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Summary 

The solution of the problem introduced in Part I is found for the case of large 
diffusion Peclet number (Y). The work is carried out principally in the third approxi. 
mation of the Galerkin method, and the results are presented in some detail. 

The degree of the polynomial equation in the eigenvalues is halved by proceeding 
to the limit as Y ~ 00. The roots retained are found to be just those roots which are 
physically admissible. 

A comparison of results of the first three approximations suggests that the 
Galerkin method is rapidly convergent and that the third approximation is accurate 
enough for the present purpose. 

Results obtained from the analysis include the dependence of the (generally 
complex) apparent longitudinal diffusivity on frequency; a criterion for the validity of 
the diffusion approximation; and (when input concentration is periodic with time) the 
wave velocity. The wave velocity always exceeds the mean flow velocity, high 
frequency waves travelling faster than low frequency ones. 

I. INTRODUCTION 

The present work follows on immediately from Part I (Philip 1963), and we 
carry over the symbolism from that paper. We begin by considering the first three 
approximations to the solution of the system (1.5.1), (1.5.2) of Part I, and the 
choice of the physically appropriate roots. The remainder of the paper is a detailed 
study of the solution in the case of large Peclet number. 

II. THE FIRST THREE ApPROXIMATIONS 

As indicated in Section VI of Part I, we shall be working principally in the 
third approximation. In order to secure some insight into the rate of convergence of 
the Galerkin method (and into the accuracy of the third approximation), it is desirable 
to give some attention to the first and second approximations also. 

To proceed as far as the third approximation we need the following numerical 
values: 

aOl = - 1'3529, 
a02 = + 0'5416, 
,\~ = 14·682, 

alO = - 0'2195, 
~2 = - 0'5751, 
,\~ = 49·218. 

a20 = +0,0488, } 
a21 = -0·3193, (2.2.1) 

Except for au and a2l , all these were found simply with the aid of tables of 
Jo(x) and of the roots of JI(x) (Watson 1944). The values of a l2 and a21 were deduced 
from the result 
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secured by the use of Simpson's formula with end correction (Lanczos 1957, p. 44) 
over twenty panels. 

(a) First Approximation 

The first approximation is, evidently, 

a2jY2-a-Qi = 0, 
the roots of which are 

t y2 [1 ±(1 -j-4,QijY2)t]. 

Now for Q andY both real, and QjY2 =F 0, 

(2.2.2) 

(2.2.3) 

(2.2.4) 

The negative sign in (2.2.3) must therefore be taken if ~[a] is to be negative, as the 
physical problem demands. It follows that (aoh, the zeroth eigenvalue in the first 
approximation, is given by 

(2.2.5) 

The results given in (2.2.6) follow simply from (2.2.5): 

1 K lim -.! = y-2 
J5 Q/y2-.0 y2 ' 

1 l' [1' KI] = 0. D- 1m 1m y2 
Y--+oo Q·-.O 

(2.2.6) 

Here we have written KI to denote the value of K deducible from (1.4 .10) 
when (aO)1 is substituted for a. It will be clear later that the first approximation is 
a poor one, and that the only use of these results is to provide information on the 
convergence of the Galerkin method. 

(b) Second and Third Approximations 

The second approximation is 

I a2jY2-(a-j-Qi) 

aOla 
alOa 

a2jY2-(4aj3-j-A~-j-,Qi) 1=0, (2.2.7) 

a quartic in a, of which only two roots, (aO)2' (al )2' are physically admissible. 
Similarly the third approximation, 

a2 jY2-(a-j-Qi) alOa a20a 
aOla a2jY2-(4a/3+A~+Qi) a2la = 0, (2.2.8) 
a02a al2a a2/y2-(4a/3+A~+,Qi) 

is a sextic in a, of which only three roots, (ao)a, (al)a, (a2la, are physically admissible. 



302 J. R. PHILIP 

(c) The Selection of Physically Admissible Roots 

Reverting for the moment to (2.2.2), we observe that the two roots of this 
equation tend to the values 

(2.2.9) 

as QjY2 ---i>- O. The latter of (2.2.9) is the physically valid root, and it is seen that the 
acceptable root as Y ---i>- 00 (Q =F 0) is retained when the operations of solving the 
equation and proceeding to the limit are reversed, that is, 

root of [ lim (2.2.2)] == lim [physically valid root of (2.2.2)], Q =F O. 
Y-? 00 Y-? cc 

(2.2.10) 

A relationship similar to (2.2.10) holds for both (2.2.7) and (2.2.8) as well. 
The establishment of a general theorem along these lines appears to be difficult. We 
observe, however, that it is a plausible conjecture that each equation of the form 
(1.6.4), considered as a quadratic in a, has one physically admissible root and one 
which is physically inadmissible. The condition for this to be so is that 

for all n, where 
co 

On = 2-(~ Bmamn)jBn. 
o 

It follows that a more specific condition under which 

each root of [lim (1.6.7)] - lim [a physically valid root of (1 .6.7)], 
y---+oo Y-)oCO 

Q =F 0, 
is that 

(2.2.12) is apparently satisfied, but a proof has not been attempted. 

(d) Schema for Solving (2.2.7), (2.2.8), etc. 

(2.2.11) 

(2.2.12) 

Equations (2.2.7) and (2.2.8) are, respectively, quartic and sextic equations 
with coefficients which are complex and which are functions of Yand Q. Clearly, we 
cannot expect to obtain the roots as explicit functions of Y and Q; and, at first glance, 
the task of determining the whole set of roots for 0 < Y < 00 and 0 < Q < 00, and 
of discarding the physically inadmissible ones, seems a very heavy undertaking. 
However, with the aid of the preceding considerations on the admissibility of roots 
in the limit as Y ---i>- 00 (Q =F 0), we may develop the following schema, which leads 
fairly readily to solutions for the whole Q-range and a substantial part of the Y-range. 
The following account refers specifically to the third approximation, but the 
application to the second approximation (or to higher approximations) will be evident. 
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(i) Halve the degree of the equation by proceeding to the limit as 
Y ~ 00 (Q =I- 0). Thus (2.2.8) reduces to 

-(a+Qi) a10a a20a 

a01a -(4a/3+"~+Qi) a21a 0, (2.2.13) 
a02a a12a -(4a/3+"~+Qi) 

and the task of securing the roots reduces to the simpler problem of solving a cubic. 
The roots so obtained may be adopted not only for infinite Y, but also for large Y, 
where the meaning of "large" will be clarified later. 

(ii) We suppose now that (aQ,Y,s)a has been established for Y = 00, 8 = 0, 1, 2. 
It is convenient to express these functions of Q in the form gs(w), where 

w =iQ. (2.2.14) 

We observe that, by replacing w (i.e. iQ) in (2.2.13) by (w-a 2/Y2), we recover 
(2.2.8). Further, it may be shown that the g.(w) (which we may suppose established 
along the imaginary axis) may be analytically continued, at least onto the relevant 
region of the complex plane. These two considerations lead to a means of deducing 
(aQ,Y,s)a for Y finite from gs(w). This process will be developed in Part III (Philip, 
in preparation). 

III. THE SECOND ApPROXIMATION FOR LARGE PECLET NUMBER 

The second approximation for large Peclet number reduces to the quadratic 

The roots are 

( ) ( ) __ (I4·682+7w/3)±(2I5·56+7·648w+I·2987w2)! 
a o 2' a 1 2 - 2.0728 . 

(2.3.1) 

(2.3.2) 

We have used numerical values (2.2.1) to secure (2.3.2). When Iwl is small, (aO)2' 
(al)2 may be expanded in ascending powers of w. The leading terms are: 

(aO)2 = -w+0'02022w2, } 

(al)2 = -I4·I66-I·25I4w-0·02022w2. 
(2.3.3) 

When Iwl is large, expansions in descending powers of w may be made. The 
leading terms are: 

(aO)2 = -0' 5905w-5' 3985, 

(a1)2 = -I·6609w-8·7679. } (2.3.4) 

Clearly, K 2, the second approximation to K, may be deduced from (2.3.2). 
In particular, we may use (2.3.3) in (1.4.10) to obtain the result 

~ ;~~ (~! ~) = 0·02022 = 49\5' (2.3.5) 

The exact value of the numerical term in (2.3.5) is 64/"~. 
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IV. THE TmRn APPROXIMATION FOR LARGE PECLET NUMBER 

The numerical values (2.2.1) reduce (2.2.13) to the cubic 

as+(64'5767 +3· 62221w)a2+(664' 775+137 . 164w+3' 37314w2)a 
+(664'775w+58'7845w2+O'919946wS) = O. (2.4.1) 

(a) Solution for Iwl Small 

When Iwl is small, the roots of (2.4 .1) may be found as expansions in ascending 
powers of w. It is useful to begin this process by obtaining the roots of (2.4.1) in the 
limit as w -'>' O. These are simply found to be 0, -12·8522, and -51' 7244. The 
expansions for (ao)s, (Uot)s, and (a2)S may then be developed by a process of equating 
coefficients. (The author employed a form of "long division" with all coefficients of 
the remainder equated to zero.) The results of this process are: 

(ao)s = go(w) = -w+0·0207631w2-O·00050444ws 
-0'OOOOO85865w4 +O'OOOOO107368w5 +O'OOOOOOOO81319w6, (2.4.2) 

(al>a = gl(W) = -12·8522-1·00036w-0·OO5208w2, 

(az)s = g2(W) = -51·7244-1·62186w-0·015554w2. 

(2.4.3) 

(2.4.4) 

The expansion for go(w) was taken further than those for the higher eigenvalues, 
since it is needed to greater accuracy in later work. 

(2.4.2), combined with (1.4.10), yields an expansion for K3 for large Peclet 
number and smalllwi. This is 

K3/D = Y'2(0·0207361+0·0003577w-0·OOOO78709w2). 

It follows that 

~. ;~ (2~", ~) = 0·0207361 = 48\6' 

(b) Solution for Iwl Large 

When Iwl is large, it is useful to rewrite (2.4.1) as 

a: + (3·6221+64·5767w.)a:+(3·37314+137 . 1 64w. + 664· 775w!)a. 

(2.4.5) 

(2.4.6) 

+(O·919946+58·7845w.+664·775w:) = O. (2.4.7) 

Here we have put 
a. = a/w, (2.4.8) 

We may then again employ the procedure described immediately above to 
secure expansions for (ao)s/w, (alh/w, (a2)S/w in terms of w.. The results may be 
rearranged as expansions in descending powers of w, which are valid for Iwl large: 

(ao)s = go(w) = -0·5321w-ll·1026+531·316w-1-31,741w-2 

+ 1 ,023,230w-s-52,893,300w-4 . . ., (2.4.9) 
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(alh = gl(W) = -0·7337w-21·674-768·72w-l +66,882w- 2 . .. , (2.4.10) 

(2.4.11) 

Here, also, the expansion for go(w) was taken further than those for the higher 
eigenvalues, because of the later need to know go(w) accurately. 

(c) Solution for 10 <: Iwl <: 100 

No formal study of the convergence of the expansions for Iwl small and large 
has been made. Comparison with results obtained independently for particular 
numerical values of w suggest that the expansions for Iwl small may be used for Iwl < 10, 
and that the expansions for Iwllarge may be used for Iwl > 100. 

For intermediate Iwl, we may develop expansions about w = wo, where Wo is 
a pure imaginary value of w, such that 10 < -iwo < 100, for which we have directly 
solved the cubic (2.4 .1) (by the method indicated below). Such expansions may be 

TABLE 1 

VALUES OFgo(W),gl(W),g2(W) ESTABLISHED BY DIRECT SOLUTION OF (2.4.1) 

W go(w) gl(W) g2(W) 
----

10 i -2·15- 9·36i -12·31-1O·06i -50· 12-16·3Oi 
15 i -4·31-12·2li -12·33-17·45i -47·93-24·68i 
17 ·5i -4·89-13 ·14i 
20 -5·20-14·15i -14·87-24·74i -44·51-33·55i 
25 -5·51-16·45i -19·60-30·02i -39·47-44·08i 
35 -5·85-21·64i 
50 -6·32-29·74i -25· 75-40· 23i -32·51-111·13i 
70 -7 ·03-40· 7li 

100 -8·22-56·88i -24·44-72·88i -31·92-232·46i 

developed by the methods of subsections (a) and (b) above, (a) being the natural 
choice, at least for the smaller values of IWol. Expansions of type (b) are possibly more 
useful for large values of IWol. The advantage of all such expansions about Wo is that 
their continuation onto the complex plane, which we shall require in Part III, may 
be undertaken without loss of accuracy. 

In the present work, we have proceeded in a less satisfactory, but far less laborious, 
way . We have found directly solutions of (2 .4 .1) by iterative use of the "rule of false 
position". (The fact that the roots are complex makes the calculation somewhat 
awkward, but prudent choice of the initial estimate of go(w) by reference to the 
expansions for Iwl small and large, and to roots already determined directly for other 
values of w, greatly diminishes the labour. With go(w) known, (2.4.1) reduces to a 
quadratic and gl(W), g2(W) follow at once.) The values of go(w), gl(W), g2(W) 
established in this way are presented in Table 1. 
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We have then used results from Table 1 to secure the following power series 
approximations to YO(W) : 

10 < Iwl <25, 
Yo(w) = (8·74+4·15i)-(2·1257-1·6650i)w 

-(0'0668+0'0944i)w2+(0'001693-0 ·000920i)w3 ; (2.4 .12) 

25 < Iwl < 100, 

15 

10 

'" 7 
" I 
o 5 

~ 

~ 
3 

'" I 2 

1"' '·5 
'i< 
I 

1'0 

0'7 

0·5 

Yo(w) = -(4·77+4·29i)-(0·45442-0·28485i)w 
+(0·00004097 +0· 001469i)w2 
-(0·000007541+0·000001925i)w3• (2.4.13) 

0'3~-,-J"=-5--:2~--:3~--:':5'--7=-~10=-7.'5;-;:!20;::---:!30;::----:5;!;0:---::7'.::-0-:'::!:00::-:1t:50::-::2~0:;:;-0-;;3~00;::--;;!50!;;:0;-:;7*00:;:;-.1;;t000 
D 

Fig. I.-Logarithmic plot of the real parts of eigenvalues ao, al against reduced 
frequency D, in the third approximation. Broken curve represents Bt'[aO-al]' 

which enters criterion (2.6.1). 

These approximations are, strictly, valid only for interpolation along the positive 
imaginary axis of w. In Part III, however, we shall use these in regions of the complex 
plane not too far from the positive imaginary axis, where they may be expected to 
provide a simple means of continuation of sufficient accuracy. 

(d) Presentation of Solution in the Third Approximation 

It is convenient to bring together these various results and to present them 
graphically. Since it will be understood that we are treating the third approximation, 
we shall drop the suffix 3 from the a's for typographical simplicity. Figure 1 gives 
logarithmic plots of 9l[aoJ and 9l[alJ against Q. (It will be noted that (a2)S seems 
unlikely to be a good estimate of a2' and we therefore omit it from the various figures.) 
Figure 2 gives, similarly, the plots of J[aoJ and J[alJ against Q. 
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The corresponding plots of ao and al on the complex plane are given in Figure 3. 

The dependence of K on Q is most conveniently represented in terms of the 
quantity K a, defined as 

1 l' Ka 
K3 = D- 1m Y2' 

Y-->oo 
(2.4.14) 

Figure 4 gives the plot of Ka on the complex plane. This figure also shows the plot of 

K = D~ lim y~ according to the approximate analysis of Philip (1963). Figure 4 
Y--> 00 

500 

300 

200 2 

150 v/U">",_---
100 -----------

20 

10 

7 

5 

3~1~1.~5-2~~~-5~~7~~10~~,5~20~~30~~50~7~0~·7,10~0~15~0~2~00~30~O~~50~O'"7~OO~1000 
Q 

Fig. 2.-Logarithmic plot of the imaginary parts of eigenvalues ao, al' against 
reduced frequency Q, in the third approximation. Broken curve represents wave 
velocity in the form V/U. Note that scale for V/U is to right of figure. 

also indicates the Taylor-Aris result, K = 1/48, which is, evidently, the exact value 
of lim K. 

Q-->O 

V. RATE OF CONVERGENCE OF THE GALERKIN METHOD 

It is useful to employ as a parameter indicating the rate of convergence of the 
Galerkin method, as applied to the present problem, the quantity 

Kq(O) = D~ lim ( lim Ky~). 
Q---;.-O Y---+ ro 

(2.5.1) 

This quantity has the advantage that, from the analysis of Aris(1956), we have 
the result 

Koo(O) = 1/48, (2.5.2) 

which provides an exact standard for comparison with the various approximations. 
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Figure 5 shows the plot of Kq(O) against q. It is clear that Kq(O) converges very 
rapidly to K",,(O) as q increases; and it appears that the third approximation will 
provide results of sufficient accuracy for the purposes of the present investigation. 

-100 

200 

-120 

-140 
200 

Fig. 3.-Plot of eigenvalues aD, al on the complex plane in the third 
approximation. Numbers along each curve denote values of reduced 
frequency Q. Note that scale of real axis is four times that of imaginary 

axis. 

VI. VALIDITY OF THE DIFFUSION ApPROXIMATION 

In Part I, the criterion governing the minimum distance along the tube at which 
the diffusion approximation may be taken as valid, L, was established as 

L Y a > ~=-o-[ a-o---ut-:Or· (2.6.1) 

[also (1.5.1)] 

The quantity ~[aO-al] has been plotted on Figure 1. It will be observed that 
this quantity varies mildly with Q, but it is, essentially, of order of magnitude 10 
throughout the range of Q. It is therefore clear that a simple and useful criterion is 

·L/a> Y/1O. (2.6.2) 
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It is of some interest to compare this criterion with those of Taylor and Aris 
(cf. (1.3.2), (1.3.3), (1.3.8)}. We note, in particular, that direct comparison with 
the Aris criterion (with numerical value 15 in place of the present 10) is confused by 
the different modes of introduction of length L. In any case, we have the result 

lim gt[aO-alJ = 12·85, 
9--->0 

(2.6.3) 

and it is, strictly, the quantity 12·85 which should be used in any comparison with 
the 15 of Aris and with the various numerical coefficients proposed by Taylor. 

+0'005 

0'005 

/11K] 
0'010 

Fig. 4.-Full curve represents plot of apparent diffusivity, in form K = KIDYs, 
in the third approximation. Broken curve represents plot of K according to 
approximate analysis of Philip (1963). Also shown is the result of Taylor 
(1953,1954) and Aris (1956). Numbers along curves denote values of reduced 

frequency Q. 

VII. WAVE VELOCITY 

When the input concentration is a stationary random function of time, the 
concepts of wave velocity and phase shift are not meaningful. In the special case 
where input concentration is a periodic function of time, however, these concepts are 
valid. We discuss the matter here in terms of wave velocity only. A treatment in 
terms of phase shift is, of course, equally possible. 

The "fundamental" wave of mean concentration c, associated with an input 
of reduced frequency n, is [cf. (1.4.8), (1.4.12)] 

(2.7.1) 

The wave velocity, in the reduced space-time of g, 7', is seen to be 

(2.7.2) 
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It follows from (1.2.3) that, in the space-time of x, t, the wave velocity V is given by 

(2.7.3) 

The graph of VjU against Q is given in Figure 2. It will be observed that VjU 
increases monotonically with Q from the value 1 in the limit as Q ~ 0 to the value 
1·879 in the limit as Q ~ 00. We note the following expressions for VjU, which are 
valid, respectively, for small and large Q. 

§ 
0-. 

VjU = (1-0·000504Q2)-1, 

VjU = 1,879(1 +999.0-2)-1. 

0·03,-----.----,---.,----,----., 

0'02 

0'01 

o 

/ 
I 

I 
I 
I 
I 
I 
J 
T 

1(00(0) '" 0-02083 

.... ~---~--
/ 0'02022 0'02076 

2 3 4 

Fig. 5.-Plot of Kq(O) against q. Kq(O) represents the value of K(O) 
given by the qth approximation of Galerkin method. Koo(O) 

represents the exact value. 

(2.7.4) 

(2.7.5) 

It will be seen that V exceeds U for all Q > O. That is, the wave always travels 
down the tube more rapidly than the mean flow. We observe, further, that high 
frequency waves travel faster than low frequency ones. 
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