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Summary 

A general equation studying the combined effect of horizontal and vertical 
magnetic fields on the stability of two superposed fluids has been obtained. The 
unstable and stable cases at the interface (z = 0) between two uniform fluids, with 
both the possibilities of real and complex n, have been. separately dealt with. Some 
new results are obtained. In the unstable case with real n, the perturbations are 
damped or unstable according as 2(k'-k~L2)_(<X2-<Xl)k is> or < 0 under the 
physical situation (35). In the stable case, the perturbations are stable or unstable 
according as 2(k2_k~L2)+(<Xl-<X2)k is > or < 0 under the same physical situation 
(35). The perturbations become unstable if HIlIH 1- (= L) is large. Both the cases 
are also discussed with imaginary n. 

I. INTRODUCTION 

Hide (1955) considered the effect of a vertical magnetic field on the stability 
of two superposed fluids, while the effect of a horizontal magnetic field on the 
Rayleigh-Taylor instability was considered by Kruskal and Schwarzschild (1954). 
The object of the present paper is to study the combined effect of horizontal and 
vertical magnetic fields on the Rayleigh-Taylor instability. 

Mter obtaining an equation that describes the effect of the magnetic fields 
we then suppose that two uniform fluids, of densities PI and P2, are separated by a 
horizontal boundary at z = 0. The unstable and stable cases for both real and 
imaginary n are then separately dealt with and discussed. 

II. BASIC EQUATIONS 

The fluid is considered to be heterogeneous, inviscid, and of zero resistivity. 
The equations of motion and continuity are 

pdqjdt = -Vp-pg+fLjxH; (1) 

where q = (u, v, w) is the velocity vector, p the pressure, fL the magnetic permeability, 
and g the acceleration due to gravity; and 

V.q= 0, (2) 

as the fluid is considered to be incompressible. 

Since the density of a particle moving with the fluid remains constant, 

op/ot +(q. V)p = 0. (3) 
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Using Maxwell's equations for a perfect conductor (7] = 0), 

oH/ot = V x(qxH). (4) 

Let the actual density at any point due to a disturbance be p+op and let op 
denote the corresponding increment in pressure. Further, if H1. and Hn denote the 
vertical and horizontal magnetic fields respectively and h = (hx' hy, hz ) is the pertur­
bation in H, we have 

ou _ liB 1. (Oh", _ Ohz ) __ ~ 0 
Pot 47T OZ ox - ox· p, (5) 

ov _ p,H 1. (Ohy _ Ohz) _ p,Hu (Ohy _ Oh",) _ _ ~ 0 
Pot 47T OZ oy 47T ox oy - oy· p, 

(6) 

ow + p,Hu (Ohx _ Ohz) = _! 0 _ 0 
p ot 47T OZ ox oz· p g. p, (7) 

ou + ov + ow _ 0 ohx + ohy + ohz _ 0 
ox oy oz-' ox oy oz-' 

(8) 

o dp 
at· op = -w dz' (9) 

and 

(10) 

Analysing the disturbances into normal modes, we seek solutions whose 
dependence on x, y, and t is given by 

exp(ikx.x +iky.y +n.t), (11) 

where kx, ky, and n are constants, kx being the wave number along the x direction, ky 
the wave number along the y direction, and k the resultant wave number. Using this 
perturbation, equations (5)-(10) become 

pnu-(p,H1./47T)(Dhx -ikx.hz) = -ik",.op, (12) 

pnv-(p,H1./47T)(Dhy -iky.hz)-(p,Hu/47T)(ikx.hy-iky.h",) = -iky.op, (13) 

pnw+(p,Hu/47T)(Dh", -ikx.hz) = -D.op + (g/n)(Dp)w (14) 

(on substituting for op from (9)), 

and 
hx = (H1./n)Du+(Hu/n)ikx·u, 

hy = (H1./n)Dv +(Hu/n)ik",.v, 

hz = (H1./n)Dw+(Hu/n)ikx·w. 

Multiplying (12) by -ikx and (13) by -iky and adding, we get 

(15) 

(16a) 

(16b) 

(16c) 

pDw- p,H 1.(D2_k2)hz+ ~~~ ky(ky. hx -k",. hy) = _ k20p . (17) 
4~, ~f. n 
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Substituting the values of h x, hy, and hz, equation (17) becomes 

pDw +i/L!:m~-L(ky.D' -kAD2_k2)W) 

_ /LH~(D2_k2)Dw_ /LH~ k k ,= _ k2 Sp (18) 
47m2 47Tn2 x y n' 

where " the z component of vorticity, is given by 

, = ov/ox -ou/oy = ikx.v -iky.u. (19) 

Since equation (19) and -Dw = ikx.u+iky.v hold, 

u = k-2(iky.' +ikx.Dw). 

Again, from equation (16a) 

h (H-LD ikxH) 
x= n +n II u, 

so that 

Dhx = e(~-LD + i:x HI!) (iky .' +ikx.DW), (20) 

which is obtained on substituting the value of u. Eliminating Sp between (14) and 
(18), we obtain 

{D(pDw) -k2pw}-2ik .p.H1I H-L(D2_k2)Dw - /L~(D2_k2)D2w 
x 4wn2 4wn2 

(21) 

Equation (21) is thus a general equation formulating the effects of both the 
horizontal and vertical magnetic fields on the Rayleigh-Taylor instability. If we 
put HII = 0 in (21) we get an equation that is the same as the corresponding equation 
in the presence of a vertical magnetic field, as given in Chandrasekhar (1961, p. 458). 
Also, if we put H-L = 0 in (21) we get the corresponding equation in the presence of 
a horizontal magnetic field (Chandrasekhar 1961, p. 465). 

III. BOUNDARY CONDITIONS 

We suppose that the two uniform and perfectly conducting fluids are separated 
by a horizontal boundary at z = o. Then, at the interface, 

wand hz are continuous, 

and from equation (16c), the continuities of wand hz imply that 

Dw is continuous. 

(22) 

(23) 

Also at the interface between two uniform fluids e±kz is a solution of equation (21). 
Since wand Dw are continuous at the interface, we infer from equation (21) that 

D2w is also continuous. (24) 
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Integrating equation (21) across the interface, a further boundary condition can be 
obtained, namely 

gk2 
= - -2 Lls(p) Ws' n 

IV. AT THE INTERFACE BETWEEN Two UNIFORM FLUIDS 

(25) 

We suppose that the two uniform fluids of densities Pl and P2 are separated 
by a horizontal boundary at z =0 and define a dimensionless parameter L = 
HIIJH.l.' so that equation (21) reduces to 

(D2_k2)D2W +2ikx. L(D2_k2)Dw -(47Tpn2JflB'i +k~ L2)(D2_k2)W = O. (26) 

The solution of (26) is a linear combination of e±lcz and e Hz , where 

(q+ikx L)2 = 47Tpn2JpH'i. 

We now consider the unstable and stable cases separately. 

(a) Unstable Case 

If n is real then the unstable case requires n 2 > 0, and if n is complex it is 
supposed that the real part of n2 is positive. Further we assume that 

and Re(n) > O. 

Since w must be bounded when z -+ +00 (in the upper fluid) and z -+ -00 

(in the lower fluid), the solutions of equation (26) can be written as 

Wl = Al exp( +kz) +Bl exp( +ql z), 

W2 = A2 exp( -kz) + B2 exp( -q2 z) 

where AI' B l , A 2, and B2 are constants of integration, 

and 

z < 0, 

z > 0, 

(27a) 

(27b) 

(28) 

In writing the solutions for W in the two regions z < 0 and z > 0 in the manner 
(27), we have assumed that ql and q2 are so defined that their real parts are positive. 

Using the boundary conditions (22)-(25) and substituting for W l and W 2 from 
(27), at the interface z = 0 we get an equation in ql and q2 of the form 

1 1 -1 -1 

k ql +k +q2 
LI(ql' q2) = =0, 

k2 qr _k2 -q~ 

C D E F 
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where 

o = tR-OCI-OClk~L2/(ql+ikxL)2, 

D = l.R- ( /k)+ OCl(ql/k)(qr-kl) _ OC1(ql/k )k; L2 + oc1 2ikx L(qr-k2)/k 
2 OC1 ql (ql+ ikxL )2 (ql+ ikxL )2 (ql+ ik .. L )2' 

E = lR-OC2-OC2k;L2/(q2+ikxL)2, 

F = l.R- ( /k)+ OC2(q2/k)(q~-k2) _ OC2(q2/k)k;L2 _ oc22ikxL(q~-k2)/k 
2 OC2 q2 (q2+ ik .. L)2 (q2+ ik .. L)2 (q2+ik .. L)2 ' 

with 

and 

The determinant is solved by removing the factors ql -k and q2-k (since 
these become identically zero on substitution of the functions WI and W 2, giving the 
characteristic roots ql = k and q2 = k) and expanding the remaining determinant 
to obtain 

{R-1- L 2k; (ql+~k..L)2 + (q2+~t L)2)}( ql+q2+2k) 

= 2k(OC1 ql +2ik .. LocI ( +k)+ oc2q2 -2ik .. L(oc2/k)(2q2+ k )( +k)) 
(ql +ik .. L)2 q2 (q2+ ikx L)2 ql " 

We define the Alfven velocity VA = {fLH~/47T(Pl+P2)P, so that 

ql = -ik .. L+(n/VA)oct and q2 = - ik .. L+(n/VA)oc~" 

Substituting for ql' q2' and R we obtain 

gk( )( n 2) n t t 2kVA 2k2L2 VA "k LVA 
n2 OC2- OCI kVA + oct+oc~ = kVA +2(oc +oc2)+-n-+k" -n-41 x -n 

_ 2ikxL _ 4ikxL(k2+k~L2) Vx + 2ikxL gk(oc -oc) -4ik L VAOCt-OC~ 
k(oct+oc~) k(oct+oc~) n2 k(oct+oc~) n2 2 1 x n oct+oc~ 

8ikx L (k; V XL2 "k L i l V A t I "k Lk Vx k tVA) 
+ k(oct+oc~) n2 +1 x (OC1+OC2)--;;--OC OC2+1 x n2 - oc2-n ' 

measuring nand k in the units (g/V A) sec-1 and (g/V!) cm-1 respectively" 

Equation (30) in nondimensional form reduces to 

n3+ (2k(oct+oc~) - ::~~ (1+4oct oc~) )n2 +k( 2k+OCI-OC2- ~ k~ L2 ~8ikx L)n 
+2k2(oct-OC~)- 4ikxL(k2+k;L2) -2ik L(oct-oc~)k 

oct+oc~ x 

+ :;~~(k; L2 +ikx Lk) = O. 

(29) 

(30) 

(31) 

This is the general equation for combined horizontal and vertical magnetic fields" 
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(i) Real n 

In this case ~2 > ~1' If n is real then separating real and imaginary parts of 
equation (31) we get 

( 6) 8k2L2k n3+2k(~t+~t)n2+k 2k+~1-~2-kk~L2 n- ~t+~~ +2k2(~t_~~) = 0, (32) 

and 

On solving equation (33) we get 

n = -2k(~t+~~)±[4k2(~t+~t)2-(1+4~t ~~){2(k2_k~ L2)+(~1-~2)k}]t. (34) 

If the term in square brackets is denoted by T then equation (34) gives the 
characteristic value of n under the condition 

For n to be real 

must be positive. The perturbations are damped or unstable according as 

2(k2_k~ L2) -(~2-~1)k 

under the condition (35). 

(ii) Complex n 

is > or < 0 

(35) 

We suppose that n = ~±if3, where ~ and f3 are real. Substituting for n in 
equation (31) and equating real and imaginary parts we obtain, 

(36) 

and 

(3~2f3-f33)+ (2k(~t+~~)2~f3+ :tk+~~(f32-~2)(1+4~t ~~)) +{ kf3( 2k+~1-~2 .- ~ k; L2) 

-8kxLk~}-:t+~~(k2+k;L2)-2kxLk(~t-~~)+ :t~~~k~£2 = o. 
(37) 

Considering the cases ~ > , = , or < y'3 f3, since ~2 > ~1 we conclude that, however 
~ and f3 are related, equation (36) must allow at least one change of sign and hence 
one positive root, showing that the equilibrium is unstable. 
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(b) Stahle Case 
(i) Real n 

In this case 1X2 < tXt. Again we consider equations (34) and (35). Here the 
perturbations are stable or unstable according as 

is > or < 0 

under the physical situation (35). The perturbations become unstable if Ha/H1. = L 
is large. 

(ii) Complex n 

Consider the three cases IX> , = , or < y3{3 in equation (36). If IX > y3{3, 
equation (36) does not possess any change of sign and hence the equilibrium is stable. 
Thus IX > y3 {3 is the condition for stable equilibrium. 
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