, i.e. as Po(7) Which
we will now write as p(r).

III. ELECTRON EXCITATION AND y-TRANSITIONS

Using the first Born approximation, Schiff (1954) has developed expressions
for the differential cross sections for the inelastic scattering of high energy
electrons with excitation of various nuclear multipole transitions, and has
shown that for collective modes of excitation only electric multipole transitions
with m=0 need be considered. Then

do/do=(ds/dw), | #, |2, .......... (10)

AA
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where
: (do/dw)p=}Z2(e?[#ic)?k—2 cos® 30 cosect 36 ...... (11)

is the point charge scattering cross section, and
F = UrCL DR (@) Vg V- oo (12)

ju(8)=(m/22)}J 1 43(2) is the spherical Bessel function. |, |2 is called the
gcattering form factor. #k is the momentum of the incident electron,
¢=2Fk sin 30, and Zepyans is the transition charge density of the nucleus. In
equation (10) it is assumed that the energy of the transition is small compared
with the energy of the incident electron, and that the angle of scattering 0 is.
not small. Both these requirements are satisfied in experiments (Fregeau and
Hofstadter 1955), as the inelastic scattering at low energies or small angles is
masked by the bremsstrahlung tail of the elastic scattering. '

From the equation of continuity,

Ptrans = (1) 71V . j
=(w) V. (p°(r)V)
=({w)Velr) . VO
=(iw)YdeC/dr)(0®@[Or), ......iiint. (13)

using VP =0. 7w is the energy of the transition. From equation (8) it follows

that )
. Ptrans = (10) 2B, Y, ~1deCldr. ...l (14)

From the orthogonality of the Y, only the term =L, m=0 will contribute
. to (12), giving

F = Un2T A1) [ ularr e s
: 0
— UL Balo | @ e (19
0
The transition probability for the emission of a photon of electric multipole

order I, and energy 7w is given by (Blatt and Weisskopf 1952)

8n(L+1) (w]e)2L+l

TE(L7 M)ZL{(QL—H[) 1 !}2 7 1 QLM 127

where
QLM:Zeff'LYLM*pmnst .................. (17)

is the transition 2Z-pole moment. For the shape oscillation model, using
equation (14), this becomes :

[oo]

Q= (1810 Z6(2L +1)J0 eyt | (18)

= (1B p/ ) Ze(2L +1)7%(T_ﬁ/471:.
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Comparing equations (12) and (17), electron’ excitation and y-emission
are related by

- 3
Eim F={4n(2L+1)} (2L+1 'Qm/Ze ........ (19)
It is.convenient to put ‘
F=8"L(Q0/Z6)GL(g8). «rrrriniinnnnn (20)

Then the relative angular distribution of the inelastically scattered electrons
depends on the function G.(¢8), and the actual magnitude of the cross section
is determined by the @,,. This gives us a method of determining the | @, |2
from electron scattering measurements by comparing the experimental form
faéctor, i.e. the ratio of the actual scattering to point charge scattering, with
Gi.

G1(g8)=4n{4n/(2L+1)} (4L -D)-18Lq

% f @ E ) e (21)
0
For all charge distributions,
Lim G, ={4n2L+1)}}(g8)¥/(2L+1)!! .......... (22)
-0 o

In Section VI we obtain a theoretical estimate of Q1o

IV. CALCULATION OF G
The inelastic scattering has been considered for four different charge
distributions.
(a) Uniform distribution

o(r)=(3/4m)Rs %, r<R,,
p(r)=0 PR = A (23)
Ry=(5/3)*8.

For the uniform dlstrlbutlon, the results are the same as those obtained from
the usual liquid drop model. o

G1(g8)={4n(2L-+1)}}(3/5)52),{(5/3)}8}. ...... (24)
(b) Gaussian distribution
p(r)=(rig)~> eXp(“TZ/gz)’} N (25)
9=(2/3)8.

The integral in equation (21) can be obtained using equation 2, p. 393 of
Watson (1944), the confluent hypergeometric function involved reducmg to
the exponential functlon, finally giving

@,(¢8) = {4n(2L +1)}} (21(;qi)1) exp {—(gS)2[6}. ... (26)
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(¢) Exponential distribution

o(r)=(8d®)~ exp (—/d),)
d=12-18. }

For this case, the integral in equation (21) is obtained using equation 3, p. 393
of Watson (1944), the required hypergeometric function reducing to (1—z)i,
finally giving

6,(08) =D+ G B0 (1 (@812}, L. (28)

(d) Uniform distribution with a Gaussian ‘ edge ”’

o) =g r<a,
p(r)=po exp {—(r—a)?/b?} r=>a,
o= (3/4m)a~3X (b]a)
Sz=ga2X(b/a){1 omibla-100jap +omiplap [ 0 (29
H100ja)t+ i 0le],
where
X(b/a):{l —|—g7t%b/a -{—3(b/a)2+2n5(b/a)3}-1
F 1 ={4n(2L+1)}¥(iB o/ ) o™ T1{j (¢a) +gaf . (b]a, qa)}, .. (30)
where :

fu(@, y)—= f " exp {—(—1)2/a? W By ()l e .. (31)
0

For electric quadrupole transitions the G%(qS ) are shown in Figure 2. The
values for distribution (d) were obtained for b/a=0-4 by graphical integration
of fy(#,y). For bja=0-4, this distribution is a reasonable approximation to the
smoothed uniform charge distribution, for which the calculated elastic scattering
of high energy electrons by gold (Brown and Elton 1955) agrees with experiment
(Hofstadter, Fechter, and McIntyre 1953 ; Hofstadter et al. 1954).

V. COMPARISON WITH EXPERIMENT FOR 120

Because of its statistical nature, this shape oscillation model should be
valid only for medium and heavy nuclei. Also, the inelastic electron scattering
has been considered using the Born approximation, which breaks down for
- geattering by heavy elements. However, Yennie, Wilson, and Ravenhall
(1953) have shown that the Born approximation is not very far out for the elastic
scattering by copper, except in the neighbourhood of diffraction minima. Thus,
our results would be expected to apply to nuclei with atomic numbers about 60.
Because of the large uncertainty in theoretical nuclear matrix elements, there
is little justification for using more accurate methods than the Born approki-
mation at present.
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However, the only experimental results available to da,fe are for beryllium
(McIntyre, Hahn, and Hofstadter 1954) and carbon (Fregeau and Hofstadter

2:5

Fig. 2.—{G,(gS)}? (see equation (21)) for electric quadrupole

transitions for the following charge distributions : (@) uniform,

(b) Gaussian, (c) exponential, (d) uniform with Gaussian ““ edge ”’,
bla=0-4.

1955). Comparison has been made with the experimental fesults of Fregeau
and Hofstadter (1955) for the excitation of the 4-43 MeV level of carbon,

TasLE 1
EXCITATION OF THE 4-43 MeV LEVEL OF 12C
Column 4 gives the results for | @, |2/e? obtained by comparing the theoretical scattering form
factors with the form factor obtained experimentally by Fregeau and Hofstadter (1955). Column 5
gives the theoretical value of | @, |2/e? obtained from equation (41) in Section VI

[ Qs [*/e?
Agreement of | From Comparison
Charge Theoretical with Experimental From Theory
Distribution N with Experi- | Scattering Results of Section VI
mental Form .
(X 1013 cm) Factor (x 10752 cm?) (X 10-52 cm?)
{a) Uniform 2-20% "Good 77 . 55
2-23 Good 7-9 56
(b) Gaussian 2-47* Unsatisfactory 11-8 69
2-04 Good 7-8 47
(c) Exponential 2-58* No agreement
1-9 Good 10 41
{d) Uniform  with 2-4 Fair 10 65
Gaussian *“ edge 220 Good 8-4 55
bla=0-4

* Indicates value of S giving best fit to the elastic scattering form factor for that particular

charge distribution.



414 L. J. TASSIE

although one hardly expects this nuclear model to be valid for such a light
element. Fregeau and Hofstadter obtain the following r.m.s. radii from their
elagtic scattering results, ' A

Uniform distribution §=2-20x10-13 cm

Gaussian distribution §=2-47 X102 cm.

0-024
a
0-020 |-
J 149
2:04
2.20
0016 2.20
a
~
-\ng 0:012 =
o
<3
0008 -
2:47
0+004 |~
Il I 1 1 1
o 0-2 0-4 06 o-8 1-0 1.2 14

q IN UNITS OF 10'3 cm—!
Fig. 3.—Ratio of cross section for the quadrupole excitation of the 4-43 MeV
level to the point charge scattering cross section of 12C. Theoretical curves
are (S2Ze)~2 | @y |2{G(¢S)}? for the charge distributions: (@) uniform, (b) Gaussian,

" (c) exponential, (d) uniformm with Gaussian * edge ”’, bjla=0-4. The curves are
labelled with the value of S in units of 1013 em, and the | @, |2 are given in column 4 )
of Table 1. The experimental points are those of Fregeau and Hofstadter (1955)
for the scattering of electrons with energies 187 MeV (full circles), 150 MeV

(triangles), and 80 MeV (square).

For an exponential charge distribution, the best fit to these elastic scattering
results is obtained with S=2-58 x10-1% cm, but the fit is not satisfactory as
the theoretical scattering cross section falls off too slowly with angle.

The 4-43 MeV transition is electric quadrupole 0+—2+. The results
obtained for | @, |2 by comparing our G3(¢S) using the above values of §, with
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the experimental form factor given by Fregeau and Hofstadter are given in
Table 1, and the results for the form -factor (82Ze)~2| @, |*G3 are shown
in Figure 3 in comparison with the experimental form factor. The
experimental form factor could not be fitted using an exponential distribu-
tion with §=2-58 x10-13 cm. ‘

The experimental results were then fitted by varying both S and | @, |2
for all the charge distributions in Section IV including (d) with b/a=0-4. The
results are also shown in Figure 3 and Table 1. Under these conditions, the
scattering form factors derived from all the distributions will fit the experimental
form factor. However, only distributions (a) and (d) give a result for S consistent
with the elastic scattering experiments, and the exponential distribution can
be definitely excluded. The model used here is the same as the liquid drop
model for the uniform distribution and close to it for distribution (d). The
difference in S required to fit the Gaussian distribution to the elastic scattering
and inelastic scattering may be due to the inadequacy of our model for this
distribution. The experimental form factor can also be fitted by the form factor
derived from a uniform transition charge density with a r.m.s. radius
8=2-58 x10~!2 cm, but it would seem that this transition charge density can
be excluded since it has an appreciably larger extension than the static charge
distribution. For the range of ¢S of these experiments, approximately ¢S8=1
to ¢8=3, it seems that the scattering is largely model independent. )

Experiments at larger values of ¢S, i.e. heavier nuclei, larger scattering
angles, and higher electron energies, would give more information about the
transition charge density and would provide a more critical test of the theory.
However, we conclude from this analysis that the transition charge density has
a larger r.m.s. radius than the static charge density and is greatest near the
edge of the nucleus.

VI. THE TRANSITION MULTIPOLE MOMENTS
To obtain numerical values of the multipole moments from equation (18),
we need.the expectation value of 3,,, for the transition. Using the quantum
mechanical relation
| Gy | R Y>=1l00{n | o, | Dy oo (32)

we obtain, in a similar way to the quantum treatment of the liquid drop model
for small deformations (Bohr 1952), that for transitions from a no phonon to
a one phonon state
' O B | I =lio(fiw,[20,)}

=i(fiw,2B)% ..., (33)

where the total energy of the shape oscillations of the nucleus is

H=T+7V,
T=% Z Bz\ Blm‘27
1=2,m

V:% 2 Gl‘ A i lz'
1=2,m

For this model it is easier to obtain an estimate of B, than of C,.
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The total kinetic energy of the nuclear motion is
T—3Am f pM ()02 V. e, ST (35)
Using equations (6) and (7), this reduces to
| Tz—%Ame M(r) . OV OAV

—_1dm J O(deM/dr) (3D [or)AV

——34Am T 1B, ? f ? i deMjdndr, ... .. (36)
1=2,m _ 0 i
using (Bohr 1952)
B (—1)PBy ™. e (37)

This gives
B,=1-1(21+1)Am J * M () dr
.

=112l 4-1)(Am/[4m)rdi=1).

From equations (18), (33), and (38), we obtain for transitions from a one
phonon state to a no phonon state or vice versa,

| Qrar |12=2%*h(8TcAme ) LL(2L 4-1)(rAL D)2 [y2L=D) ... (39)

‘There has been some doubt whether the nuclear charge distribution is the
same as the mass distribution. Purely nuclear measurements (Blatt and
Weisskopf 1952, p. 15) have indicated a larger nuclear size than the electro-
magnetic measurements (Hofstadter, Fechter, and McIntyre 1953 ; Hofstadter
et al. 1954). However, an analysis by Williams (1955) of the experiments of
. Coor et al. (1955) on the absorption cross sections of nuclei for 1-4 BeV neutrons
yields a r.m.s. radius in agreement with that determined from electromagnetic
measurements. Assuming then, that

pl(r)=pM(r)=p(r),
we obtain
| Qr |2=226*1 (8o, Am) A L2L 41 )2 =1, ... ..., (40) .
If oC(r) and p¥(r) are of the same form but with different §, then the correc-
tion factor to the left-hand side of equation (40) would be (S./Su)*L—1.

For the distributions in Seetion IV, 22— is given by
(@) Uniform 3(2L+1)-1(5/3)L—182L 1),

(b) Gaussian 31-L(2L—1)!182L-1),
(¢) Exponential 4 x121-L(2L)!82&L-1),

For different distributions with the same r.m.s. radius, the difference in the
| @1 |? are small for the first few L and increase with L.
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For electric quadrupole transitions,
| Qen |>=2%i(meo, Am)2(5/4)82. . ..ooia.... (41)

The values obtained from equation (41) are compared in Table 1 with the values -
derived from the inelastic electron scattering measurements for the various
values of 8. It is seen that the theoretical value is approximately seven times
too large.

From the experimental results (Fregeau and Hofstadter 1955), we can
deduce that | @, |2/e? is approximately 8 x10-52 cm?. Inserting this value in
equation (16), gives 6 X101 sec as the lifetime of the 4-43 MeV level of 12C
for y-decay to the ground state. This is consistent with the result of the y-decay
experiments of Mills and Mackin (1954) that the lifetime of this state is less than
3x10-13 sec. However, Devons, Manning, and Towle (1956) have measured
the lifetime of this level for y-emission using a recoil method and obtain a value
of (2-640-9)x10-14 gec.

VII. DISCUSSION
In conclusion, this theory of nuclear shape oscillations seems capable of
explaining the angular distribution of the scattered electrons, but gives a scattered
intensity too large by a factor of 7.

The assumption in equation (4) may cause some error because of compres-
sion effects, even when there are no compressional waves present. Woeste
(1952) has treated compression effects for a density distribution with a sharp
edge and only small deviations from uniformity, and shows that the density is
greater at the surface than at the centre of the nucleus. However, electron
scattering experiments (Hofstadter, Fechter, and McIntyre 1953 ; Hofstadter
et al. 1954) show that the nuclear charge density distribution does not have a
sharp surface, but that the density decreases smoothly to zero over a finite
distance. This non-uniformity of the density distribution is more .easily
explained by quantum mechanics than by a classical effect such as compres-
sibility. The nucleon wave functions must be smooth, and therefore must
decrease smoothly to zero, giving rise to non-uniform nuclear charge and mass
density distributions.

It is doubtful whether the similarity of the nucleus to an inhomogeneous
fluid is such as to justify a detailed treatment including compression effects.
A more accurate theory of the electron excitation of collective oscillations
could be obtained by using the theory of an oscillating shell structure given by
Aratijo (1956). Such a theory would be very complicated for heavy nuclei,
and would be restricted to the density distributions which can be obtained
from simple nuclear potentials such as the spherical box and parabolic well.

At any rate, the theory developed here shows that the diffuseness of the
nuclear surface can be neglected when treating the electron excitation of collective
transitions provided that ¢S is not too large, as the curves for G2 in Figure 2
for charge distributions (a), (b), and (d) do not differ very greatly up to about
g8=2.
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