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A MODEL OF NUOLEAR SHAPE OSCILLATIONS FOR y-TRANSITIONS 
AND ELEOTRON EXCITATION 

By L. J. TASSIE* 

[Manuscript received August 1, 1956] 

Summary 

A model of nu?lear shape oscillations is set up for an arbitrary nucJear charge distri­
bution. For a uniform charge distribution the model reduces to the liquid drop model. 
The model is used to consider y-transitions and electron excitation of nuclei. Explicit 
expressions are obtained for four charge distributions: (a) uniform, (b) Gaussian, 
(0) exponential, (d) uniform with Gaussian" edge". The theory predicts a relative 
angular distribution of electrons scattered by the 4· 43 MeV level of 12e in agreement 
with the experimental results of Fregeau and Hofstadter (1955), but gives a scattered 
intensity seven times too large. 

1. INTRODUCTION 

The liquid drop model (Fierz 1943; Bohr 1952; Jekeli 1952) of the nucleus 
involves the assumption that the nucleus has a well-defined surface and a 
uniform charge and mass density. Experiments on the elastic scattering of 
high energy electrons (Hofstadter, Fechter, and McIntyre 1953; Hofstadter 
et al. 1954) have demonstrated that these assumptions are not valid even for 
heavy nuclei. An attempt is made to obtain a modified hydro dynamical 
model which allows for non-uniform nuclear charge and mass density distribu­
tions. In the liquid drop model distortions of the surface of the nucleus are 
considered; in this model similar distortions are considered not of the surface 
but of the shape of the nucleus, the distortions having effect throughout the 
whole nucleus. Excited states of the nucleus are then due to oscillations of 
the shape of the nucleus, i.e. oscillations involving: departures from spherical 
symmetry of the mass and charge distributions of the nucleus. 

Longitudinal compressional waves may be expected in the nucleus, involving 
nodes in the radial density distributions. As in the liquid drop model (Bohr 
1952), the energy of excitation of these modes of radial oscillation should be' 
much greater than the energy of excitation of the shape oscillations. Thus, in 
treating low-lying nuclear energy levels, it is assumed that the radial dependence 
of the density distributions does not alter appreciably. 

This shape oscillation model is then used to consider y-transitions and 
electron excitation of nuclei. For a uniform charge distribution this model 
reduces to the usual liquid drop model. 
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II. FORMULATION OF THE MODEL 

It is assumed that! the nucleus is spherically symmetric in the equilibrium 
position. This confines our treatment to nuclei with spin 0 in the ground 
state. (To treat other nuclei similar modifications to those used to incorporate 
the liquid drop model in the collective model (Bohr 1952; Bohr and Mottelson 
1953) would be necessary.) The charge and mass density distributions are 

and 
Zep~(r), .} ....... .......... ... (1) 

Ampr-(r) 

respectively, allowing for a possible difference in these two distributions. For 
convenience, the " size" of a distribution is defined as the root mean square 
radius S, . 

S= fr2p(r)dV. .. ........................ (2) 

From the analysis (Yennie, Ravenhall, and Wilson 1954; Brown and Elton 
1955) of high energy electron scattering experiments (Hofstadter, Fechter, and 
McIntyre 1953; Hofstadter et al. 1954) S is given approximately by 

S=(3f5)lX1'20At X 10-13 cm. (3) 

For the excited states of the nucleus, shape oscillations occur. The dis­
tortion throughout the nucleus is treated in the same way as the distortion 
of the nuclear surface in the liquid drop model. We assume that under 
distortion, an element of mass and charge moves from ro to r without alteration 
of the volume it occupies, i.e. 

p(r) = po(ro)' . . . . . . . . . . . . . . . . . . .. (4) 

This assumes that each element of mass and charge is incompressible, i.e. the 
nucleus is composed of an inhomogeneous incompressible fluid. The" shape" 
of the distortion can be given by 

r-ro= ~ (Xlm(rO)Y1m(O, cp)rt-t, ............ (5) 
1=2,m 

where rand ro are as shown in Figure 1, and Y 1m is the spherical harmonic. 
, As in the liquid drop model, it is assumed that the motion in the nucleus is 
irrotational. Then 

v=\7<l>, ...................... (6) 

where <l> is the velocity potential. We have 

a<l> far = (arfat)p' (6a) 

The equation of continuity 

becomes' 
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We assume that the deformations of the nucleus are small, i.e. rt.lm small, and 
consider all expressions only to the first non-vanishing term in rt.,lm' Then to 
the first order in rt.lm' 

(opjor)(o<l>jor) +p V 2<1> +opjot=O. 

Using equation (6a), 

(opjor)t( 0<1> jor)t= (opjor)t(orjot)p = -opjot, 
and thus 

Then 

and from equation (6a) 

and rt.lm is independent of r. 

\ 
\ 

..... 

~lm=cilm' 

-- -/' ..... 
I \ 

I 

\ , .; 

....... '""-- -' 

Fig. I.-The shells of charge and mass in the 
equilibrium position of the nucleus, shown as 
continuous lines, move to the positions shown by 

the dotted lines in the distorted nucleus. 

(7) 

(8) 

(9) 

Since in the following, p will always appear multiplied by terms of the first 
order in rt.lm' we need take p(r) only to the zeroth order in rt. 1m , i.e. as po(r) which 
we will now write as p(r). 

III. ELECTRON EXCITATION AND y-TRANSITIONS 

Using the first Born approximation, Schiff (1954) has developed expressions 
for the differential cross sections for the inelastic scattering of high energy 
electrons with excitation of various nuclear multipole transitions, and has 
shown that for collective modes of excitation only electric multipole transitions 
with m=O need be considered. Then 

dcrjdw=(dcrjdw)p 1 fFL 12 , •••••••••• (10) 
AA 
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(dcrjdw)p=lZ2(e2jnc)2k-2 COS2 to cosec4 to ...... (11) 

is the point charge scattering cross section, and 

§L={47t(2L+1)}! Jh(qr)YLOPtransdV:. . ..... (12) 

h(z)-(7tj2z)!hH(Z) is the spherical Bessel function. 1 §L 12 is called the 
scattering form factor. Iik is the momentum of the incident electron, 
q=2k sin to, and Zeptrans is the transition charge density of the nucleus. In 
equation (10) it is assumed that the energy of the transition is small compared 
with the energy of the incident electron, and that the angle of scattering 0 is 
not small. Both these requirements are satisfied in experiments (Fregeau and 
Hofstadter 1955), as the inelastic scattering at low energies or small angles is 
masked by the bremsstrahlung tail of the elastic scattering. 

From the equation of continuity, 

Ptrans=(iw)-l\7. j 
=(iW)-l\7. (pG(r)v) 

.=(iW)-l\7 pG(r). \7<1> 
= (iw)-l(dpGjdr)(a<l>jar), .............. (13) 

using \72<1>=0. nw is the energy of the transition. From equation (8) it follows 
that 

ptrans= (iw )-l~~lm Ylmrl-ldpG jdr. . . . . . . . . .. (14) 

From the orthogonality of the Y 1m, only the term l=L, m=O will contribute 
to (12), giving 

§L = {47t(2L +l)}!(iw)-l~LOJoo h(qr)rL+1(d pGjdr)dr 
. 0 

={47t(2L+1)}l(i~LOjw)q J: h_l(qr)rL+1pG(r)dr . .... (15) 

The transition probability for the emission of a photon of electric multipole 
order L, and energy nw is given by (Blatt and Weisskopf 1952) 

87t(L+1) (wjC)2L+1 2 

TE(L, M)=L{(2L+1)! !}2 --n- 1 QLM I, ...... (16) 

where 

QLM=zeJrLYLM*ptransdV .................. (17) 

is the transition 2L-pole moment. For the shape oscillation model, using 
equation (14), this becomes 

QLM=(i~LMjw)Ze(2L+1) J: pG(r)r2Ldr} (18) 

. =(i~LMjw)Ze(2L+1)r6(L-l)j47t. 



MODEL OF NUCLEAR SHAPE OSCILLATIONS 41'1 

Comparing equations (12) and (17), electron excitation and y-emission 
are related by 

~~~ §L ={4n(2L+1)}!(2L~1)! !QLojZe. . ....... (19) 

It is. convenient to put 

§L =S-L(QLOjZe)GL(qS). .................. (20) 

Then the relative angular distribution of the inelastically scattered electrons 
depends on the function GL(qS), and the actual magnitude of the cross section 
is determined by the QLO' This gives us a method of determining the 1 QLO 12 
from electron scattering measurements by comparing the experimental form 
factor, i.e. the ratio of the actual scattering to point charge scattering, with 
Gi. 

GL(qS) = 47t{4nj (2L + I)} !(r~(L -l»)-lSLq 

x J: jL_l(qr)rL+1pC(r)dr. (21) 

For all charge distributions, 

Lim GL={4n(2L+1)}!(qS)Lj(2L+1)!! .......... (22) 
q~O 

In Section VI we obtain a theoretical estimate of QU). 

IV. CALCULATION OF GL 

The inelastic scattering has been considered for four different charge 
distributions. 

(a) Uniform distribution 

p(r)=(3j4n)Ro 3, r<Ro,} 
p(r)=O , r'>ROl 

Ro=(5j3)!S. 

..•........... (23) 

For the uniform distribution, the results are the same as those obtained from 
the usual liquid drop model. 

GL(qS) = {4n(2L +1)}!(3j5)L/2h{(5j3)!qS}. . . . . .. (24) 

(b) Gaussian distribution 

p(r)=(n!g),-3 exp (_r2jg2),} 
............ (25) 

g=(2j3)·S. 

The integral in equation (21) can be obtained using equation 2, p. 393 of 
Watson (1944), the confluent hypergeometric function involved reducing to 
the exponential function, finally giving 
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(0) Exponential distribution 

p(r) = (87td3)-1 exp (-r/d),} 
d=12-!S. . ............. (27) 

For this case, the integral in equation (21) is obtained using equation 3, p. 393 
of Watson (1944), the required hypergeometric function reducing to (l-z)!, 
finally giving 

GL(qS)={47t(2L+1)p(2i~~! !{1+(qS)2/12}-(L+1) . .... (28) 

(d) Uniform distribution with a Gaussian" edge" 

where 

where 

p(r)=po r<:;a, 
p(r)=po exp {-(r-a)2/b2} r>a, 

Po= (3/47t)a-3X(b/a) 

3 § 5, 15 
S2=5a2X(b/a)( 1 +2"7t.b/a+10(b/a)2 + 27ti(b/a)3 

.. (29) 

+10(b/a)4+ 185 7t!(b/a)5}, 

X(b/a) =f 1 +~7t!b/a +3(b/a)2+~7t!(b/a)3} -1. 

$"L={47t(2L+l)}!(i~LO/w)poaL+1{h(qa) +qafL(b/a, qa)}, .. (30) 

fL(X, y)= f: exp {-(t-1)2/x2}tL+1jL_1(yt)dt. . ........... (31) 

For electric quadrupole transitions the G~(qS) are shown in Figure 2. The 
values for distribution (d) were obtained for b/a=0'4 by graphical integration 
of f2(X,y). For b/a=O '4, this distribution is a reasonable approximation to the 
smoothed uniform charge distribution, for which the calculated elastic scattering 
of high energy electrons by gold (Brown and Elton 1955) agrees with experiment 
(Hofstadter, Fechter, and McIntyre 1953; Hofstadter et al. 1954). 

V. OOMPARISON WITH EXPERIMENT FOR 120 

Because of its statistical nature, this shape oscillation model should be 
valid only for medium and heavy nuclei. Also, the inelastic electron scattering 
has been considered using the Born approximation, which breaks down for 
scattering by heavy elements. However, Yennie, Wilson, and Ravenhall 
(1953) have shown that the Born approximation is not very far out for the elastic 
scattering by copper, except in the neighbourhood of diffraction minima. Thus, 
our results would be expected to apply to nuclei with atomic numbers about 60. 
Because of the large uncertainty in theoretical nuclear matrix elements, there 
is little justification for using more accurate methods than the Born apprdxi­
mation at present. 
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However, the only experimental results available to date are for beryllium 
(McIntyre, Hahn, and Hofstadter 1954) and carbon (Fregeau and Hofstadter 

2·5r-------------------------------------____ --, 

a 

2'0 

1'0 

0'5 

o 5 6 
qS 

Fig. 2.-{G2(qS)}" (see equation (21)) for electric quadrupole 
transitions for the following charge distributions: (a) uniform, 
(b) Gaussian, (c) exponential, (d) uniform with Gaussian" edge ", 

bla=0·4. 

1955). Oomparison has been made with the experimental results of Fregeau 
and Hofstadter (1955) for the excitation of the 4 ·43 MeV level of carbon, 

TABLE 1 
EXCITATION OF THE 4·43 MeV LEVEL OF 12C 

Column 4 gives the results for I Q20 12/e2 obtained by comparing the theoretical scattering form 
factors with the form factor obtained experimentally by Fregeau and Hofstadter (1955). Column 5 

gives the th(loretical value of I Q20 12/e2 obtained from equation (41) in Section VI 

I Q20 1"le2 

Agreement of From Comparison 
Charge Theoretical with Experimental From Theory 

Distribution S with Experi- Scattering Results of Section VI 
mental Form 

(X 10-13 cm) Factor (X 10-52 cm4 ) ( X 10-52 cm4) 

---
(a) Uniform .. 2·20* 'Good 7·7 55 

2·23 Good 7·9 56 
(b) Gaussian .. 2'47* Unsatisfactory n·8 69 

2·04 Good 7·8 47 
(c) Exponential .. 2'58* No agreement 

1·9 Good 10 41 
(d) Uniform with 2·4 Fair 10 65 

Gaussian" edge " 2·20 Good 8·4 55 
bla=0·4 

.. * IndlCates value of S gtvmg best fit to the elastic scattermg form factor for that particular 
eharge distribution. 
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although one hardly expects this nuclear model to be valid for such a light 
element. Fregeau and Hofstadter obtain the following r.m.s. radii from their 
elastic scattering results, 

Uniform distribution 8=2 ·20 X 10-13 cm 
Gaussian distribution 8 =2·47 X 10-13 cm. 

0'024, .--------------,--------, 

a 
___ b 

0'020 ••• ________ c 

- _____ d 

0'016 

0,008 

0'004 

0' 0-4 0-6 0'8 1-0 
q IN UNITS OF 10t3 CM-1 

\ 
\ 

Fig. 3.-Ratio of cross section for the quadrupole excitation of the 4·43 MeV 
level to the point charge scattering cross section of 12C. Theoretical curves 
are (S'Ze)-'1 Q.o 1"{G.(qS)}2 for the eharge distributions: (a) uniform, (b) Gaussian, 
(0) exponential, (d) uniform with Gaussian" edge ", bla~O·4. The curves are 
labelled with the val.ue of S in units of 10-13 cm, and the I Q20 12 are given in column 4 
of Table 1. The experimental points are those of Fregeau and Hofstadter (1955) 
for the scattering 'of electrons with energies 187 MeV (full circles), 150 MeV 

(triangles), and 80 MeV (square). 

For an exponential charge distribution, the best fit to these elastic scattering 
results is obtained with 8 =2·58 X 10-13 cm, but the fit is not satisfactory as. 
the theoretical scattering cross section falls off too slowly with angle. 

The 4·43 MeV transition is electric quadrupole 0+-2+. The results 
obtained for 1 Q20 12 by comparing our G~(q8) using the above values of S, with 
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the experimental form factor given by Fregeau and Hofstadter are given in 
Table 1, and the results for the form factor (S2Ze)-21 Q20 12G~ are shown 
in Figure 3 in comparison with the experimental form factor. The 
experimental form factor could not be fitted using an exponential distril::m­
tion with S=2·58x10-13 cm. 

The experimental results were then fitted by varying both S and I Q 20 12 
for all the charge distributions in Section IV including (d) with b/a=O ,4. The 
results are also shown in Figure 3 and Table 1. Under these conditions, the 
scattering form factors derived from all the distributions will fit the experimental 
form factor. However, only distributions (a) and (d) give a result for S consistent 
with the elastic scattering experiments, and the exponential distribution can 
be definitely excluded. The model used here is the same as the liquid drop 
model for the uniform distribution and close to it for distribution (d). The· 
difference inS required to fit the Gaussian distribution to the elastic scattering 
and inelastic scattering may be due to the inadequacy of our model for this 
distribution. The experimental form facto~ can also be fitted by the form factor 
derived from a uniform transition charge density with a· r.m.s. radius 
S =2·58 X 10-13 cm, but it would seem that this transition charge density can 
be excluded since it has an appreciably larger extension than the static charge 
distribution. For the range of qS of these experiments, approximately qS =1 
to qS =3, it seems that the scattering is largely model independent. . 

Experiments at larger values of qS, i.e. heavier nuclei, larger scattering 
angles, and higher electron energies, would give more information about the 
transition charge density and would provide a more critical test of the theory. 
However, we conclude from this analysis that the transition charge density has 
a larger r.m.s. radius than the static charge density and is greatest near the 
edge of the nucleus. 

VI. THE TRANSITION MULTIPOLE MOMENTS 

To obtain numerical values of the multipole moments from equation (18), 
we need. the expectation value of ~LM for the transition. Using the quantum 
mechanical relation 

<n I OClm I n')=iw<n I oc lm In'), .............. (32) 

we obtain, in a similar way to the quantum treatment of the liquid drop model 
for small deformations (Bohr 1952), that for transitions from a no phonon tQ 
a one phonon .state 

<0 I ~lm 11)=iwl(nwd201)1 
=i(nwd2Bl)i, 

where the total energy of the shape oscillations of the nucleus is 

(33) 

H=T+V, 

T=t ~ BII ~lm 12, 
1=2,m 

V=t ~ Oil oclml2. 
1=2,m 

} ••.•..•. (34) 

For this model it is easier to obtain an estimate of Bl than of 01' 
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The total kinetic energy of the nuclear motion is 

T=!AmJ pM(r)v2dV. (35) 

Using equations (6) and (7), this reduces to 

T=-!Am J \7pM(r). <I>\7<I>dV 

=-!AmJ <I>(dpMjdr)(o<I>jor)dV 

= -!Aml~~,J-l 1 ~lm 12 f~ r21+1(dpMjdr)dr, ...... (36) 

using (Bohr 1952) 

~lm=( -l)m~lm *. . ......................... (37) 

This gives 

B I =l-1(2l+1)AmJ<Xl r2IpM(r)dr 
o • 

=l-1(2l+1)(Amj41t)r'fj-l). 

} ........ (38) 

From equations (18), (33), and (38), we obtain for transitions from a one 
phonon state to a no phonon state or vice versa, 

1 QLM 12=Z2e2n(81tAmU>L)-lL(2L+1)(r&(L-l»)2jr~L-l) . .... (39) 

There has been some doubt whether the nuclear charge distribution is the 
same as the mass distribution. Purely nuclear measurements (Blatt and 
Weisskopf 1952, p. 15) have indicated a larger nuclear size than the electro­
magnetic measurements (Hofstadter, Fechter, and McIntyre 1953; Hofstadter 
et al. 1954). However, an analysis by Williams (1955) of the experiments of 
Coor et al. (1955) on the absorption cross sections of nuclei for 1·4 BeV neutrons 
yields a r.m.s. radius in agreement with that determined from electromagnetic 
measurements. Assuming then, that 

we obtain 

1 QLm 12=Z2e2n(81tU>LAm)-lL(2L+1)r2(L-l). . ......... (40) . 

If pO(r) and pM(r) are of the same form but with different S, then the correc­
tion factor to the left-hand side of equation (40) would be (ScjSM)2(L-l). 

For the distributions in Section IV, r 2(L-l) is given by 

(a) Uniform 
(b) Gaussian 
(0) Exponential 

3(2L +1 )-1(5j3)L-lS2(L-l), 
31-L(2L-1)! !S2(L-l), 
! X 121-L(2L) !S2(L-l). 

For different distributions with the same r.m.s. radius~ the difference in the 
1 QLM 12 are small for the first few L and increase with L. 
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For electric quadrupole transitions, 

I Q2M I2=Z2e2n(1tCuL.A.m)-1(5j4),82 • •••••••••••• (41) 

The values obtained from equation (41) are compared in Table 1 with the values 
derived from the inelastic electron scattering measurements for the various 
values of,8. It is seen that the theoretical value is approximately seven times 
too large. 

From the experimental results (Fregeau and Hofstadter 1955), we can 
deduce that I Q20 12je2 is approximately 8 X 10-52 cm4• Inserting this value in 
equation (16), gives 6 X 10-14 sec as the lifetime of the 4·43 MeV level of 120 
for y-decay to the ground state. This is consistent with the result of the y-decay 
experiments of Mills and Mackin (1954) that the lifetime of this state is less than 
3 X 10-18 sec. However, Devons, Manning, and Towle (1956) have measured 
the lifetime of this level for y-emission using a recoil method and obtain a value 
of (2·6±0·9) X 10-14 flec. 

VII. DISCUSSION 

In conclusion, this theory of nuclear shape oscillations seems capable of 
explaining the angular distribution of the scattered electrons, but gives a scattered 
intensity too large by a factor of 7. 

The assumption in equation (4) may cause some error because of compres­
sion effects, even when there are no compressional waves present. Woeste 
(1952) has treated compression effects for a density distribution with a sharp 
edge and oply small deviations from uniformity, and shows that the density is 
greater at the surface than at the centre of the nucleus. However, electron 
scattering experiments (Hofstadter, Fechter, and McIntyre 1953; Hofstadter 
et al. 1954) show that the nuclear charge density distribution does not have a 
sharp surface, but that the density decreases smoothly to zero over a finite 
distance. This non-uniformity of the density distribution is more .easily 
explained by quantum mechanics than by a classical effect such as compres­
sibility .. The nucleon wave functions must be smooth, and therefore must 
decrease smoothly to zero, giving rise to non-uniform nuclear charge and mass 
density distributions. 

It is doubtful whether the similarity of the nucleus to an inhomogeneous 
fluid is such as to justify a detailed treatment including compression effects. 
A . more accurate theory of the electron excitation of collective oscillations 
could be obtained by using the theory of an oscillating shell structure given by 
Araujo (1956). Such a theory would be very complicated for heavy nuclei, 
and would be restricted to the density distributions which can be obtained 
from simple nuclear potentials such as the spherical box and parabolic well. 

At any rate, the theory developed here shows that the diffuseness of the 
nuclear surface can be neglected when treating the electron excitation of collective 
transitions provided that q,8 is not too large, as the curves for G~ in Figure 2 
for charge distributions (a), (b), and (d) do not differ very greatly up to about 
q,8=2. 
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