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S'IJII'MYUM'y 

The current situation with regard to relativistic representation of multi­
particle angular momentum eigenstates is reviewed and it is concluded that no 
generally satisfactory formalism exists. Difficulties with the formalism are outlined 
and a general method of construction of partial wave amplitudes is put forward. 

1. INTRODUCTION 

One of the most important problems that confront workers in the theory of 
multiparticle reactions for both low and high energy physics is to understand the 
role that the law of conservation of angular momentum plays in determining the 
analytic structure of scattering and production amplitudes. For example, some 
authors have advocated that the inclusion of this law in the Fermi statistical theory 
of high energy multiparticle production processes might remove discrepancies between 
this theory and experiment. Of course, this is directly related to the general 
difficulties encountered when trying to relate scattering amplitudes to production 
amplitudes. However, the moderate overall successes of the statistical theory imply 
that purely kinematical constraints are a significant factor in determining the 
behaviour of production amplitudes, so it appears reasonable to expect that the 
inclusion of the conservation laws for rotational motion would provide further 
insight into the structure of matrix elements. It would be especially provident if the 
general structure of inelastic scattering theory could be ascertained by doing so, 
without having to delve into the extremely difficult question of interactions. This 
could be done by deriving a general multiparticle partial wave formalism. 

In the present paper, the various constraint conditions are taken into account 
and, after considering generalizations of non-relativistic representations, a formal 
structure for the partial wave amplitudes is put forward. In a paper of this kind 
it is difficult to separate the original content from what constitutes a review of 
other works. This problem has been partly overcome by confining remarks to 
shortcomings found in other formalisms, or their generalizations. No claim is made 
of having constructed a detailed general theory, but the consequences of the 
postulates listed here are explored in the following paper (Part II, pp. 355--61 
present issue). 
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II. KINEMATICAL CONSTRAINTS 

Consider the constraints imposed by conservation of linear energy-momentum 
upon a multiparticle production process. The dynamical variables defined in this 
section refer to the overall barycentric system, and the masses are taken to be 
arbitrary within the limitations imposed by the process being a physical one. Let the 
direction of the ith particle in the initial state define the z direction of one polar 
coordinate system, and the direction of the jth particle in the final state define the 
z direction of a second similar set of coordinates. Altogether, there are 4n com­
ponents of four-momentum for a total of n particles. Let Pi and Pj be the three­
momentum values of the ith particle in the initial state and the jth particle in the 
final state respectively. In the barycentric system 

N, 

~Pi =0, 
i 

Nt 

~ pj = 0, 
j 

N!+Nr = n, (1) 

where N! and N r are the numbers of particles in the initial and final states respectively. 
These conditions remove six degrees of freedom from the system. Let Ej, E j and 
M i , M j be the energies and masses respectively of particles in the initial and final 
states. The constraint imposed by the mass conditions, 

Er-p; =ML EJ-P7 = M;, (2) 

removes a further n degrees of freedom. The equation expressing conservation 
of energy, 

N j N f 

~ Ei = ~ E j = W, (3) 
i~l j~l 

removes one degree of freedom, while the z axis and two azimuthal angles can be 
chosen to remove the dependence of a transition amplitude upon three more angular 
variables. This leaves a total of 3n-10 degrees of freedom. 

III. ANGULAR MOMENTUM REPRESENTATIONS 

In this section some of the difficulties in generalizing the various proposed 
angular momentum representations to a covariant formalism are discussed. The 
first example encountered in inelastic scattering theory is the special case of the 
process (2 particles -+ 3 particles). Quite a number of non-relativistic techniques 
have been put forward as a means of analysing this reaction. The most fully developed 
to date is that propounded by Smith (1960), based upon a fundamental paper by 
Delves (1958). 

By looking at the manner in which variables separate from the three-particle 
kinetic energy operator in the Schrodinger equation, Smith was able to perceive a 
hierarchy of multiparticle barycentric angular momentum operators in the non­
relativistic approximation. However, when one tries to generalize his scheme, 
whether in terms of barycentric coordinates defined relative to physical or to 
proper masses, the construction of Lorentz invariant amplitudes runs into unresolved 
difficulties. 
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Consider the mass structure of the coordinate transformation operator for a 
system of three particles with masses ml , m 2, and m g , 

ml 

M 
m2 

M 
mg 
M M= M = ml +m2+mg, 

~ =Mr (barycentric coordinates), (4) ml +m2 m l +m2 -mg 
lf1" M 1fT 
ml -m2 

0 
ml +m2 ml +m2 

q = (M)-lp (barycentric momenta). 

To generalize Smith's treatment, we require functions that are eigenstates of the 
invariant operator 

T = t PI + P2 + Ps ( 2 2 2) 
m1 m2 mg 

( 2 2 D = t ql + q2 + qs , 
iLl iL2 iL 

(5) 

where iLl = M, iL2 = (ml +m2)mg/M, iLg = m l m2/(ml +m2), and (PI,P2,Pg), (ql' q2' qg) 
are sets of four-momenta. 

We could choose the masses to be either physical or proper masses, giving 
two distinct sets of reference coordinates. 

(a) Physical Barycentric System 
The advantages are: 

(i) The correct number of degrees of freedom (five) is obtained directly from 
the coordinate transformation and constraint conditions (1),' (2), and (3). 

(ii) The eigenstates are of the same construction as the non-relativistic ones. 

(iii) The centres of momenta are the physically observable ones and their 
equations of motion describe the actual motion of the centres of mass of 
the system. 

The disadvantages are: 

(i) The invariant T of equation (5) is physically meaningless and represents 
neither the kinetic energy nor the total mass. 

(ii) The statistical phase space factor required to obtain cross sections proves 
hopelessly complicated to evaluate. 

(iii) The centre-of-mass energy (3) is not a direct eigenvalue of any conceivable 
component of the operator (5), and is extremely difficult to extract from 
the eigenvalue equation. 

(iv) In quantum mechanics, the matrix M would become a time-dependent 
operator because physical masses are proportional to total energies. 

(b) Proper Barycentric System 
The advantages are: 

(i) The phase space factors are readily evaluated. 
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(ii) The eigenvalue equation (5) has the meaning that T is half the total proper 
mass of the system. 

(iii) The problem is a complete four-space analogue of the non-relativistic case. 

(iv) The matrix M is a C-number and not a differential operator. 

The disadvantages are: 

(i) The appropriate number of degrees of freedom is not obtained directly 
from the transformations and constraints. In particular, the mass shell 
constraints (2) are most difficult to apply, and make the eigenvalue equation 
very involved. 

(ii) The system described is not directly observable because the barycentric 
coordinates do not describe the motion of actual centres of mass. 

(iii) The eigenstates of the four-component pseudo-Cartesian operators obtained 
contain coupled Gegenbauer polynomials, whose arguments are the four­
space equivalent of an angle. These polynomials, because of the hyperbolic 
nature of the pseudo-angle argument, do not possess the orthogonality 
properties of the non-relativistic analogue over the physical angular region. 
Furthermore, the quantum number obtained as the relativistic analogue 
of orbital angular momentum is little understood and unrelated to experi­
mental observations. 

(iv) The transformation (4) yields relative time coordinates whose physical 
interpretation remains obscure. 

Each approach has its own limitations, which remove the possibility of 
application to multiparticle systems, so let us now consider some of the alternatives. 
Macfarlane (1961) has given a derivation of a partial wave representation in which 
there are n-3 energies as arguments of the projected eigenstates. Hence one cannot 
relate scattering to production in a simple way because the scattering partial wave 
amplitude depends only on W. 

Furthermore his coordinates may not yield the normal spherical harmonics 
as eigenstates when the corresponding operators are separated from a kinetic energy 
or mass operator, and his states have not been shown to represent eigenstates of 
physical orbital angular momentum operators. 

To summarize, the available methods of coupling do not generalize readily 
to a covariant formalism. and no satisfactory alternative exists at present. Let us 
deduce some of the properties such eigenstates should possess. 

IV. PHASE SPACE 

We can now take account of the kinematical constraints. To conserve angular 
momentum and to ensure that the eigenstates of angular momentum are well defined 
and observable, they must be projected from an amplitude in such a way as to 
make the partial waves relativistically orthogonal and normalizable. To illustrate 
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that this requirement is not readily obtained we can evaluate the volume element 
for the three-body final state. In the notation of Lardner (1961a, 1961b), 

<ill = d4p3 d4p4 d4ps 8(p~ -m~) 8(p~ -mil 8(pg -mg) 

X8(P1 +P2 -P3 -P4 -Ps) 8(p~) 8(P2) 8(pg) , (6) 

where Pi = (qt,p?)· 

Elimination of the mass shell 8-functions and the conservation of energy and 
momentum conditions yields 

dQ = 2-3 q~ qi qg dZ35 dZ45 d4>35 dZ15 d4>15 
E3E4E5 q3(1-z~5)t.Ll ' 

where Ll = I q3 q4 q5 

E3 E4 E5 

Z35 Z45 1 

(1-z~5)t (1-zi5)t 0 

which is of the general form 

dQ = J 3(Z35' Z45' 4>35' Z15' 4>15' W) dz35 dZ45 d4>35 dz15 d4>15 , (7) 

qs' Z15' and 4>15 being the polar coordinates of q5 relative to q1 along the Z axis. 
In general, a Jacobian J f (3n-IO variables) is obtained after eliminating the 
conservation laws from the volume element for an f-particle state. It turns out 
that 4>15 is a redundant variable in the above example and that the matrix element 
is independent of it. 

Some properties of the J f are as follows. 

(i) They are invariant under general Lorentz transformations. In particular, 
under ordinary rotations one can see that J 3 (equation (7)) is independent of 
(Z15' 4>15> 4>35) and all relative orientations of rotated axes can be specified 
by these three angles. 

(ii) No appeal to special Lorentz frames of reference can remove the dependence 
of J f on particle velocities, and under such transformations Jf<ill = J~<ill', 
where the dash denotes reference to the transformed set of coordinates. 

Let Ali be the amplitude for all transitions between a state of i particles, 
to a state of f particles. In order to make the eigenfunctions of total angular 
momentum orthogonal with respect to integrations over the variables in the above 
example, one should expand the amplitude (JJf)iAf directly into orthogonal partial 
waves. The Jacobians J i , J f are what is known as "phase space factors". 

v. PROJECTIONS OF EIGENSTATES 

Taking account of all of the above constraints, intuitive arguments are put 
forward as to the general structure of a partial wave amplitude. It is assumed that 
a set of angles and pseudo angles may be defined that, together with W, specify 
all degrees of freedom. 
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Angles that refer to relative orientations of particles and cannot be changed 
without altering the energy of one or more particles are described as non-Eulerian. 
The partial wave eigenstate of orbital angular momentum, however derived, is 
denoted by R~'m(w), where w is a set of two angles defining relative orientations. 
When all such ware fixed and rotations of axes in three-space are carried out, the 
w do not vary, while the effect on the set of coordinates is that three degrees of 
freedom that describe the orientation of the entire system in space are altered. 
These degrees of freedom are represented by Euler angles (a, fJ, y) after Edmunds 
(1957), and we employ his rotation group operators D~'m(a,fJ, y) when determining 
the effect of rotations; a rotates the axes in the xy plane, fJ rotates the z axis to align 
the old with the new z axis, and y further rotates the axes in the xy plane to complete 
the alignment. 

It is assumed that for non-Eulerian angles, a generalized spherical harmonic 
Y~(.Q) can be defined in terms of the individual R~'m' in the same manner as occurs 
for non-relativistic theory, as follows 

f 
Y~(.Q) = II ~ (llm1l2m2" .JLM)S~vm"v(O,Ov,<Pv), (8) 

v=l m"v 

where 

0, = 0, <p, = 0, S~'m(.Q) = (i)I{(21+1)/47T}tR~'m(.Q)· 

This is achieved by coupling the various substates S~'m(.Q) with the aid of vector 
coupling coefficients (11 m112m2 . . . JLM) to give a state of well-defined orbital angular 
momentum L, and z component M. In the treatment given by Macfarlane, one 
would have 

Sbm(O,O,<p) = (i)IY!,,(O,<p) , 

where Y!"(fJ, y) is the usual spherical harmonic and 0, <p are invariantly defined pseudo 
angles. 

It is essential that eigenstates such as (8) should be projected from transition 
amplitudes in such a way that total angular momentum is conserved between initial 
and final states. Therefore, the set of reference axes oriented in a special way with 
respect to particle trajectories in the final state may be related to a similar set 
oriented with respect to the initial state, by the rotation group operators, such that 

S~m,,(Oi' <Pi) = D~'m(a, fJ, y) S~'m(Or, <Pr)· (9) 

(Oi' <Pi) and (Or, <Pr) are coordinates specifying the orientation of vectors characterizing 
initial and final particles respectively. However, all degrees of freedom referring 
to relative particle orientations and momenta remain unaltered by the rotation (9). 

To complicate matters, real space angular arguments are insufficient in number 
to fix the system in three-momentum space when there are more than three particles 
present, and they must be supplemented by pseudo angles. As already pointed out, 
a precise structure of these coordinates has not been determined. 

Following the above general properties, we write the component of the 
amplitude, which is invariant under three-space rotations of axes, as the resultant 
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eigenvector that arises from the coupling of all those spherical harmonics (8) that 
have arguments invariant under rotations, 

It 11J+LJ+>1 
!fn(L, M,Q, . . . Q}c) = J:;;t IT ~ (ljmjLj_lILjMj) XS~f.m"iQj), (10) 

j=l m"J = -IIJ+LJ+l1 

where (lj' mj) refer to the orbital angular momentum and its z component respectively, 
of a set of uncoupled eigenstates, while (Lj, M j ) refer to the resultant states, ordered 
in a specific hierarchy of coupling. The index k refers to the invariant degrees of 
freedom, of which there 'are 3n-6, where n is the number of particles in the state. 
There may be one or more angles involved in the Qj' but only one angle in each 
is a nonredundant degree of freedom. For scattering one has k = 0; hence 

!f2(L, M,Q) = J 2'· 

The production amplitude fAi is written as 

An = ~ !ff(LM;!J.)fAi(LM; W)DXtM,(Wfi)!fi(LM';!J.') , 
L 

(11) 

where we have set (Or, CPr) and (OJ, cPj) all to zero in (9) and where !J. contains 3f-6 
components and!J.' contains 3i-6 components. fAi(LM; W) is the production partial 
wave amplitude. For particles with spin, a matrix representation must be used. 
The argument W f ! is (a,{3,y) as in (9). 

One further vital property of the !fn must be enforced before further progress 
can be made. They must be orthogonal functions when integrated over the phase 
space interval for the state, that is 

It r d!J..!f~(LM;!J.)·!fn(L'M';Q) = IT o(lj,l;)o(mj,m;) 
• j=l 

= o(L, L') o(M, M') . (12) 

This property will ensure that angular momentum is conserved between vertices 
in an interaction involving intermediate states. Thus the final constraint of 
conservation of angular momentum has been taken into account. 

VI. CONOLUDING REMARKS 

General properties of a partial wave production formalism have been outlined 
and the difficulties encountered in finding representations discussed. In Part II 
the unitary principle is investigated using methods described in the present paper, 
and a compound state formalism is derived, similar to the one obtained from R 
matrix theory. 
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