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Summary 

Free path methods are used to derive formulae for the coefficient of diffusion and 
the drift velocity of electrons in weakly ionized gases in the general case in which the 
collisional cross section is a function of the speed of an electron and the law of scattering 
of electrons in single collisions with molecules is not restricted to a few specific cases. 
It is found that the results are, in effect, the same as those derived by means of the 
methods of Maxwell and Boltzmann. ' 

The significance of the investigation for the interpretation of laboratory measure­
ments of electronic diffusion and drift is also discussed. 

r. INTRODUCTION 

It is commonly supposed that formulae derived by the method of free 
paths are of necessity restricted in generality and less precise than those derived 
by the rigorous, but analytically more complex, methods introduced by Maxwell 
and Boltzmann. In what follows it is shown that both methods lead to 
equivalent formulae for the diffusion and drift of electrons in gases. It may be 
inferred therefore that the supposed limitations of the method of free paths is 
in this context in many instances attributable to imperfections of application 
rather than to those of principle. 

II. SIMPLE FORMULAE FOR DIFFUSION AND DRIFT IN WEAKLY IONIZED 

GASES 

As was first put in evidence by Townsend, a group of electrons moving 
among the molecules of a gas in the presence of a steady and uniform electric 
field E acquires a steady state of motion comprising a random agitational motion 
in which the speeds 0 of the electrons are distributed, superimposed upon a 
velocity of drift W of the centroid of the group. The mean agitational energy 
Q = imC2 of the electrons exceeds Qo, that of the gas molecules, and the speed W 
is, usually, a few per cent. only of the mean agitational speed c. 

The energy Q, the speed W, and the law of distribution of the speeds 0, 

are all functions of the ratio EjN of the electric field strength to the molecular 
concentration N. The group of electrons also diffuses relative to its centroid 
with a coefficient of diffusion D. 

In deriving formulae for D and W it is supposed that the paths of elections 
are rectilinear segments terminated by encounters with molecules that produce 
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abrupt changes of direction in the electron 'velocity c, that is to say, the pro­
portion of the time during which the velocities c of the electrons receive appreci­
able modification during encounters is very small compared with the time spent 
in rectilinear motion between encounters. I~ is also supposed that the directions 
of the velocities c, that is of the free paths, are isotropically distributed through­
out the group. 

In addition to this basic picture of the motion it is necessary to know or to 
postulate: 

(a) The law of scattering of electrons in single encounters with molecules; 
that is to say, the distribution of directions of the speeds c' after single 
encounters relative to the speed c before these encounters. 

(b) The dependence of the collisional cross section A(c) of the molecules 
upon the speed c of the colliding electron. 

(c) Moreover, because of the small proportion of its energy lost in a collision, 
an electron makes a number of collisions successively at effectively 
the same speed c. 

The simplest case, that usually treated by the method of free paths, is 
that in which law of scattering (a) is that of isotropic scattering, all directions 
of motion after an encounter being equally probable, and the collisional cross 
section A is postulated to be constant. The molecular model consistent with 
these assumptions is the massive, smooth, and perfectly elastic sphere of fixed 
diameter. 

The formulae for D and W in this special case are, as is well known, 

D=ilc, } 
~ ................ (1) 

W =j(Eejm)l . c-1, 

in which c and c-1 are the mean speed and the mean of the reciprocals of the 
speeds respectively and l=ljNA is the mean free path. 

In practice, the usefulness of these formulae is greatly increased by removing 
the restrictive nature of the assumptions implicit in them. In what follows, 
generalizations of these formulae are sought, by the method of free paths, to 
include (i) an arbitrary law of scattering, and (ii) an arbitrary dependence of 
the collisional cross section A(c) upon c. 

III. FORMULAE WHEN THE OOLLISIONAL OROSS SECTION DEPENDS UPON 

THE SPEED C 

It is still assumed that the scattering at an encounter is isotropic. It 
proves to be the case that the formula (1) for the diffusion coefficient should 
now be written 

. '.. . . . . .. . . . . .. .. . .. (2) 

but that the same modification of the formula for W is invalid, although it has 
often been consideredlcorrect in the literature., To find the correct formula 
proceed as follows. 
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Oonsider a group of electrons travelling either radially or in a parallel beam, 
from a common origin. Let no be the number at the origin, x=O, and n i the 
number that reach distance x without collision, it being supposed that they all 
possess the same speed c. 

If the number that collide in the interval between x and x+dx is dnu then 
the differential equation for n i is 

dni = -N A (c)nIdx. . . . . . . . . . . . . . . .. (3) 

Suppose that because of the action of the electric field the speed of the electron 
changes along its trajectory so that at distance x it is e+,ie(x). Oonsequently, 
at distance x the collisional cross section is A(c) +(dAjdc),ic(x), neglecting terms 
in larger powers of ,ic(x). 

It follows from (3) that the proportion of the group in which collisions 
occur at distances greater than. x is 

nIjnO=exp [-NAx-N f(d.A.jde),iC(X)dx]. . ... .. (4) 

WhEln A is constant this reduces to the usual expression nIjnO=exp (-xjl), 
where l=ljN A. 

The proportion that collides between x and x+dx is 

dnIjnO=[NA+N(d.A.jdc),ic(x)]dx. exp [-NAx-N f(d.A.jde). ,ic(x)dx]. 

• • . . . . . . . . . . . . . . . . .. (5) 

When ,ie(x)jc is a small quantity this expression is approximately the same as 

dnIjnO=[N A +N(dAjdc),ic(x)][l-N f (dAjdc),ie(x)dx]dx : exp (-N Ax) 

~[N A -N(dA.jde){N A f ,ic(x)dx-,ic(x)}]dx . exp (-N Ax). 

. . . • . . . . . . . . . . . . . . .. (6) 

In terms of the mean free path l=ljN A this becomes 

dnIjnO=exp (-Xjl)[ljl+(ljl2)(dljdC){f ,ic(x)dxjl-,ic(x)}]dx. . ... (7) 

Oonsider a group of n electrons moving in a steady state of motion in a gas 
and let the number whose agitational speeds lie within the limits c and c+dc 
be 

dnc=nf(e)de. 

The displacement of the centroid of the group dnc in time dt is given by the 
product of edtjl, which is the average number of free paths traversed by each 
member of the group, and the mean displacement in the direction of E along 
these free paths. It is therefore necessary to calculate this mean displacement. 
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Assume isotropic scattering and consider those electrons that make their 
next collisions after travelling distances lying between x and x +dx in the 
direction 6. In this distance they are given deflections i(Ee/m)(x/e)2 sin 6 
by the field at right angles to the direction 6 so that on this account they are 
advanced a distance i(Ee/m)(x/e)2 sin2 6 in the direction of the force Ee. 

In addition they travel a distance x cos 6 in the direction of E in the course 
of their free flight. The increment of speed Ae(x) along the free path x is 
(Ee/m)(x/e) cos 6, consequently the proportion of those setting out in direction 6 

. that collide between x and x+dx is given by substituting this value of Ae(x) 
in equation (7). . 

It follows that the mean displacement of a particle of the group dnc taken 
over all directions 6 and free paths x is 

1 f:f:[(Ee j2m)(xje) 2 sin2 6+x cos 6] exp (-xjl) [1jl+~ ~(il-1)X cos 6. !:] 
x sin 6d6dx 

='l..Ee (ljC)2 +!Ee(~)dl 
3 m m e de 

= t(!e) (~) .!2 :e(le2). . . . . . . . . . . . . . . . . . . . . . . . . .. (8) 

The number of collisions made by the group dnc in time dt is (ejl)dncdt, so that 
the sum of the displacements in the direction of Ee experienced by the group 
in time dt is obtained by multiplying expression (8) by (ejl)dncdt, giving 

The displacement of the centroid of the whole group is 

. Consequently the drift velocity of the centroid is 

w· J sf(e)de= (Ee/3m) rC-2~(le2)] 

. • . . . • . . . . . • • • (9) 

When l is independent of e this expression reduces to that in equation (1). 

In terms of the mean free time of flight T=lje along free paths traversed 
at speed e equation (9) becomes 

W=(Eejm) . d(e3T)jde3• • ••••••••••••• (10) 
I 
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In the special case in which electrons and molecules repel according to an 
inverse fifth power law of their separation, it is known that l=ao, where a is a 
constant. In that case, T=l/o=a=constant and 

W=(Ee/m)T, . . . . . . . . . . . . . . . . .. (11) 

which agrees with a formula given by Pidduck (1913, 1915). 

In treatments of drift based on the Maxwell-Boltzmann procedure it is 
supposed, following Lorentz, that the distribution function in the presence of 
the electric field E, here supposed directed along Ox, takes the form of a chief 
term representing the isotropic motion and" a correction term; thus, 

( 12) 

where u is the x component of o(u, v, w) and fo(o) is so defined that 

f f J:,x/o(0)dUdVdW=47t f: fo(0)02do=1. 

The drift velocity W then becomes J u2fl(0)dudvdw,the problem being to 

determine the form of fl(O) in relation to fo(o). 

We here investigate the form offl(O) required to make J u 2fl(0)dudvdw the 

same as expression (9). 

Put 

f -.f[ {(u _~U)2 +v2 +W2}i] ~f[ 0 -u~u/o], 

and suppose that u~u/o~l. Then 

f -10(0) -(u~u/o)dfo/do. 

The mean" drift velocity W of the whole group is 

averaged over all values of the component u. Consequently, 

Thus, since the first term in the brackets vanishes at both limits, 

W =(1/302){d(~u03)/do}. 

Whence, on comparison with equation (9), 

~u=(Ee/m)(l/o) and in equation (12) fl =( -Ee/m)(l/02)(dfo/do), 
"which is essentially the form given by Chapman and Cowling (1952, p. 348). 
Formula (9) was first derived explicitly by Davidson (1954) by a method different 
from that followed here. 
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IV. FORMULAE WHEN THE SCATTERING IS NON-ISOTROPIC. 

OOEFFICIENT OF DIFFUSION 

Oonsider the diffusion of a group of electrons in a coordinate system moving 
with its centroid. The coefficient of diffusion, as is well known, is related to 
the mean rate of increase of the squares of the distances from the origin, as 
follows: 

dr2jdt=6D. . ................... (13) 

Of a large group n of particles and a subgroup of them at the vector position 
ro at t=O, consider those particles of the subgroup whose speeds lie within the 
limits c and c+dc. In time t each particle will traverse on the average ctjl, 
free paths S so that the vector position of a particle at time t is 

( 14)1 

However, since the centroid of the subgroup does not change, the mean value 
of ~8 m' for the subgroup, is zero. 

From equation (14) it follows that 

r~=r5+2ro· ~8m+~8m' ~8m' 

Whence the mean value of r2 -r~ for the subgroup is 

--z---2 rc-ro= ~ 8 m , ~ 8 m 
m~l m~l 

= ~ S~ +2 ~ S ';'(Sm+1 cos 81m +Sm+2 cos 82m + ... +) 
m~l m~l 

=(ctjl)[2l2+2l2 (COS 81 +COS 82 +cos 83 +, .. )J 

=2clt[1+cos 81 +COS 82 +, .. J. 

It is assumed that ctjl is a large number and that cos 8 m diminishes not too 
slowly with m, so that the content of the bracket is the same for all except the 
last few free paths. A term cos 8n is the mean value of the cosine of the angle 
between a free path S m and the nth subsequent free path sm+n of the same 
particle. 

Thus for the subgroup .at ro at t=O and moving with speeds c, 

Since the expression on the right-hand side is independent of ro it follows that 

dr~jdt for all electrons with speed c in the whole group n is given by the same 
expression. On averaging over all speeds c it follows that 

D=tdi2jdt=Hlc(l+cos 81 +cos 82 +, .. J. . ..... (15) 

According to a theorem established in Appendix I, these mean cosine, 
terms are related as follows: 
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consequently the contents of the bracket on the right-hand side of equation (15) 
form a geometrical progression and this equation becomes 

( 16) 

Thus, when the scattering in single collisions is not isotropic cos 61 is not zero. 
Nevertheless, formula (1) for D retains its form but with an equivalent mean 
free path leq=lj(l-cos (1) as if the molecules scattered electrons isotropically. 

(a) Formula for Drift Velocity 

cos 61 is, in general, not zero and additional terms appear in expression (8) 
for the mean displacement along a free path traversed at speed c. 

When the scattering is isotropic any preferred direction in the velocities c 
before impact are obliterated by the encounter, but this is not the case when 
-the scattering is not isotropic. The mean velocity parallel to Ee acquired 

_ ;along single free paths is (Eejm)(ljc). Of this the velocity (Eejm)(ljc) cos 61 
:remains after a collision with a molecule. 

The total mean velocity parallel to Ee at the start of each free path, that 
:has accumulated from previous free paths, is 

(Eejm)(ljc)[cos 61 +(cos (1)2 + ... ] = (Eejm)(ljc) cos 61j(1-cos (1) . 

. This gives an additional displacement normal to the. free path x of amount 
(Eejm)(ljc){cos 61j(1-cos (1)}(XjC) sin 6 with a .resolved part parallel to Ee 
equal to (Eejm)(ljc){cos 61j(1-cos (1)}(XjC) sin2 6. This term when included 
in the first bracket of the integrand in expression (8) produces a term 
j(Eejm)(ljc)2{cos 61j(1-cos (1)} in the integral that combines with the term 
i(Eejm)(ljc)2 to give a single term 

i(Eejm)(ljc)2[lj(1-cos (1)]. 

The residual velocity (Eejm)(ljc){cos 61j(1-cos (1)} also ·adds to ~c(x) in equation 
(7) a term 

The end result is that the term l(Eejm)(ljc)dljdc in equation (8) becomes replaced 
by -

t(Eejm)(ljc)(dljdc){lj(l-cos (1)}. 

The final term in equation (8) becomes l(Eejm)(ljc)(ljc2)d(leqc2)jdc, where 
leq =lj (I-cos (1) and is the same equivalent"free path as is defined in the modified 
.expression for the coefficient of diffusion, equation (16). 

The expression for the drift velocity follows, and equation (9) becomes 

W = (Eej3m) [c- 2d(leqc2 )jdc] 

=(Eejm)[d(c3Teq)jdc3 ], (17) 
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Thus in the formulae for D and for W when the scattering is not isotropic 
the actual gas may be replaced by a model gas in which the scattering is isotropic 
but with a modified mean free path leq=l/[I-cos 01]. In what follows land leq 
will be regarded as synonymous except in specific discussions where the distinc­
tion is required. 

v. SPECIAL MOLECULAR MODELS 

(a) Hard Spherical Molecule 

Here the collisional cross section is independent of c but the scattering may 
not be isotropic. Formulae (1) are valid with l replaced by leq. 

(b) Point Oentre of Force 

Neglect all encounters beyond a distance of closest approach cr. The deviation' 
o is a function of the impact parameter b and the proportion of encounters 
for which b<cr and b lies between band b+db is 2bdb/cr2 • Consequently the 
mean values of quantities such as O(b) and cos O(b) are 

O(b) = (2/cr2) I: O(b)bdb; cos O(b)=cos 01 =(2/cr2 ) I: cos O(b)bdb. 

When the law of force between an electron (mass m 1 ) and a molecule (mass: 
m 2) is P=ku/rv, the angle O(b) is given by (Chapman and Cowling 1952, p. 171) 

IVOO \ 2 (V )V-l}-t 
0(b)=7t-2 0 (1-v2 - v-I Vo . dV=7t-2<p(b) ( 18) 

where voo is the real positive root of I-v2-{2/(v -1)}(v/vo)v-1=O and 
vO=b{mlm 2c2/(ml +m2)k12F/(v-1). 

The expression for leq in equations (16) and (17) is equivalent to 

l/leq = (I-cos 0l)/l =N 7tcr2 • (2/cr2) I: [I-cos O(b )]bdb 

=27tN I: [I-cos O(b)]bdb, 

in which cr may now be made infinite provided the integral converges. 

Equation (19) transforms to 

( 19) 

[
(m1 +m2)k12j2/(V-1) ___ I __ A (v)-27tNBA1(v) 

l/leq =27tN. m 1m 2 • c4/(v-l) 1 - c4/(v 1) , 

.................. (20r 
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Values of Al(V) for several values of v are given by Ohapman and Oowling 
,1952, p. 172); for instance, A 1(5)=0·422. The formulae for D and W 
.appropriate to these "point centres of force" models are 

In practice the general formulae (16) and (17) which do not relate to specific 
models prove to be more useful for interpreting the experimental measurements 
-of D and W of electrons in gases . . 

VI. ApPLICATIONS TO LABORATORY MEASUREMENTS OF D AND W 
In the methods devised by Townsend for investigating the motions of 

-electrons in gases, the macroscopic quantities that are measured directly are 
the drift velocity W as a function of EjN (that is to say, Ejp, where p is the 
pressure of the gas at a fixed temperature) and the ratio WjD. Oonsequently 
both Wand D are obtained from the measurements. 

(a) The Ratio WjD 

According to equations (16) and (17), with l written for leq, 

WEe [c- 2d(lc2 )jdc] 

D m (lc) 
................ (22) 

In the "weak field" case in which W is small in comparison with the mean 
thermal speed of the molecules a condition of approximate equipartition of 
energy prevails and the electronic speeds are distributed according to Maxwell's 
law. 

In equation (22) the factor c- 2d(lc2 )jdc is 

3~ / -Jw di (7c 2 ) exp (-c2 jrh2 ) • dc. 
rhv7to C 

When this expression is integrated by parts it is seen to be equivalent to 
(3jc 2 )(lc). Oonsequently equation (22) reduces to the well-known Nernst­
Townsend relationship which is independent of any particular molecular model, 
:since l is eliminated, 

W jD=Ee/( tmC2) =Ee/kT 

= (3/2)(Ee)/( tmC2"j, . . . . . . . . . . . . .. (23) 

where k is Boltzmann's constant and T the absolute temperature of the gas. 

In the" high field" case W greatly exceeds the mean speed of the molecules 
and the speeds c of the electrons are no longer distributed according to Maxwell's 
formula. The earliest general investigation of the law of distribution of the 
speeds c appears to be that made by Pidduck (1915) and the subject has been 
frequently discussed. The law of distribution for the case of elastic losses has 
been given in a convenient general form by Ohapman and Oowling (1952, p. 350) 
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and in what follows their formulatiori is adopted. In the notation of the present 
paper the distribution function in the " high field" case is 

!o(c)c2dc=const. [exp ( - J~;:~~)] . c2dc, ...... (24) 

in which 1 is, in general, a function l(c) of c. 

It may be seen that in the" high field" cases, where the l~w of distribution 
is no longer that of Maxwell, equation (22) does not reduce to the form (23), 
but becomes 

W/D=O . Ee/tm&, 
where 0 is the dimensionless factor 

& . [c-2d(lc2 )/dc]/2(ic), 
} .......... (25) 

the value of which depends on the nature of the dependence of 1 upon c and is 
in general appreciably different from the value 3/2 that occurs in equation (23). 

It is evident that, when equation (25) is used to deduce the value of the 
electronic mean energy Q =tmc2 , it is necessary to know the value of 0 if accuracy 
is required. When 1 is constant the distribution function approximates to that 
of Druyvesteyn, namely, 

!(c)c2dc=(4/,z3 y !) exp (-c 4/,z4)c2dc. 

The factor then becomes 

0=&. '0-1/(5=1'312; W/D=1·312. Ee/(tmc2 ). 

When l=g/c, where g is a constant, the law of distribution tends to the form 

!(c)c2dc=(6/ rx3 yn) exp (-c 6/ rx 6)c2dc, 

and 0=tc2 • C"=2=1. 
If 1 is proportional to c then 0=3/2, whatever the law of distribution of 

the speeds c, as in equation (23). 

These examples show, as already remarked, that, in general, in order to 
derive the mean kinetic energy of the electrons Q from equation (25) it is 
necessary to know the dependence of l(c) upon c. For instance, in nitrogen 
over a range of values of the parameter E/p (p=gas pressure) the coefficient of 
diffusion D is constant. Since D=t(fc) it follows that l=g/c and, as shown 
above, that 0=1. 

VII. FORMULA FOR A GASEOUS MIXT1JRE 

It is easy to extend the theorem of Appendix I to a gas, such as air, com­
prising molecules of several kinds and to show that N/1eq =2:.Nk(leq)k' where 

. N =2:.Nk and 1eq is the equivalent free path in the mixture, Nk and (leqh being 
the partial concentrations of the kth component, the corresponding equivalent 
free path in it alone. This result is the same as that for a gas comprising a 
mixture of molecules of different kinds, all of which scatter isotropically. 

A companion paper dealing with drift in a magnetic field and in an 
alternating electric field will appear in the next issue of this journal. 
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ApPENDIX I 
Theorem 

Let a large number of particles all travelling in the same direction enter a 
system of scattering centres. Let cos (1) cos 82", ., cos 8n , • •• etc. be the 
mean values of the cosines of the angles between the directions of entry of 
particles into the scattering system and those of the free paths traversed by the 
particles following their first, second, ... , nth, ... scattering within the. 
system. If the law of scattering at single encounters is symmetrical about the 
direction of approach of a particle to a scattering centre and the law of scattering 
remains unchanged in successive encounters, then cos 8n==(cos ( 1 )n. 

Proof 
Let a group of P particles move into the system along parallel 

trajectories and suppose that the distribution of directions over the unit 
sphere of the free paths following the first collision of each particle is 
given by dP/P= -27tF(8) sin 8d8, or alternatively in terms of the cosines of 
the angles 8 

where [1-=cos 8. 
It follows that 

.......................... (AI) 

Assume that 8([1-) may be expanded in a series of Legendre coefficients, thus, 

where 

00 

8( [1-) =ao +~anP n([1-), 
1 

an=(n+t) J::S([1-)Pn([1-)d[1-. 

It follows from (AI) and (A2) that ao=t. 

. ......... (A2) 

In order to find the distribution of the directions of the second, third, etc. 
free paths over the unit sphere use is made of a formula in the theory of spherical 
harmonics (MacRobert 1947). 
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Let (6, cp) and (6', cp') be points on the unit sphere and y the angle between 
their radii; then 

cos y=cos 6 cos El' +sin 6 sin El' cos (cp -cp'). 

Let Y m(6, cp) be a spherical harmonic of degree m, then 

.. (A3) 

The free paths following the first collisions comprise a number of elementary 
beams within solid angles dw = -dfLdcp with strengths PS(fL)dw/27t. 

These elementary beall1s are scattered in the second encounters about 
the directions of their axes according to the same law as prevailed in the first. 
The number of representative points at any point on the unit sphere is comprised 
of contributions from the elementary beams scattered in the second encounters. 
It follows that the number of free paths within solid angle dw' in the direction 
(El', cp') immediately following on the second collision is 

whence, using equation (A3), 

where fL' =cos El'. 

It can be seen that, after m collisions of each particle, the distribution of 
the directions of the free paths over the unit sphere is given by 

00 

dP/P= -(dw' /27t)[t+~{2m-la,:!/(2n +l)m-l}p n(fL')]. 
1 

Consequently the mean value of cos 6 m =cos 6 m is 

=(ja1)m=(cos ( 1)m, 

which was to be proved. 




