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Summary

The temperature dependence of the elastic constants of a cubic lattice are
calculated in the classical limit by means of a Bethe approximation. The expressions
so derived are then applied to a simple model of some metals. The agreement
between the derived and measured temperature dependence of the elastic constants
of these metals is satisfactory.

I. INTRODUCTION

In an earlier paper (Lloyd 1964, hereafter called I) the classical anharmonic
contribution to the free energy of a lattice was evaluated using a Bethe approximation.
This approximation may be viewed in either of two ways. Firstly, one can consider
each atom in the lattice moving in an effective potential due to the other atoms. This
effective potential is then determined in a self-consistent manner. Secondly, the
approximation can be viewed as replacing the true lattice structure by a pseudo-
lattice composed entirely of non-intersecting chains of atoms. In this respect the
work is closely related to that of Barker (1961, 1962) and Lloyd and O’Dwyer
(1963a, 1963b). The approximation is also entirely analogous to that of Bethe (1935),
who studied the Ising model of ferromagnetism, with the exception that an atom
has a continuum of possible positions while an Ising model spin may be only up
or down. The pseudo-lattice of non-intersecting chains, which this approximation
solves exactly, is known as a Bethe lattice. In I it was shown that this approximation
was quite good when applied to a model which had been previously evaluated
numerically by Maradudin, Flinn, and Coldwell-Horsfall (1961). Now the expression
for the classical free energy, as derived in I, can be used to obtain the temperature
dependence of the bulk modules of the solid in the high temperature limit. It cannot,
however, be used to obtain the temperature dependence of the individual elastic
constants c¢;;, ¢y, and ¢,. The reason for this is that the cubic lattice loses its
symmetry under an arbitrary strain and this symmetry was implicitly assumed in the
solution obtained in I. The purpose of the present paper is to derive the expressions
for the temperature dependence of the elastic constants of a cubic lattice in the
Bethe approximation.

The following work is also closely related to that of Born and his collaborators
(Born 1939, 1943; Born and Bradburn 1943; Bradburn 1943; and Gow 1944),
who have studied the equation of state of a lattice. To do so they introduced the
“Born approximation” in which a lattice mode frequency squared, w? is replaced
by its average value w®. This approximation is equivalent to an Einstein approxi-
mation and as such it has been extended to lower temperatures by Henkel (1955)
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and Zucker (1958). The approximation has also been used by Leibfried and Hahn
(1958), Ludwig (1958), and Leibfried and Ludwig (1961) to discuss the temperature
dependence of the elastic constants. These authors use the Born approximation
to evaluate the generalized Gruneisen constants of Davies and Parke (1959). Now
the Born or Einstein approximation is the lattice dynamical analogue of the mean
field approximation in the Ising model of ferromagnetism (cf. Domb 1960). By
analogy with the Ising model the Bethe approximation is then the next logical
approximation to investigate. However, while the Bethe approximation gives a
significant improvement over the mean field approximation for the Ising model
and a significant improvement over the Einstein approximation in evaluating the
anharmonic correction to the specific heat, it is unlikely to cause much change in
the calculated temperature dependence of the elastic constants. The adequacy of
the Born approximation for this purpose has been discussed both by Bradburn
(1943) and Leibfried and Ludwig (1961, Appendix, p. 439). The expressions derived
below for the temperature dependence of the elastic constants may be used as a
next higher approximation to test the accuracy of the Born approximation for a
given model of the interatomic forces.

The expressions derived in the present paper are applied to a simple model
of a metal. In particular they are applied to sodium, where the agreement with
experiment is only marginal, and to the noble metals, copper and silver. Here the
agreement with experiment is good.

II. THE BETHE APPROXIMATION

The classical free energy of a pseudo-lattice of non-intersecting chains (the
Bethe lattice or a Cayley tree characterized by the coordination number, cf. Domb
1960) with nearest neighbour forces, can be solved exactly. The reason for this is
that as the chains do not intersect we can uniquely divide the atoms of the lattice
into those to the left of a given nearest neighbour pair (1, 2), and those to the right;
then any configurational integral taken over an atom to the left of atom 1 will
lead to a contribution which is a function of the coordinates of atom 1 and not of
both atom 1 and atom 2. If then U(q,,q,) is the nearest neighbour potential,
¥(q,) is the contribution to the potential on atom 1 due to taking the configurational
integral over all chains which join atom 1 through a given nearest neighbour bond,
and Z'¥(q,) is the potential on atom 1 due to taking the configurational integral
over all atoms to the left of atom 1, we have

e~ 26Fp,(q,, ;) = exp{—B[Z'P(q;)+U(q;, 92) +Z"¥(q)]}- (2.1)

Here F is the configurational free energy per particle, § = 1/kT" is the inverse
temperature and p,(q;, q,) is the probability distribution function of the nearest
neighbour pair of atoms (1, 2). Similarly, if we now only consider one atom we
obtain

=FPp,(q,) = exp{—BZ¥(ay)}, (2.2)

where p;(q,) is the probability distribution function for one atom. Z¥(q,) is the
potential induced on atom 1 in the manner described above for two atoms. The
lack of a prime on the summation denotes that the contribution from the chains
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which join atom 1 through atom 2 are to be included in the summation. Due to
the relation

[ pea 020, = (@), (2.3)

this leads to an integral equation from which both ¥(q,) and the free energy may
be found.

That the exact solution of the pseudo-lattice can be found leads to an approxi-
mation for a real lattice by first replacing the interparticle potential by an approximate
nearest neighbour potential and then finding the exact solution of the pseudo-lattice.
This has been used to evaluate the anharmonic contributions to the specific heat in I.

In order to find the elastic constants we need to know the free energy to the
second order in strain. Owing to surface effects, the static deformation method
can lead to difficulties in the evaluation of the elastic constants (cf. Born and
Huang 1956), but this is not so for central forces and we shall limit ourselves to
this case.

Putting the interparticle potential as U,+-8U,, where o labels the nearest
neighbour pair of atoms, and the configurational free energy as F,+3F, where
38U, and 8F are the strain-dependent parts, we have

exp —BN(F,1-5F) = f . f {exp —Bz(Ua+8Ua)} dsng.

Expanding this equation gives
_ 1 1ol .
OF = 5 > SU—4py > > [GUSU,)—BUIGU,), 2.4)
a « vy

where the expectation ¢ ...)» is over the ‘“‘unperturbed” distribution XU,. The
expectation (83U ,> is then *

B> = [ [ECACHERSCRERE LR (2.5)

and py(q,, q,) is known from the solution of the unperturbed case.
By use of the approximation explained above, terms of the form
T, — Z [<3UL8U, > —(3U>BU, ), (2.6)
Y

which occur in (2.4), may also be evaluated. It may be noted that this expression
is not of the order N even though it involves a summation over all nearest neighbour
pairs y. The reason for this is that unless the pair a is close to the pair y then

BUBU,»y =30, <3V,

and no contribution is given to the summation.

For the Bethe lattice the term 7', may be reduced to the solution of an integral
equation. To do so we write

T, = ((BU,—BU)BU, =BT, 2.7)
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Again, if the atoms of the pseudo-lattice are divided into those to the left of the
pair « and those to the right of the pair a, then we may write

Ty =<@U,—QBUL)E &(qy)+8U,—<8U > +Z" (q,)))- (2.8)

Here X' @(q,) is the contribution of all members of the summation over y which
have y to the left of the pair a, and are on chains which join atom 1 through differing
nearest neighbours. This expectation may be then taken as in (2.5). If we consider
the detailed process of taking the configurational integral and the summation we
see that &(q,) satisfies the integral equation

[ & ®(a)+8U, (@1, 4 —BU }pa(ar, @) &gy = Bl@ps(@r)  (2.9)

The elastic constants may then be found by
(i) forming the change in the potential energy on strain, 8U ;

(ii) calculating the free energy to second order in strain by means of (2.4),
which is in turn evaluated using (2.5), (2.8), and (2.9);

(iii) differentiating the free energy with respect to the strain components in
order to obtain the elastic constants.

IIT. EXPANSION OF THE POTENTIAL

Let ¢(r) be the central nearest neighbour potential for the pair of atoms of
interest. We shall expand ¢(r) about r = ap, where a is the equilibrium nearest
neighbour distance and p a unit vector from atom 1 to atom 2. When the atoms
are displaced and the lattice is strained we have

r = ap-+ae-p+Aq, (3.1)
where e is the strain tensor and Aq = q,—q, is the displacement of the atoms
from the strained equilibrium positions. This then gives

r2 = a24-2a?p-e-p-+2ap.Aqt+a?p-e-e-p+2aAq-e-p+Aq-Aq. (3.2)
The potential may now be expanded about ¢(a). Only terms that are even
in p have been retained, as when the summation over all pairs of atoms is taken
terms which are of odd order in p will vanish. The result of the expansion to the
necessary order (to give all terms which contribute to the elastic constants a term
linear in temperature) is
$(r) = ¢(a)+Kap-e-p
+{#K.ap-e-e-p+1Kya%(p-e-p)*}
+{3K:0%(p-e-p)(p-e-e-p)+4Kya’(p-e-p)?}
+{3a7 K,(Aq-Aq)+$Ky(p-Aq)%}
HEK,(p e P)(Aq-AQ)+K,(P-AQ)(Aq-e-P) +Ka(p e p)(P-AQ)?}
+{1Kx(p-e e p)(Aq-Aq)+3K,p(Aq-e-p)?
+1K30(p-e-p)*(Aq-Aq)+1Ka(p-e-e p)(p-Aq)*
+Kza(p-e p)(P-Aq)(Aq-e-p)+1K,a%(p-e-p)*(P-Aq)?}, (3.3)
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where

[

v

o

'S

K, = ¢Y(a)

K, = ¢i(a)—a~'¢!(a)

K, = $"(a)—3a7¢%a) +3a2¢!(0)

K, = ¢¥(a)—6a-14li(a) +15a-24l(a) — 15a—34i(a).

These terms give the following contributions to the free energy.
. ¢(a) is a constant term, independent of both strain and temperature. This gives
a contribution to the dissociation energy of the lattice.
K.ap-e-p forms part of a contribution which must vanish if “a’ is the equilibrium
distance. This is the equilibrium distance at 7' = 0 classically, and in practice
is the “linearly extrapolated to zero” distance (cf. Leibfried and Ludwig 1961).
. 3K, ap-e-e-p+iK.0%p-e-p)?} forms part of the contribution to the tempera-
ture independent part of the elastic constants.

. {3K,0®(p-e-p)(p-e-e-p)+1Ka%(p-e-p)®} forms part of the contribution to the
third-order, temperature-independent elastic constants.
{3a1K,(Aq-Aq)+3K,(p-Aq)?} is the strain-independent harmonic term which
gives rise to the unperturbed probability distribution. This part has been treated
in T and gives rise to the distribution

Pa(dys d2) = N exp{—3p[a;"4:4;—2q, 0 9>+, 4 q]}, (3.4)

where the tensor A4 is given by

A = A,pp+4,(I—pp),
and '
o = o0,pp-+ay(I—pp). (3.5)

Explicit expressions for 4, and 4, are given in I.
- {3K4(p-e-p)(Aq-Aq)+Ky(p-Aq)(Aq-e-p)+3K,a(p-e-p)(p-Aq)?}. This term con-
tributes to the free energy in two ways. When substituted in (2.7) to first
order it gives a contribution to the free energy proportional to 7' and to
(e11-+€99-+€55). This term then gives the thermal expansion. The result is identical
with that obtained in I. When this term is substituted in (2.7) to the second
order, we obtain a contribution to the elastic constants which is proportional
to temperature. As this contribution depends on the third-order differential of

the potential squared, we shall denote it by ¢®3.
The last part of the expansion (3.3) need only be substituted in (2.7) to first
order to obtain a contribution to the elastic constants which is proportional to

temperature. As this depends on the fourth-order differential of the potential
we shall denote this contribution by c¢®.

IV. EVALUATION OF c@

In order to evaluate the fourth-order part of the elastic constants we form

the first-order contribution to the free energy (2.7)

5F = }Vz (34>
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with
8¢, = $Ky(p-e-e'p)(Aq-Aq)+$K,(Aq-e-p)*+1Ks0(p-e-P)*(Aq-Aq)
+Ka(p-e-p)(p-Aq)(Aq-e-p)+1Ka%(p-e-p)*(P-Aq)®. (4.1)

As all atoms are equivalent (2.7) may be altered to

oF =1 » (.
P
Using the distribution (3.4), (3.5) the expectation may be taken to give

=1 Z{,?Ai |kt ixpeep) K P DF |

2 1
+/§ Az+a,

The summation over p may now be taken. We use the formula

z PiP; = q¢€ps
»

D vowwi=ga L 4.3)
»

[Kz(P'e'e'p)+(%Ksa—%Kz)(P'e'P)z]- (4.2)

~N

Z DiD:iP;P; = q¢€s-

7

Here q is the coordination number and we have for a face-centred cubic (f.c.c.) lattice
q =12, € =1, 6 =1, & = 12> (4.4)

while for a body-centred cubic (b.c.c.) lattice we have

o

4.5)

q=23, € =13 6 =13 €2
The summation is then equated to
8F = 3V 4 {c{i(e}; +e3a+-€85) +2c{Y(€asess T-e118551-€11800) T-40ii(e35 €33 +efy)},  (4.6)
where V, is the volume of one atom.

When this is done the final result is

0‘1“1’=VLM3{ A%jf’ (Eya+Ky)+— + (K02 +5Ka+2K,)
2¢,
!A2+a2K t + 2(K30&——K2)}, 4.7)
ot = LA (K 15K 4 20+ (KoK (4.9)
12 — VAﬁ A1+a1 4 3 2 A2+a2 3 2/ .
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@ _ 9 «Jitfo e 2
o = ol A Kt K+ I (Kt 5K+ 2K
; A:_‘l’_asz | A:j_az(Ksa-—Kz)}. (4.9)

V. EVALUATION OF ¢33

The evaluation of the cubic squared contributions are not as straightforward
as the evaluation of ¢®. In order to find (2.7) we have

SF = — 185> > ((34:34,5— (s> <3,
with
8¢, = $K,y(p-e-p)(Aq-Aq)+K,(p-Aq)(Aq-e-p)+Ksa(p-e-p)(p-Aq)®.  (5.1)

We must first solve the integral equation (2.5) and reduce (2.3) to (2.4). Equation
(2.3) is closely related to (2.7) if 6, = 8¢,, #y = 8¢,. By selecting one atom and
nearest neighbour direction p for y and calling this “0” we have

OF = —1B > [ (<8858 — e ), (5.2)

or

BF = —18 > (X' 0(a)+50(dr, 4o — 3oy +E S [3olas, @) —Bdp>]).  (5.3)
»
&(q) satisfies the integral equation

f [Z D(q,) +3¢(ay; A2) — <36 ]pa(d1s A2)d3q; = D(Qs)p1(Qy)- (5.4)

The integral equation (5.4) may be solved with @(q) as the sum of a harmonic
function and a constant. It may be noted that the constant is irrevelant to the
determination of 8F and will be ignored. A solution for the harmonic part of &(q)
may be found by substituting

D(q) = {kole|]q-q+k,q-e-q+kq-2-q
+kgle|(p-q)®+-2k,(p-q)(q e p)
+2k5(p-q)(q-e-p)+ks(pP-e-P)(q-q)
+k;(p-e-p)(P-q)*+kg(p-2-p)(P-q)%}. (5.5)

Here
e] = ey +esntess

and @ is the diagonal part of the strain tensor e, that is,

e; 0 O

(Y
I

0 e O

0 0 ey
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This is a tensor under the restricted group of rotations corresponding to cubic
lattice symmetry.

The summation over the nearest neighbour directions, excluding the direction p,
gives

' 0(q) = {lylela-a+hLq-e-q+l,q-2-q
—ksle|(p-q)2—2k,(p-q)(q-e-D)
—2ky(p-q)(q-e-p)—ksp-e-p)(q-q)

—kq(p-e-p)(P-q)*—ky(p-2-P)(P- )%}, (5.6)
where
ly = (q—1)ko+qeoks+geoks +gesk; +gesks, (6.7)
ly = (q—1)ky+2g<ok, +-2ge5k,, (5.8)
ly = (q—1)ks+2qeoks +-q(e;—3ex)k; +-q(e;—€p) kg (5.9)

Substituting equations (5.6) and (5.1) into the integral equation (5.4), and
using the distribution (3.4), gives nine algebraic equations for the nine unknowns
ko ... ks. When these are solved we obtain

kg = 3(1—r)*(1+r9)7'K,, (5.10)

and

llll_(q—l)r,g e T i i (1““’2)}

9% 1477, e 142 " 1+,

(1—=r)? yW=r)(d=ry)  (1—ry)?

= gey(Kya+3K,) T +qK2!(€o“‘252/

gy 1T } (5.11)

(In order to avoid confusion the denominator has not been transferred to the
right-hand side.)

k, = (ry—ry)ry;, | (L—ry)(1—1y),

Tfrr, * I4nr, ©0® (6-12)
(ry—rg)? (I—ryry), | (1—7y)? (1—9)? | (1—ry)(1—7p)
k. = . l. 1 _ 1 2 1 2
R T e B L (Kya+3K,) K2{2 1472 1+4ryry }
(5.18)

— ri—7r9)% (I—ryr
l2=lﬁ(q_l)rg_qeom—q(el_‘%)( i—!—r? '(H-rirz)} =dla—dalk, (5.14)

_ (ry—=ry)rs
ks = T Fror, 1o, (5.15)

b — (ry—ry)? (1“‘7'17'2);
8 142 1+4rr, 2

(5.16)

7'2'—7'2
lo{ 1—(g— 1)T§—q€ofq_7§ = qegkg+qesk, +qeoks, (5.17)
1
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r2—r2
by =12 _Hglo, (5.18)
where
7, = oq/4y, Ty = ag[d,. (5.19)

These equations solve the integral equation. Now we substitute X'@
(equation 5.6) into the equation (5.3) for 8F, take the expectation and the summation
over p, and then separate into the elastic constants, as was done for ¢®. The result is

o3 — q [K;a+3K,
VAB\ (4y+ay)?
[eo(lo—Fs) +ey(Kya +3K 1y +1,— 2k, —2ks—kg—k,— k)]
2K,
(A1+a1)(A2‘|‘ as)

[(fo—‘ex)(Kz +l1 +l2—k4_k5)]

@, = @yt oo Tt FalKe—t— 2ks)]}, (5.20)
(3,3) — q [K0+3K,
R V: [ R L
[eo(lo—Ks) +ex( K5 +3K, 41, +1ly—2k,—2ks—kg—k,—kg)]
2K
T Fa A Tay DK th k)
K
oo o) e 2K~ —l—2ky)] (5.21)
K
& = ViB{Kzis )2L€2( Ka+3K,+1,—2k,—ks—k,)]
2K,
Ty o o Kathh]
+(A2+ elee2Ke—h—2k0)]). (5.22)

VI. FurTHER CONTRIBUTIONS TO THE TEMPERATURE DEPENDENCE
oF THE ErasTic CONSTANTS

If we desired to calculate the temperature dependence of the isothermal
-elastic constants, measured under conditions in which the external hydrostatic
pressure was adjusted to maintain a constant volume independent of temperature,
then the result would be the sum of the two contributions already calculated.
However, we desire to calculate the temperature dependence of the adiabatic elastic
constants, measured under conditions of a fixed external pressure so that thermal
expansion takes place. This gives rise to three further contributions.
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The difference between the adiabatic and isothermal elastic constant will be
denoted by ¢® and for a cubic lattice we have

o) = cf) =3y BV, }

D) _
¢ =0,

(6.1)
where
y = aV (e +2cp,)/c,

is the Gruneisen constant.

The effect of the thermal expansion can be broken into two parts. The first
part is due to the volume expansion. This gives a contribution

&Y = —3aTcY, (6.2)

where ¢ is the temperature-independent part of the elastic constants and o is the
linear thermal expansion.

The thermal expansion also causes the value of the harmonic constants at
the equilibrium distance to alter. This gives a contribution

1 o3F
mo N o .
Cij,mn Vs < aeﬁaemnaers{asrsT}' (6.3)

The appropriate part of the free energy to use is

8F =} > (3K,a*(p-e-p)(p-e-e-D)+4Kya*(p-e- )Y} (6.4)
»
In Voigt notation this gives the contribution ‘
oY) = (qaTa?/2V y){e[ K30 +3K,]+(eg—e;) Ko}, (6.5)
o = (qaTa|2V e Koo +3K,]— Ko}, (6.6)
cfy = (qaTa?2V e[ Ksa+3K,]+(eg—ep) Ky} (6.7)

The total contribution to the temperature-dependent part of the adiabatic
elastic constant is then

= 943 4D oY eI, (6.8)

VII. APPLICATION TO SOME METALS

In I an extension of a model due to Fuchs (1935) was used. In this model
it is assumed that the conduction electrons give rise to a contribution to the free
energy of the analytic form

Fo = Fy(V)+Fy(V)T2+0(T). (7.1)

This is the same analytic form as given for the one-electron model. It is also
assumed that short-range restoring potentials exist between the individual ions of
the lattice. A model very similar to this has been used by Horton (1961) in order
to discuss the thermal expansion of copper. However, the model must be treated
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as phenomenological, since Daniels and Smith (1958) have shown that it is impossible
to predict the pressure dependence of the elastic constants using this model. The
harmonic part of the short-range potentials is taken to be adequately represented
by a central force between nearest and next nearest neighbours. This has been
the basis of several studies of the vibration spectra of metals (cf. de Launay 1956).
If a, is the harmonic constant for nearest neighbours and a; that for second nearest
neighbours, then the electronic contribution to the elastic constants may be
eliminated to give

a; = 3bcyy, ag = $b(cy;—cy,) (7.2)
for a b.c.c. lattice. For a f.c.c. lattice we obtain
ay = beyy, ag = 1b(c11—C12—Cyq)- (7.3)

Here b is the cubic cell parameter.

In order to study the effect of anharmonicity on the elastic constants we
make some additional assumptions. We assume that the anharmonic part of the
potential can be adequately represented by a central nearest neighbour force.
In addition we assume that the ratio of the derivatives of the potential are the
same as for a Morse potential, which is the potential often used for a diatomic
molecule. This then gives

¢ﬂ(a) = ap,
¢l(a) = —3(4/a)ay, (7.4)
$¥(a) = 7(A)a),.

The form of the electronic contribution as given by (7.1) affects neither the
temperature dependence of the elastic constants nor the Gruneisen constant. The
latter is given in I (for this model) as

y = 3q{a, 4/2(4;+ay)—a,/34,}. (7.5)

The Gruneisen constant will be fitted in order to obtain 4. The temperature-
independent part of the elastic constants will be used to determine o, and as.

ay, = 0.
We have from I that

Ay = $qn+3q'as,

A4, = 4,—n+ay, (7.6)
where

7 = }a;{(1—3az/a;) +[(1 —3as/a;)*+30az/a, ]}

for a b.c.c. lattice and

n = %al{(l—‘%/%)+[(1_a3/al)2+6a3/a1]i} (7.7)
for a f.c.c. lattice.

With these assumptions the temperature dependence of the elastic constants
of sodium and the noble metals, copper and gold, may be calculated. The elastic data
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for these metals have been taken from Leibfried and Ludwig (1961), while the thermal
expansion data have been taken from Collins and White (1964). The results have
been set out in Table 1 in the form

¢y = Y1 —D;;kT],

together with the experimental values, which were also taken from Leibfried and
Ludwig.

TaBLE 1
TEMPERATURE DEPENDENCE OF THE ELASTIC CONSTANTS

The calculated results are expressed as ¢y = ¢{?[1—D;kT].

The experimental values are taken from Leibfried and Ludwig

(1961).
Dy ke D,k Dok
Metal (10-3deg-1) | (10-2deg-1) | (10-3deg-1)
Sodium
(calculated) 1-204 1-450 1-814
(measured) 0-69 0-65 1-26
Copper
(calculated) 0-237 0-163 0-274
(measured) 0-24 0-15 0-38
(0-34) (0-27) (0-35)
Silver
(calculated) 0-242 0-158 0-315
(measured) 0-24 0-16 0-40

It can be seen that all the results for sodium are too high. A specific breakdown
of the contributions to Dk for sodium is

D@k = —0-232 X 10-3 deg2,
D&%k = +0-800 x 10-3 deg-,
Dk = —0-171 x 10-3 deg-?,
DVk = +0-205 x10-3 deg?,
DIk = +0-602 x 10-3 deg-1,

while the other components, D,, and D,,, are in much the same ratio. The agreement
in the case of sodium could be greatly improved by raising ¢iV(a) above that predicted
by the Morse potential. This would also tend to improve the agreement between
the measured rate of change of specific heat with temperature and that predicted
in I.

In the case of the noble metals, copper and silver, the agreement between
the predicted results and the experimental results is seen to be quite good. Leibfried
and Ludwig (1961) quote two sets of values for the elastic constants of copper but
only the main set has been used here. The second set of values gives results quite
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close to those obtained with the first set. They also quote two sets of values for
the measured rate of change of the elastic constants of copper with temperature.
As these differ quite strongly, both sets have been included in Table 1. A detailed
breakdown of the individual contributions to D;,k in the case of silver is

DWk = —0-233 x10-3 deg1,
DEMk = +0-309 103 deg,
DD = —0-104 x10-3 deg?,
Dk = +0-053 X 10-3 deg1,
DE} = +0-217 x10-3 deg 1.,

The ratio of these contributions is much the same for the other components of
silver and for copper.
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