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Summary

A simple expression for the drift velocity of a charged particle moving in an inhomo-
,geneous magnetic field has been obtained by Alfvén, who, in his first-order theory,
considered the inhomogeneity as a small perturbation of a uniform field.

In this paper, by use of a different approach, an exact solution is obtained for the
drift velocity of a charged particle moving in a magnetic field of constant gradient,
B,=)x. The method easily yields as approximations Alfvén’s result and the case of
circular orbit, and includes the case of zero mean field, for which perturbation methods
are inappropriate.

I. MotioN IN A MAGNETIC FIELD OF CONSTANT GRADIENT
Consider first the motion of an electron, and suppose the magnetic field
is in the z-direction and is represented by B,=Mz. Then, from the non-relativistic
equation of motion we have, in the absence of electric field,
mdw/dt=—(efe)wxB, ................ (1)

where the electron charge is —e.

The z-component of w is constant, and need not be considered explicitly.
The other components vary as

mdw,/dt= —(e/c)Arw,,
mdw, [dt= 4-(e/c)Arw, }

w2 =w? +w§ is constant, and, in the notation of Figure 1, w,=w cos Y, w,=w sin .
Substitution of these relations in (2) gives

ddjdt=erz/me. ............oiiiin. (3)

Since w=ds/d¢, where s denotes distance along the electron trajectory

dy/ds=ervfmew. .......oovuuon... .. (4)
Thus
d2&[) en dw_ ex
, T —mow T —mew Y e (5)
and 8o
d¢ 2eA
(‘E) =qoo8in §+constant.  ....... ceee. (6)

* Department of Theoretical Physics, Research School of Physical Sciences, Australian
National University, Canberra.

A



310 ' , P. W. SEYMOUR
From (4) and (6)
o=+ +/{Z5+(@mew/er) sin ¢},  ....iiiiia... (7)

where «, is the value of # when ¢=0.
For z positive, (3) gives

_mo f dy
¢ 5 i (8)
er] \/{a+(2maw]ed) sin ¢}
Also, since
dy
-d-g—sm LIJ, ................................ (9)
(4) gives
_mow sin ¢ d¢ (10)
Y \/{w(z)-l—(chw/e)\) pr q}}. ..........
o B=0 3y

~| DIRECTION OF
DRIFT

Fig. 1.—Electron drift in a magnetic field B,=2xz : Case 1, motion
does not cross the line B=0.

TII. COMPARISON WITH ALFVEN’S RESULT
For motion which does not cross the line B=0, as in Figure 1, (10) gives
the y-drift per cycle exactly as

N sin ¢ d¢
Ay'—PO 0 \/{1—{-2(90/-700) sin LI)}’ ..........

where B,=MAz,, and p,=mcw/eB, is the orbit’s radius of curvature for field
strength B,.

When p,<x, which implies electron orbital motion far from the y-axis,
a first-order result for the drift velocity in the y-direction can be readily obtained.
After expansion of the denominator in (11), integration gives approximately

Ay= —npk|zo= —nAp3/Bo.

Similarly, from (8) the periodic time in this case is T'=2mp,/w, and so the
corresponding drift velocity in the y-direction is given by

wy=Ay[T=—3%pM0[By. vevveiiiinnnn (12)
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This is the result obtained by Alfvén (1940, 1950), and discussed by Post
(1956) and Spitzer (1956).

When B, has a fixed value and A approaches zero, we obtain the circular
orbit result for a homogeneous magnetic field, i.e. w,=0 and T'=27p,/w=27/w,,
where «,=e¢B,/me is the so-called cyclotron angular frequency.

III. EXACT SOLUTION IN TERMS OF ELLIPTIC INTEGRALS
To complete the exact solution, two cases require consideration.

Oase 1. Electron does mot enter Region of Reversed Magnetic Field
For an electron motion which does not cross the line B=0, as shown in
Figure 1, the limits of # are, from (7),

#y=1/ (w2 —2mew/e}) for $=3m/2, (13)
wp =1/ (42 +2mew/er) for =m/2,
so that 0<<wy <wy<®,.
Using the substitution ¢=34m—2¢, we obtain from (10) the drift per cycle
in the y-direction as
2mew (T (1 —2 sin¢)de
By ) o +/(1—K: sin? @)

Ay= cerecnsasess (14)

where Arz=B; and k1=4mcw/e)\w2~4pz/aa2, if pg is the orbit’s radius of curvature
for field strength B,.

When #,>0, (13) gives x,>+/(4mew/eh)>+/( #3k3), so that the upper
limit of %% is unity.

Reduction of (14) to standard form for elliptic integrals results in

A {2r/2 1—k? sin? @)do —[2—kT f " de
y=mm2), VO-hsintede—-h ] U0 TR s @)}
= —0,{2[K—E] =K}, cervivniiinnen e veeenes (15)

where K and E are complete elliptic integrals of the first and second kind
respectively, of modulus k, (Dwight 1947).

The periodic time is derived from (8) as

/2 2 ,
-T=4_7_£‘ff” _de Ry L (1)
eByJo (1—Fkisin?q) W

The exact drift velocity is, therefore, from (15) and (16),

A 2
w0=%’=—w{5%[1_§]—1}. e (17)

Since {(2/k3)[1—E/K]—1}>0 for 0<k3<1, the drift velocity is a.lways in the
negative y-direction.
When ki<1, Alfvén’s result w,= —3wk? is again obtained.
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When k3=1, which occurs when 2;=0, we have w,= —w, and the electron
moves along the line B=0.
For <0, the electron drift pattern is precisely the mirror image in the y-axis
of that shown in Figure 1. Again the drift is always in the negative y-direction.

Case 2. Electron enters Region of Reversed Magnetic Field
Consider now a motion in which the electron crosses the line B=0, and thus
enters a reversed magnetic field, as shown in Figure 2. Let (), be the value of ¢

MAGNETIC FlELL\I\D DOWNWARDS
o
DIRECTION y
OF DRIFT
— .... —_——X,
- o 3>
B= O  ——— A \j >» Y
| - - =Xz
! I
: I
! |
V I ! MAGNETIC FIELD UPWARDS
X (PR A—

v Flg 2.—Electron drift in a magnetic field B,=Xz: Case 2, motion
crosses the line B=0.
when =0 and w,>0. Then in place of (7)
x=4+/{(2mew/er)(sin ¢ —sin o)}, ..., (18)
and so the limits of x# are now
By= —a;=/{(2mew/er)(1 —sin o)} for ¢=1%m. .... (19)

In this case various drift patterns may occur, as shown in Figure 3, but each
pattern possesses symmetry about the y-axis. It is therefore convenient to
introduce the term ¢ zero mean field ” to describe the field condition at the
y-axis.

MAGNETIC FIELD DOWNWARDS
ARROWS INDICATE
<—— DIRECTION OF ——> —_
PARTICLE_DRIFT
R SN oNeYe ,
— 0O TV 7
. £ E_ E
=< % =% =>%
M MAGNETIC FIELD UPWARDS

X

Fig. 3.—Typical electron drift patterns in terms of E/K for Case 2.

Introducing as before ¢=3w—2¢, then (y=4in—2¢, From Figures 2
and 3, —3n<Yp<+4m, 0<¢py<}mw, and the above limits thus reduce to

o= —xy=24/(mew/er) 8N Q5. .ii....... (20)
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Utilizing the properties of symmetry exhibited by the drift pattern of, say,
Figure 2, then for positive # in (18) we obtain from (4) and (9) ‘

_ 2mew sin d¢
Ay=A0=24B —Tf v V{@mow]en)sin §—sin Go)

){ cos? pdo ., J'“"’ de }
V(8% gy —sin? @) ) 4/(sin® g, —sin? ¢))"

If another variable of integration 0 is defined by sin ¢=sin ¢, sin 6, (21) may
be transformed to

de
s (5[} Va1 [7 s

=84/ (mew[eN) (B —3K). ..ot i e (22)
where k,=sin ,=x,4/(¢A/4mecw), using (20).
Similarly .
T=4+/(meclexw)K, ................ (23)
and the drift velocity in this case is
wym0@E[E —1).  + e (24)
When k,<1, B/K~1—3k3 and
Wy AW —Z)~W, et (25)

as expected from Figure 2.

For E/K=1}, corresponding to ¢,~265°, the drift velocity becomes zero.
As g, increases beyond 65° (E/K <}) the drift velocity becomes negative, as in
Case 1. Figure 3 gives typical drift patterns for E/K <}, B/K=1}, and E/K> }.
Since in this Case w;, becomes +w and —w for k,=0 and k,=1 respectively, it
follows that at the limit ¢,=0 the electron moves along the line B=0 in the
positive y-direction, while at the limit ¢,=4m it moves along the same line in
the negative y-direction. Thus the drift patterns of Cases 1 and 2 coineide in
the limits k;=1 and k,=1.

For positively charged particles, the principal results are that the formulae
for &k, and k, remain unchanged, if the particle charge is e, whereas the w,
are changed only in sign.

Since da/ds=cos {, it can be readily ascertained that the drift velocity in
the x-direction is zero in all cases.

IV. DiscussioN oF RESULTS
The drift velocity results obtained in Cases 1 and 2 for an electron are shown
plotted against the parameter x,4/(eA/4mcw) in Figure 4. This parameter is %,
in the region of Case 2, and 1/k, in the region of Case 1. For 1/k,—> co, we have
the well-known region of Alfvén drift velocities. In spite of the smallness of
Alfvén drift velocities relative to particle velocities, it has been considered that
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charge separation effects could be obtained in a plasma and that these might
lead to motion of the plasma towards the region of weakest magnetic field (Post
19566). Larger drift velocities, of the order of the particle velocities, are expected,
however, in the region x,4/(eA/dmew)<1. Thus, if the magnetic field within a
plasma varies in a direction normal to the field and somewhere changes sign,
the motion of the charged particles in the neighbourhood where it changes sign
may lead to larger charge separation effects than in the Alfvén region.

[eCASE 2% ASE 1

Fig. 4. —Variation of wp/w with 2,4/ (eA/4mcw) for Cases 1 and 2.
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