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Summary 

An explicitly crossing. symmetric generalization of Kadyshevsky's quasi. 
potential equation is proposed. The equation has the two.body unitarity cuts in all 
three channels. Applied to a particular continuation of the Veneziano amplitude 
off the energy-momentum shell, it produces an amplitude with Regge asymptotic 
behaviour. 

I. INTRODUCTION 

Unitarity and crossing symmetry are two conditions which are expected on 
quite general grounds to apply to any amplitude for the scattering of hadrons or 
strongly interacting particles. A large amount of experimental information also 
supports the assumption of a specific asymptotic behaviour for hadronic scattering 
amplitudes at high energy and fixed momentum transfer. This relativistic behaviour 
is associated with the name of Regge, who first showed (1960) how it could arise 
in a nonrelativistic calculation based on the Schr6dinger equation. 

Attempts to derive amplitudes satisfying any more than one of .the three 
conditions mentioned above have had limited success. Therefore the recent suggestion 
by Veneziano (1968) of an amplitude which has both Regge asymptotic behaviour 
and crossing symmetry has attracted much attention. Besides being symmetric, 
the Veneziano amplitude is real apart from isolated singularities. Thus it cannot 
take account of resonances of finite width. Although this means that it can only 
give an approximate description of the interactions of hadrons, it provides a loophole 
through which some form of unitarity can be imposed. As stated by Aaron, Amado, 
and Young (1968), the loophole is that an integral equation T = V + VGoT of the 
Lippmann-Schwinger (1950) type generates a T-matrix element T which obeys 
two-body unitarity, given an appropriate choice of the intermediate two-body 
Green's function Go and a real symmetric input V. Most of the applications of the 
equation have been nonrelativistic, having therefore no need of crossing symmetry, 
and V has been interpreted most often as a potential. We propose a crossing­
symmetric generalization of the equation, in which the Veneziano amplitude is to be 
regarded as V. Our starting point is a relativistic quasipotential equation which has 
been examined by several Russian authors, particularly Kadyshevsky (1968), in 
considerable detail. 
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Mter a review of the Veneziano amplitude in Section II, we state the equation 
and our auxiliary assumptions in Section III. A short discussion of the properties 
and uses of the equation follows in Section IV. 

Pl;rxJ. P3 s_ 
P2 P4 

Fig. I.-A process with two 
initial· state particles and two 
final-state particles which is 
illustrative of crossing sym­
metry. The 8 and t channels 

are indicated. 

II. THE VENEZIANO AMPLITUDE 

Consider the scattering of two spinless particles 
with four-momenta PI and P2 to two particles with 
four-momenta P3 and P4 (i.e. 12 ~ 34), as shown in 
Figure 1. Three Lorentz-invariant variables for the 
process are 

s = (PI +P2)2 = (P3+P4)2, (Ia) 
t = (PI-P3)2 = (p4-P2)2, (Ib) 

u = (PI-P4)2 = (P3-P2)2. (Ic) 

In this spinless case, a single amplitude A(s, t, u) 
describes the dynamics of the scattering event. The 
variable s is a measure of the total energy of the 
reaction and t is a measure of the four-momentum 
transfer. 

Figure 1 also represents the reactions 13 ~ 24 and 14 ~ 23, where a bar denotes 
an antiparticle, whose four-momentum is the negative of the four-momentum for a 
corresponding particle. The statement of crossing symmetry is that the one amplitude 
describes all three reactions, so that 

A(s, t, u) = A(t, s, u) = A(u, t, s). (2) 

In Figure 1, the scattering in the s channel may proceed by the exchange of a 
particle P between particles 1 and 2. Similar exchanges can occur between 1 and 3 
in the t channel and between 1 and 4 in the u channel. In many cases there is no 
unique P, because families of particles with different masses but the same discrete 
quantum numbers are well known. The generalization of the idea of exchange of a 
particle is the exchange of a Regge trajectory a:, which carries information about all 
the particles P of a given family. A full account of the meaning of the trajectory 
functions is to be found in Collins and Squires (1968). A distinctive feature of the 
trajectories on which the observed hadrons lie is that they appear to be linear, that 
is, a:(w) = ao+aw, where w is anyone of the variables defined by (1). The values of 
ao differ between families, but for trajectories associated with known particles a is 
always in the neighbourhood of 1 GeV-2. 

Regge asymptotic behaviour for the amplitude A in the s channel when the 
momentum-transfer variable t is fixed and negative is 

A(s, t, u) __ S<%(t)-l 

for large s. This is equivalent to 
A(s, t, u) __ {a:(s)}<%(t)-l 

when the trajectories are linear. Similarly, in the t channel (13 ~ 24), 

A(t, s, u) __ {a:(t)}<%(8)-1 

(3) 

(4) 

for large t and fixed negative s. Equation (2) implies the analogous u-channel behaviour. 
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From (1), the momentum-transfer variable is negative for any physical scattering 
process. 

The basic Veneziano (1968) amplitude is given simply by 

V( ) _ f3(F(I-OC(S»)F(I-OC(t») F(I-oc(t»)F(I-oc(u)) F(I-oc(U))F(I-OC(S))) 
s,t,u - + + , 

F(2-oc(s)-oc(t») F(2-oc(t)-oc(u») F(2-oc(u)-oc(s») 
(5) 

where the observed spacing of particles on trajectories is reproduced by the constraint 
oc(s)+oc(t)+oc(u) = 2, F is a gamma function, and f3 is a constant. The arguments 
of the gamma functions in other possible Veneziano amplitudes differ from those in 
(5) only by fixed integers. The crossing symmetry of (5) is explicit by comparison 
with (2). Regge asymptotic behaviour such as (3) and (4) follows from the large-z 
property of the gamma function, namely, 

F(z+a)jF(z+b) ,...., za-b. (6) 

The amplitude is real except for singularities whenever the argument of a gamma 
function in the numerator of (5) is equal to a negative integer -n and the singularity 
is not cancelled by a zero elsewhere in (5). The singularities of the individual gamma 
functions are poles with residues (_l)njn! when V is regarded as a function of complex 
variables. 

III. RELATIVISTIC QUASIPOTENTIAL EQUATION 

In nonrelativistic potential theory, the scattering amplitude off the energy 
shell (i.e. when energy is not necessarily conserved) is the solution of the Lippmann­
Schwinger (1950) equation 

1 f s 1 T(p,q,E) = V(p,q)+--s d k V(p,k) "T(k,q,E). (7) 
(21T) E+i(-k 

Pl~ql Pl~ql PI" "1 /qi 

Ax Ax' Ax Ax' Ax 
- ~ - T -<- - = --.. V -< - - + - - ~ 

Pz q2 P2 q2 P2' K2 'q2 

Fig. 2.-Diagram for the evolution of the process d~scribed by equations (7) and (9). 

The significance of the various parts of (7) is illustrated in Figure 2, where the dashed 
lines are to be ignored for the moment. The quantity V(p, q) is the Fourier transform 
of the potential. It is not difficult to show (Aaron, Amado, and Young 1968) that T 
satisfies the unitarity condition 1m T = 7rT* T if V is real and symmetric. On iteration, 
(7) gives the Born series 

T = V + VGo V + VGo VGo V + ... , (8) 

where unitarity is ensured by the inclusion of all terms of the Born series and by 
the substitution Go = (E+i€-k 2)-t. The physical scattering amplitude is recovered 
on-shell, when p2 = q2 = E. 
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Logunov and Tavkhelidze (1963) have shown that an equation similar to (7) 
holds for a relativistic scattering amplitude. We shall use a form of that equation 
due to Kadyshevsky (1968) and to Kadyshevsky and Mateev (1968): 

T(PI,P2, Ax; ql, q2, AX') = V(PI,P2, Ax; ql, q2, Ax') 

1 J 4 4 " 0 2 2 0 2 2 dx" + --3 d leI d le2 V(PI,P2, AX; leI, le2, Ax ) O(lel ) 8(lel -m ) O(le2) 8(le2-m ) --
~~ x~k 

X T(lel, le2, Ax"; q!,q2, Ax') 8(4)(lel +le2-Ax" -ql-q2+Ax'), (9) 

where 8 and 8(4) are one-dimensional and four-dimensional Dirac delta functions and 
k~ is the energy ofthe particle with four-momentum lei, and mass m. The step function 
o is zero if its argument is negative and unity if its argument is positive. Equation 
(9) has direct reference to Figure 2, because of the novel off-shell continuations for 
T and V. All particles represented in Figure 2 by solid lines are assumed to be on 
their mass shells, but the deviation from the on-shell case overall is expressed by the 
use of extra "particles", indicated here by dashed lines. These quasiparticles are 
nonphysical objects whose sole purpose is to carry the four-momentum that measures 
the departure from the on-shell situation. In Figure 2, A is a four-momentum which 
can be chosen parallel to any combination of the four-momenta of the ordinary 
external particles, and X, x', and x" are scale factors. 

We suggest that the natural crossing-symmetric generalization of (9) is 

T(PI,P2, Ax; QI, Q2, Ax') = V(PI,P2, Ax; QI, Q2, Ax') 

1 Jd4le 4 0 2 2 0 2 2 dx" + --3 I d le2 O(lel ) 8(lel -m ) O(le2) 8(le2-m ) --
~~ ~-k 

X {8(4)(lel +le2-Ax" -QI-Q2+AX') V(PI,P2, AX; leI, le2, Ax") T(lel, le2, Ax"; QI, Q2, Ax') 

+ 8 (4) (leI +le2-Ax" +P2-Q2+Ax') V(p!, -QI, Ax; leI, le2, Ax") T(lel, le2, Ax"; -P2, Q2, Ax') 

+ 8 (4)(lel +le2-Ax" +P2-QI +AX') V(PI, -Q2, Ax; leI, le2, AX") T(lel , le2, Ax"; -P2,QI, Ax')}, 

(10) 

which contains two-body unitarity in all channels. The proof of unitarity is long 
but not conceptually difficult. The diagram which corresponds to (10) is Figure 3. 
From the definitions (1) and (2), with P3 and P4 replaced by QI and Q2, it is easy to 
see that (10) is crossing-symmetric by construction, provided that V is symmetric 
and that we set the four-vector A = (1,0,0,0). 

In passing, we remark that two-body unitarity is exact for equation (9), even 
on an iteration of the type (8), because any vertical section through Figure 2 intersects 
only the lines for two intermediate particles. The quasiparticle is not counted. 
Similar sections through Figure 3, when the iteration (8) has been performed, cut 
intermediate lines for multiparticle states. All the topologically possible two-particle 
states for each channel are included in the set, but the iterated calculation contains 
an unspecified amount of three-body unitarity, four-body unitarity, and so on. 
It is a price to be paid for the inclusion of crossing symmetry that two-body unitarity 
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calUlot be isolated exactly. However, the assumption (13) made below about the 
off-shell behaviour of V in order to cause the integrals in (10) to converge and have 
the right behaviour also seems to guarantee rapid convergence of any iteration, 
thus implying that the principal unitarity correction which the integral term in (10) 
makes to V comes from two-body unitarity. 

':):;2':' "~" " ,Ix ,Ix' ,Ix 
-+- T -<-- --~ V .. -- + --~ 

P2 q2 P2 q2 P2 

PI' ~ AA /ql 

PI 

+ J,,+ + "II'!'k" 
Ax 

+ --~ 

q2 

,~, 
2 . 2 

k2 

kl 

k2 

ql 

,\x' 
-<-

P2 

Fig, 3.-Diagram for the evolution of the process described by equation (10). 

ql 

q2 

If (5) is to be used together with (10), an off-shell continuation ofthe Veneziano 
amplitude is required. Chan (1969) and Chan and Tsun (1969) have alrea9.y given a 
prescription for a Veneziano amplitude for a reaction with six external particles, 
which allows us to include the quasiparticles, but the prescription is hard to use in 
calculations and proofs. We therefore note that the method of off-shell continuation 
is arbitrary, subject to the restriction that the original amplitude should be recovered 
in the on-shell limit (x --0>- 0 and x' --0>- 0 simultaneously), and propose a continuation 
which simplifies the task of making calculations with (10). We begin by substituting 
into (5) the off-shell arguments 

s = (PI +P2-AX)2, 

t = (PI-!Ax-ki +tAX")2 = tplc, 

U = (PI-!AX-k2+!Ax")2 = Uplc. 

(lIa) 

(lIb) 

(lIc) 

The relations (11) are not enough to complete our continuation, because the integrals 
in (10) may still diverge. This is most apparent if we consider the part of V that is 
dependent only on sand t, assume that T has the same Regge asymptotic behaviour 
(3) as V in the s chalUlel, and substitute that form back into the appropriate integral 
term of (10) as a test of consistency. Because the form behaves like 

r(l-O!(t)){ -lX(S) }a(t)-I (12) 
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according to (6), factors of r(I-a(tpk)) and r(I-a(tkq)), where 

tkq = (kl-!Ax" -ql +tAx')2, 

will occur in the integral. Although r(l-a(t)) is constant for fixed t, the factors 
involving tpk and tkq are not, and the gamma functions under the integral sign can 
therefore have large arguments in part of the range of integration. Stirling's approx­
imation indicates that division by factors that behave like exp(x" log x") as x" ~ 00 

is needed to settle all questions of convergence. \Ve have found that the simplest way 
to insert such factors, and at the same time to maintain Regge asymptotic behaviour 
for T, is to consider f3 in (5) as being no longer a constant, but a function of kinematical 
variables which is also symmetric. We use the functional form 

f3 = f3(x, x") = f3o/r(I-cstux2-cstux"2) , (13) 

where f30 and c are constants. The crossing-symmetric version of (5), with the extension 
(13), is 

" (r(I-a(S)) r(I-a(t)) r(I-a(t)) r(I-a(u)) r(I-a(u)) r(I-a(S))) 
V = f3(x, x ) + + . 

r(2-a(s)-a(t)) r(2-a(t)-a(u)) r(2-a(u)-a(s)) 

(14) 

It is straightforward to observe that there are still problems with convergence 
and asymptotic behaviour if c = 0, and also that the Regge asymptotic behaviour 
ofT in (10) is exactly that of the inhomogeneous term Vin the case that c is extremely 
large, because then the integral contributes almost nothing to T. The calculation of 
a minimum permissible c is somewhat involved, but one result (not necessarily the 
best lower bound) is that c > fk-8 , where fk is the mass of the heaviest external 
particle in Figure 3. This completes our off-shell prescription for V. 

The general equations which we propose, therefore, to produce an amplitude 
of the Veneziano type with corrections from two-body unitarity are (14), (ll), and 
(10), with A equal to the constant four-vector (1,0,0,0). 

IV. DISCUSSION 

The demonstration of two-body unitarity in each channel in (10) has already 
been mentioned in Section III. The method of proof follows that of Kadyshevsky 
(1968), but it does not depend on the choice of any particular coordinate system. 

With the off-shell function (13), the Regge asymptotic behaviour ofT is exactly 
the same as that of V. This is so because, for the s channel where the asymptotic 
behaviour is given by (3), equation (13) introduces into the integral term a factor of 
a(s) raised to a negative power of s. Thus, for large s, T and V are effectively identical, 
which is in any case what one expects physically. When the kinematical variables 
are permuted according to (2), the same argument holds asymptotically for the 
other channels. 

We have so far considered only general and asymptotic properties of the 
scattering amplitude. The intense present interest in Veneziano's formula exists 
because the hypothesis of duality between channels predicts that one can calculate 
low energy parameters like scattering lengths with the help of high energy input 
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to (5). Harari (1969) and Rosner (1969) give a simple picture of some implications of 
duality. It is equally possible to carry out such a low energy calculation with the 
T given by (10), which contains some of the refinements of unitarity that are missing 
from V. The presence of the step functions 8 in (10), amongst other things, makes 
it hard to apply conventional techniques for handling integral equations (e.g. reduction 
to matrix equations) to our expression for T. Numerical methods and iteration are 
the only practical tools available. We are now determining numerically the properties 
of elastic scattering of positive by negative pions according to (10) and (14). This 
is probably the simplest test, because duality allows only the first term of (14) to 
survive. Moreover, for comparison, there are already estimates of these properties 
based on Valone; a particularly elegant example is due to Lovelace (1968). 

Low energy calculations depend strongly on the nature and position of poles 
of the amplitude. Singularities will have to be detected by our numerical methods, 
as there is no reason to believe that the poles of T and V are in identical positions. 
The work of Amado (1963) on the Lippmann--8chwinger equation suggests that no 
extra families of poles not described by V will appear in T, but that the positions of 
the input poles will be shifted in the output. This is equivalent to a change in the 
initial equation oc(w) = ao+aw for a Regge trajectory that is implicit whenever (5) 
is used by itself. Thus unitarity may be said to modify the trajectories. 

The constants f30 and c are arbitrary here, subject to the inequality on c given 
in Section III, but in an actual calculation based on T other constraints from 
assumptions not mentioned above restrict them quite strongly. For example, in any 
scheme which attempts to link the Regge trajectories used in V with theories of 
current algebras, it should be possible to overdetermine f30 and c and therefore 
investigate the consistency of our entire present technique. 

V. CONCLUSIONS 

We have presented an equation for an amplitude that has the same desirable 
properties (i.e. crossing symmetry and Regge asymptotic behaviour) for the inter­
actions of hadrons as the Veneziano amplitude, but which also takes into account 
two-body unitarity. The equation is in a form suitable for numerical computation 
of low energy parameters according to the hypothesis of duality. 
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