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Abstract 

It is now recognized that when electrons move in a steady state of motion 
in a gas in an electric field the process of diffusion is in general anisotropic with a 
coefficient of diffusion DL along or against the electric force eE that is not the same 
as the coefficient D for directions normal to eE. A theoretical discussion of this 
phenomenon based upon the Maxwell-Boltzmann equation is given which also entails 
consideration of related matters such as the distribution functionfri(c) for an isolated 
travelling group, the distribution of number density n, the equation of continuity 
and current density, and the relation of the theory of the travelling group to that 
of the steady stream. 

1. INTRODUCTION 

Systematic theoretical discussions (e.g. Parker 1963, 1965) ofthe motion of elec­
trons in gases are based upon the Maxwell-Boltzmann equation, which is an equation to 
be satisfied by the product nf of the number density n and the velocity distribution 
function f. However, in order to derive formulae for the coefficients of transport, 
namely the coefficient of diffusion D and the drift velocity W, it is supposed that fo, 
the first term in the usual expansion for f in spherical harmonics (Section II), can be 
separated from the product nfo. Similarly, the spatial distributions of the number 
density n in an isolated group of electrons drifting and diffusing through the gas 
in a uniform electric field or of electrons in a steady stream are found as solutions of a 
general equation of continuity satisfied by n independently of f, although the coeffi­
cients of transport D and W which appear as constant coefficients in the equation of 
continuity are integrals over all speeds of integrands that contain fo or 8fo/80 as a 
factor. It was formerly supposed that diffusion continues to be isotropic in the 
presence of an electric field as it is when the field is absent, and it was the practice to 
represent its contribution in the equation of continuity by the single coefficient D. 
It is now recognized that a more faithful representation is in terms of an equivalent 
process of diffusion in the direction of, or against, the electric force eE with a coeffi­
cient DL which is in general not equal to the coefficient D for directions at right 
angles to E. 

In the procedure that is adopted, cognizance is taken of the fact that in a 
uniform stream of electrons the distribution function fo is independent of position 
and is of the form f't (see Section III). In the presence of spatial derivatives of n, 
on the other hand, such is no longer the case and a solution of the Maxwell-Boltzmann 
equation is attempted by postulating that fo depends on position through the spatial 
derivatives of n, with the postulated dependence of the form given in equation (70) 
and its special cases equations (31) and (42). In order to derive solutions applicable 
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to an isolated travelling group, restraints are imposed on the coefficients of the 
partial spatial derivatives of n. These coefficients are functions of e. It proves possible 
to satisfy the Maxwell-Boltzmann equation provided n(x, y, z, t) is a solution of an 
equation of continuity for n (equation (73)) which is the usual equation of continuity 
except that in the presence of an electric field apparent diffusion in the direction of 
and against the field takes place with a coefficient DL different from D, the coefficient 
normal to the field, in agreement with observation. This theoretical approach also 
requires that a diffusing group that begins in a highly concentrated form spreads 
symmetrically about its centroid even when the latter is moving steadily in a uniform 
electric field. The usefulness of this theoretical procedure is to be judged by the 
degree of accord between its predictions and observation. 

In what follows these matters are illustrated or touched upon in the course of a 
theoretical discussion of two cases of electron motion in gases, that of the isolated 
travelling group and that of a steady stream from an isolated source. 

II. SYMBOLS AND FUNDAMENTAL EQUATIONS 

A point in configuration space is represented by its vector position r and an 
elementary volume that contains the point r by dr. Similarly, in velocity space the 
velocity e is represented by a velocity point which is the end point of the vector e 
and an element of velocity space that contains the point e is denoted by de. We 
shall, however, extend the definition of de to include a spherical shell (e, de) of velocity 
space with thickness de and containing all velocity points with speeds in intervals 
e to e+de. The number of electrons whose positions at time t lie within dr and whose 
velocity points lie within de is denoted bynfdrde, where n = n(r, t) andf = f(e, r,t). 
The function f is the general velocity distribution function. 

The function nf satisfies an equation of continuity involving both configuration 
space and velocity space. The formal expression for the rate of change of the member­
ship of the class of electrons nfdrde is {d(nj)jdt}drde and this rate is accounted for 
as follows when it is assumed that there are no processes that generate new electrons 
in space: 

(I) The rate of net loss of members through transport of electrons because of their 
velocities e across the bounding surface of dr is div r( e nj) dr dc, where div r 
is the divergence operator in configuration space. 

(2) The presence of an electric force eE on the electrons within dr gives each elec­
tron an acceleration eEjm which causes the velocity points of those electrons 
to drift in the direction eE at the constant rate eEjm, where E is independent 
of the time t. Consequently members are lost to the class nfdrde by loss of 
velocity points from de brought about by the drift of points at the rate eE/m 
across its surface. This net loss is divc(nf eEjm) drde. 

(3) In addition the quasi-discontinuous change in velocity that occurs when an 
electron encounters a molecule is represented by the abrupt displacement 
of its velocity point to another, usually distant, region of velocity space. 
Thus encounters remove electrons from or introduce electrons to the class 
nf dr de. The net rate of loss is denoted symbolically by S dr de. 
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When these terms are assembled into an equation and the common factor 
drde is removed the following equation is obtained 

d(nf)/dt +divr(nf c) +divc(nf eE/m) +8 = o. (1 ) 

Equation (1) is the Maxwell-Boltzmann equation for nf. Since nand eE/m are 
independent of e, this equation is equivalent to (Chapman and Cowling 1952) 

d(nf)/dt +e. gradr(nf) +(eE/m). gradc(nf) +8 = o. (2) 

The chief motion of the electrons is the translatory motion between encounters 
represented by the velocities e, but when spatial gradients of nf or an electric force 
eE, or both, are present there is a net transport of electrons across an elementary 
surface dS at a rate which we write as n Wcv(e) dS, where Wcv(e) denotes the velocity 
of convective flow of the electrons of the shell (e, de), in other words W cv( c) is the mean 
of the vectors e of the electrons of the shell. The velocity points of the shell cannot 
therefore be uniformly distributed within the shell (e, de) since the resultant of the 
velocities e that these points represent is not zero. It is common practice to take 
account of this mean convective velocity by giving f (e, r, t) the form (see, however, 
Appendix I) 

(fJ 

f = fore, r, t) +jl(e, r, t) cos 8 + ~ f/c(e, r, t) P/c(cos 8) 
/C~2 

(fJ 

= fo+ ~ f/cP/c(cos 8), 
k~l 

where 8 is the angle between the convective velocity Wcv(e) of the electrons of the 
shell and a velocity e. It follows that the point population of the shell is 

{2" {IT 
ndr (47Te2 de) Jo Jo fsin 8d8dcfo = (nfo)(47Te2 de) dr (3) 

and that the convective speed of these electrons is 

ndedr 12
" 1" . Wcv(r,e,t) = j; d d ecos(Jfsm8d(Jdcfo = eN3Jo, 

no e roo 

where de = 47Te2 de. For simplicity we write Wcv(e) for Wcv(r,e,t). Since Wcv(e) 
is a vector we may define a vector !I(e, r, t) through the relation 

Wcv(e) = elI/3Jo. (4) 

The next step is to find the form assumed by equation (1) when the element 
de is replaced by a shell (e, de) with volume 47Te2 de. The advantage of this procedure 
is that it is then unnecessary to consider the directions of the velocities e but only 
their speeds e. 

The rate of change of the population of this class is {d(nJo)/dt}(47Te2 de)dr, and 
consequently in equation (1) this expression replaces {d(nf)/dt}drde. Since the mean 
convective velocity of this class of electrons is Wcv(e), it follows that the term 
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drdedivr(nfe) becomes dr(47Tc2dc)divr(n Wcv(c)fo) which, from equation (4), IS 

equivalent to 

We consider the remaining terms divc(nf eEjm) and S together since each 
represents a loss of points from the element de of velocity space. We seek the form of 
these terms when de is the shell (c, dc). Consider a spherical surface in velocity space 
with centre at the origin and radius c. The drift eEjm of points in velocity space 
causes them to cross the surface c both outwards and inwards. The density of points 
in velocity space is 

in which 0 = ° is the direction of iI. Take an element c2 dw of the spherical surface, 
where dw = sin 0 dO dcfo, and let IX be the angle between eE and the vector e which is 
the axis of dw. If the angular coordinates of eE with respect to the direction of iI, 
that is, the polar axis 0 = 0, are (0', f) then 

cos IX = cos 0 cos 0' +sin 0 sin 0' cos(cfo-f) . 

The rate at which points cross c2 dw because of the drift eEjm is 

(c 2 dw)(drnf)(eEjm)cos IX 

so that the total outward fiux of points over the whole sphere is at the rate 

c2drn(~) So2" So" f{cosOcosO' +sinOsinO' cos(cfo-f)}sinO dOdcfo 

( 47TC2 eE ,) (47Te2 eE ) = 3 m iIcosO ndr = -3 m .nJI dr = uE(e)dr, 

where 
(5) 

Encounters between electrons and gas molecules cause velocity points to cross 
the surface of the sphere e in both senses but, except in the state of thermal equili­
brium with eE absent, there is a net fiux of points inwards. We denote the net 
rate of inward passage of velocity points from encounters by uCOll(e) dr. The total 
outward fiux of points is therefore at the rate {uE(e)~-uCOll(e)}dr. It follows that the 
rate of loss of velocity points from the shell (e, de) is 

! (UE(e) -ucou(e) )drde 

and this expression replaces the pair of terms {divc(nf eEjm) +S}drdc when de is 
the shell (e,de). Thus when de is a shell (e,de) equation (1) becomes 

d~{O) +tedivr(nJI) + 4~e2:e(UE(e)-ucoll(e)) = 0, 

in which uE(e) is given by equation (5). 

(6) 
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When all encounters are elastic uCOll(e} can be shown to be 

UCOll(e} = 41Tne2v{(mJM}efo+!<02) ofoJoe} , (7) 

where v = Ncqm(e}, N being the molecular number density and qm(e) the collision 
cross section for momentum transfer, mJM is the mass ratio of the electron to the 
molecule and is assumed in the derivation of equation (7) to be very small in com­
parison with unity, and (02) is the mean square velocity of the molecules. When 
inelastic encounters are present the expression for uCOll(e) is supplemented by terms 
on the right-hand side of equation (7). These terms are not simple in general. 

Equation (6), which is the six-dimensional equation of continuity applied to the 
volume element dr and the shell (e, de) involves two velocity distribution functions 
fo andit and we require a second equation that involves these functions. Consideration 
of the gains and losses of momentum to the class (nf)drde when de is the shell 
(e, de) leads to the equation 

d(n/l} + d ( " + 2nh) + (Ofo + ~ B(e3h»)neE + " = 0 
d egra r nJo 5 '" _ 3 '" vnJl. t ueoeue m 

In practice the terms in 12 are considered to be negligible and the working equation 
is taken to be 

d(n/l) + d (' " ) eE B(nfo} + ,.f 0 -d- egra r nJo + --",-, - vnJl = . t m ue 
(8) 

Equations (6) and (8) respectively will be referred to as the scalar and vector equations 
for the shell. 

When all encounters are elastic v = Neqm(e} in equation (8), but when inelastic 
encounters are present the elastic momentum transfer cross section qm(e) is replaced 
by an equivalent cross section q:n(e) which, in practice, is little different from qm(e). 

Equation (8) is equivalent to 

-n/l = ~ gradr(nfo} + Vo(nfo) +! d(n/l) 
v Be vdt 

(9a) 

in which 
v = eEJmv. (9b) 

In laboratory experiments the collision frequency v is large and the term (lJv}d(n/l)Jdt 
is negligibly small compared with the other terms on the right-hand side when E is 
a static field. This would not be so if E were to oscillate with an angular frequency 
comparable with v, but since we are concerned here with cases where E is both static 
and uniform we shall neglect this term and write 

n/l = -(eJv)gradr(nfo) - V o(nfo}Joe. (10) 

It follows from (4) that equation (1O) is equivalent to 

WCv(e) (nfo) = -(!e2Jv}gradr(nfo) -leV o(nfo)Joe. (ll) 



48 L. G. H. HUXLEY 

We now use equation (10) to eliminate h from the scalar equation (6) which 
then becomes 

d(nfo) -divr{gradr (e2 nfO) +levB(nfo)} 
dt 3v 3 Be 

_! ~(1. 3V d ( ,/') +1. 2 v 2 B(nfo) + O'COll(C)) - 0 e2Bc 3 C .gra r nJo 3e v ec 47r -, (12) 

in which use has been made of equations (5) and (9b). When all encounters are elastic 
O'con(c) can be replaced by the expression (7) and equation (12) then becomes 

d(nfo) d' { d (c2 
,/,) + 1 V B(nfo )} 

~ - IVr gra r 3vnJo sC ec 

The simplest application of equation (6) and its special forms (12) and (13) 
is to a steady uniform stream of electrons moving in a uniform field. In this example 
time and space differential coefficients vanish and equation (6) reduces to 

whence O'E-O'cOll = const. = 0 since both O'E and O'con approach zero as C -+ 00. 

When all encounters are elastic this equation is equivalent to 

(V2+<02) )dfoJde +(3mJM)cfo = 0, 
whence 

_ A ex (_ 3m rc cdc ) 
fo - P llf Jo V2 +<02) , (14) 

where A is a constant. Equation (14) is Davydov's distribution function. In the 
steady state the net point flux O'E(e)-O'con(c) outwards across all the spherical 
surfaces e is zero in this example. 

As a step in the fuller discussion of equations (6) and (13) we first consider some 
properties of an isolated travelling group. ' 

III. ISOLATED TRAVELLING GROUP OF ELECTRONS 

Consider a group of no electrons that drift through a gas in a constant and 
uniform electric field E. It is assumed that the group travels in an extensive region 
such that its total population 

no = L n(r,t) dr 

resides within a large surface 1: on and near which n and its derivatives are zero. 
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The velocities of the electrons of the group are represented by no velocity points 
in velocity space and the number of these points within an element de is given by 
nof*(e, t) de. If de is the shell (e, de) then because of the presence of a drift velocity 
the shell is not uniformly populated with velocity points. We therefore give the dis­
tribution function for the whole group f*(e, t) the form 

00 

i*(e,t) =fri(e,t)+ ~ fl(e, t) Pk(cos8) , 
k~l 

where 8 is the angle between a velocity vector e of the shell and the convective velocity 
Wcv(e) of all the electrons of the shell. It follows that the population of the shell is 

Since the total population of the group is 

foo 
* 2 no = 47Tn O 0 fo e dc, 

it follows that foo 

* 2 47T 0 fo e de = 1 . (15) 

The mean value of the components of the velocities of the electrons of the 
shell along}I is 

no f 2 ** W(e) = * 2 (ccos8)fe dedw = cfl/3fo, 
47Tnofo e de w 

whence 
W(e) = eii/3ft. (16) 

The velocity W of the centroid of the whole group is the mean of W(e) taken over 
all shells. Thus 

whence 

4 * 2 foo 

W = 3 7T 0 (e}I)e de. (17) 

The distribution function f*(e, t) for the group as a whole is related to the 
distribution functionf(e, r,t) for the electrons ndr that constitute the group, since 
the total number of velocity points nof* de in the element de is the sum of the 
contributions n dr f dc, whence 

nof* = L nfdr, (18) 

so that f* is the mean velocity distribution taken over all elementary volumes dr. 
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It follows from equation (18) that 

nof~ = L nfo dr and no/1* = L n/1 dr. (19) 

Consider equation (6). If each term is integrated over the whole of configuration 
space then 

since n vanishes on the large surface 1:; a.nd 

1 d (f ) 1 d ( * * ) -2-d {UE(C)-UcOll(C)} dr = -2-d UE(C)-UCOll(C) , 
4~c C T ~c C 

where 

U;(C) is the outward flux due to eE of points across the sphere C in velocity space, 
for the group as a whole. Similarly U:Oll(c) is found from UcOll(C) by replacing nfo 
by nof~ and relates to the whole group. 

Thus, for the whole group, equation (6) becomes 

d(*) 1 d(* * ) dt fo (c,t) = - ~oc2dc UE(C,t)-ucoll(e,t) . (20) 

When eE, and therefore u;(e), is zero the condition of equilibrium is one in which 
u:Oll(c) is zero. The distribution function is that of Maxwell, as is evident from 
equation (7) when all encounters are elastic. 

If eE is applied at t = 0 then u;(e, t) is established and the left-hand side of 
(20) is no longer zero. Both u:Oll(c, t) and u;(e, t) change with time and a new equili­
brium condition is approached with another distribution function that satisfies the 
condition u;(c) = u:Oll(c) for all speeds c. The net point flux over all spherical surfaces 
C is then zero. It follows that when all encounters are elastic the equilibrium dis­
tribution function for the group as a whole is Davydov's function as given by equation 
(14-). 

We consider next the form offt that appears in equation (17) for W. Integrate 
each term of equation (9a) over the whole of configuration space and apply the second 
of equations (19). It then follows that 

* r * no/1 = -(elv) JT gradr(nfo) dr -no Vdfo Ide, 

since eE is independent of position by hypothesis. 
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Consider 
00 

f. d ( ,I) d - III (. o(nfo) +. o(nfo) +. o(nfo )) dxd dz gra r nJO r - .z-,,- .y-,,- .z-,,- y. 
r uX uy uz 

-00 

But 
00 00 

I I dydz (I: o~~o) dx) = I I [nforoo dydz = 0, 
-00 -00 

since n vanishes at infinity. Likewise the remaining integrals vanish and it follows 
that 

it = - Vdf~/de, (21) 

where, from equation (9b), V = eE/mv. 
Equation (17) for the drift velocity W, which as already remarked is the 

velocity of the centroid of the group, now becomes 

W = - 41T eV_O e2 de = _ 41TeE ~ dfo de 100 dji* 100 3 * 
30 de 3movde 

__ 4?T eE _e _dfo de 100 2 * 
- 3 mN 0 qm(e) de . (22) 

An alternative formulation obtained by partial integration is 

W - 41T ~{_~ 0* 1
00 roo !~(~) * e2 de} 

- 3 mN qm(e)ji 0 + Jo c2 de qm(e) fo . 

If c2f~/qm(e) is zero both when e = 0 and 00 then 

W - 4?T eE roo !.~(~) 0* e2 de _ ~/!...~(~)'" 
- 3 mN Jo e2 de qm(e) ji - 3mN ~2 de qm(e) /. (23) 

The angle brackets in the final term on the right indicate the mean value of the 
enclosed quantity taken over all shells (e, de). 

When the group has attained its equilibrium distribution and if all encounters 
are elastic, f~ in equations (22) and (23) is independent of the time and is Davydov's 
function. 

IV. STEADY STREAM FROM SPATIALLY LIMITED SOURCE: CALCULATION OF 

CURRENT DENSITY 

Since in Section IX the convective velocity Wcv - Wcv(r) is considered in 
relation to the current density J, it is convenient to comment on this matter briefly at 
this point. We consider the case of a steady stream from a source which is limited in 
dimensions. The stream proceeds through the gas to infinity in a uniform electric 
field E and spreads by diffusion as it travels. Then n and its derivatives approach 
zero as r -+ 00. Consider equation (6) in which we replace teft by Wcv(e) fo from 
equation (4). Since the stream is steady d(nfo)/dt is zero, so that in this application 
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equation (6) becomes 

divr{nfo Wcv(e)} + ~e2:e(aE(e)-acoll(e)) = o. 

Integrate each term. of this equation over all shells of velocity space. t It then follows 
that 

that is, 

divr{nWcv(r)} = 0, 

in which the total convective velocity Wcv(r) at position r is 

Wcv(r) = 47T L'tJ Wcv(e)fo(e, r,t)e2 de 

and Wcv(e) is given by equation (11). 

(24) 

(25) 

The current density in the stream is J = enWcv and consequently equation (24) 

is equivalent to 
divrJ = o. (26) 

If the source is surrounded by a closed surface a, the total current i from the source 
is therefore the integral over a of J. dO" and, because div r J = 0 throughout the space 
external to a, the same current i flows across any closed surface surrounding a. 

Thus the current across any elementary surface dS or across any finite surface is to 
be calculated as 

f J .dS = e f nWcv(r) .dS. 

We can now resume the discussion of the full scalar equation in the case where 
all encounters are elastic. 

V. SOLUTION OF SOALAR EQUATION WHEN ALL ENOOUNTERS ARE ELASTIC 

We seek a solution of equation (13) that describes an isolated travelling group 
of no electrons whose centroid travels along the +Oz axis at speed W given by equations 
(22) and (23). It is also assumed that the velocity distribution function ft for the 
group as a whole has attained its stable Davydov form as discussed in Section III. 

Adopt a cartesian system of coordinates with +Oz parallel to eE and V so that 
V = Vz• In terms of these coordinates equation (13) becomes 

t That is to say, form the integral 417 f: ( )e2 de. 
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The constraints upon the solution that are required by its representation of a travelling 
group are: 

(i) nofo* = 1 nfo dr, 

(ii) 1 = 477 100 
fo* e2 de = 477 100 

fo(e, r, t) e2 de, and 

(iii) (nfo) and its spatial derivatives vanish as r _ 00. 

We next consider a cartesian system with its origin travelling with the centroid 
of the group and with its axes parallel to the corresponding axes in the system at rest. 
Ifx', y', and z' are coordinates in the moving system, then x' = x, y' = y, z' = z- Wt, 
and 8k(8z'k = 8k(8zk. In order to distinguish time differentials in the two systems, 
that relating to a volume element dr at rest is designated by d(dt while that referring 
to an element dr in the moving system by 8(8t. Thus 

and equation (27) becomes 

_ 8(nfo) + y2(e2 nf, )+lev ~(8(nfo)) + W 8(nfo) 
8t 3v 0 3 8z' 8e 8z' 

Before attempting to solve the complete equation (27) it is convenient to 
illustrate by two simple but useful examples the procedure to be adopted. We therefore 
initially consider the special case of equation (27) in the absence of an electric force. 
We first note that in the complete equation (27) the pair of terms 

(V2+<02»)8(nfo)(8e +3me(nfo)(M 

can be replaced by the single term 

(V2+<02) ){8(fo(fci)(8e}(nfci) 

in which fci satisfies the equation 

and is therefore Davydov's function. Equation (28) now becomes 

in which for convenience 8(8z is written for 8(8z'. 
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Motion with No Electric Field E 

In this case equations (28) and (29) become 

(30) 

in which f~ is now Maxwell's distribution function. This equation shows that fo 
in the presence of spatial derivatives of n is not the same as f~, because if fo were 
equal to f~ the equation would reduce to 

-dnldt+(c2/3v)V2n = 0, 

which is absurd since n is not a function of c. It was noted that in a uniform steady 
stream fo becomes f~ and its form is given by equation (14). These facts imply that 
when temporal and spatial derivatives are present fo is a function of these derivatives 
such that the mean distribution function for the group is Maxwell's function f~. 
Moreover, the form of equation (30) suggests the representation 

* -12k ( 00) 
fo = fo 1+ k~1 a2k(c)n (V) n , 

that is, 
00 

* "" * 2 k nfo = nfo + ~ fo a2k(c) (V ) n. 
k~1 

(31) 

This representation, when constraint (iii) above is imposed, conforms to constraint 
(i) since 

1 nfo dr = fo* r n dr = nofo*. 

In order to comply with constraint (ii) it is necessary to determine the a2k(c) 
so that for all k > 0 

(32) 

Replace (nfo) in equation (30) by its representation in equation (31) and regrou.p 
terms. Equation (30) then becomes 

l...~( 2 <02)1'* d(fo* Ifo*)) 
2d c v JO d n 3c c c 

+ k~1 {V2 ( - ~; + ~: V2n)a2k(C)fo* + 3~2:C(c2v<02>fo*d{a2~;2(c)})(V2)k+1n} = o. 

(33) 

In this equation the coefficient of n vanishes because d(f~/f~)/dc = d(I)/dc = o. 
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If the second group of terms in V2n and -dnjdt is equated to zero, the following 
equation is obtained: 

(34) 

Integrate each term of equation (34) over all shells of velocity space. Then, if 
d{a2(e)}jde is finite at e = ° and e2v fri(e) d{a2(e)}/de approaches zero as e ~ 00, it 
follows that 

-dn/dt+DV2n = 0, (35) 

where the isotropic coefficient of diffusion D is given by 

(36) 

Equation (35) is therefore the equation to be satisfied by the function n( r, t) 
that gives the number density. Since, according to equation (35), n(r,t) is such that 
dn( r, t)jdt = D V2n( r, t), dnjdt can be eliminated from equation (33) which then 
takes the form 

In order to determine the coefficients a2(e), a4(e), ... , we equate separately to zero 
the coefficients of the spatially dependent terms V2n, (V2)2n, ... (V2)kn, .... 

Thus a2(e) is to be found as a solution, subject to equation (32), of the equation 

l..~( 2 <C2>..f*d{a2(e)}) = (D- e2)f* 
3e2 de e v JO de 3v JO , 

(37a) 

whence, since it is assumed that e2v<C2)fri(e) d{a2(e)}/de is zero at e = 0, 

d{a2(e)} 3 f C ( . x2) * 2 
-d- = 2 2 * D--3 (--) fo (x)x dx. 

e e v<C )fo (e) 0 v x 

It follows that 
(38) 

where 

Ic 3 { IY ( X2 ) * 2 } c?2(e) = 2 * 2 D--3 ( )fo(x)x dx dy. 
o Y v(y)fo (y)<C) 0 v x 

The constant of integration is given the form <c?2(e) to make a2(e) satisfy (32). 
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Equation (37) is thus reduced to the summation. The coefficients of the terms 
(V'2)k+ln are now separately equated to zero and provide equations from which 
any term a2k+2(C) can be seen to depend upon the preceding term a2k(c), Thus 

(39) 
where 

<P2k+2(C) = (C 2 3 2 * {(Y (D- 3x2)a2k(X) fo*(x) X2 dX} dy. Jo <0 )v(y)y fo (y) Jo v 

Each function a2k+2(c) is therefore determined, in principle, when the preceding 
function a2k(c) is known. Since a2(c) can be found from equation (38) when qrn(c) 
is known, it follows that in principle as many of a4(c), a6(c), ... may be found as 
required. 

Thus, in summary, the relation 
00 

* '" * 2k nfo = nfo + ...::... fo a2k(c) (V' ) n 
k~l 

satisfies equation (29) provided the sequence is convergent and the a2k(c) satisfy 
the relations (39) and n( r, t) satisfies equation (35). It follows from equation (32) 
that, because c2ft(c) is always positive, a2k(c) cannot maintain the same sign through­
out the range of integration and, from equation (39), that the sign of a2k+2(c) depends 
upon the algebraic magnitude of <P2k+2(C) relative to <<p2k+2(C). We recall that in 
any solution of equation (29) we have assumed that at t = 0 the distribution function 
of the isolated group as a whole has already reached its equilibrium form ft. 

We now consider the second relatively simple special case where the uniform 
electric force eE is present but only a single spatial coordinate (z) is relevant. 

Motion in One Dimension 

Let 
00 00 

Q(z, c, t) = I J nfo dxdy, q(z, t) = J I n dx dy . (40) 

-00 -00 

Form the integral JJ~oo ( ) dxdy of each term of equation (29), which is thereby 
transformed to 

because n and its derivatives vanish as r -+ 00. 

Replace Q in equation (41) by an assumed expansion 

(42) 
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After regrouping and ordering of terms, equation (41) then becomes 

1 d ( 2.f' * d(fo* /fo*)) 
2-d e VJO d q 3e e e 

+ £ ~(_ 8q fo* bk + [e2 bkfo* +ieV d(bk+1fo*) + Wbk+1fo* 
k~l 8i 8t 3v de 

+ 3~2:e{e2v(e: bk+1fo* +( V2 + (02»fo* d{bk;;(e)})} J:)) = O. (43) 

In this regrouping the term 8q/8t is not associated with the group in q or 8q/8z since 
the first vanishes identically and the second when eE = O. It is necessary that 
equations (43) and (33) should be consistent. 

As before the first term in equation (43) vanishes because d(ft/ft)(de = O. 
Next, equating to zero the coefficient of 8q/8z and deriving b1(e) from the resulting 
equation, 

(44) 

(45) 

on the assumption that e2v(V2+<02»dbl/de = 0 when e = O. Moreover, as e -+ 00 

and consequently ft dbl/de -+ O. Equation (45) gives 

fc 3 { iY ( dfo* *) 2 } - 2 2 2 * ix V -d- + Wfo x dx dy+const. 
o y v(y){V(y) +<0 )}fo (y) 0 x 

= -1{lI(e) +const. , (46) 
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where the constant is chosen to make bl(e) meet the general requirement of equation 
(32), namely 

100 * 2 47T 0 bk(e) fo (e) e de = <bk(e) = O. (47) 

It follows that 
(48) 

We next equate to zero the third group of terms in equation (43) and obtain the 
equation 

_f*Oq+ ~f*+1 Vd(b1fo )+Wb f* [ 
2 * 

JO ot 3v JO 3e de 1 JO 

Integrate each term of equation (49) over all shells of velocity space. It then follows 
that 

where 

DL = D+ 47T roo e3V d (fO*b1) de = D- ~7T roo b1 fo*d(e3 V) de. (50b) 
3 Jo de 3 Jo de 

The procedure for determining b2(e) is described below where it is shown that 
when b2(e) satisfies equation (57) the factor 

in equation (50a) is zero. Equation (50a) then becomes 

(51) 

The function q(z, t) is therefore restricted to the class offunctions that satisfy (51). 
The quantity 

00 

q(z,t)dz = (J J n(r,t) dXdY)dZ 
-00 

is the number of electrons whose positions at time t lie between the planes z = const. 
and z+dz = const. It follows that the total population of the isolated group is 

no = J-: q(z, t) dz. 

In a system of coordinates at rest equation (51) becomes 

-dqjdt +DL o2qjoz2 - W oq/oz = 0 (52) 

and this is the equation satisfied by q(z, t) in the system at rest. 
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To evaluate the remaining coefficients ble(e) with k = 2, 3, 4, ... , we replace 
8qj8t in the groups that remain in equation (43) by D L 82qj8z2 from equation (51). 
Equation (43), since the coefficients of q and 8qj8z are zero, now becomes 

~ [(e2 D)b f*+l V d(ble+1fo*)+Wb f* ~ -3 - L leJO 3 e 1 Ie+1JO 
1e~0 v ( e 

+ 3~2:ekv(e: ble+1fo* +(V2+<02»fo*d~e+2)}]::::~ = 0 (53) 

with bo(e) = 1. The coefficients of the derivatives 81e+2qj8z le+2 are then separately 
equated to zero to yield equations of the form 

_J...~{e2v(e V fo* ble +1 +(V2 +<02»fo*dble+2)} 
3e2de v de 

_ (e2 -D )b f* +1 V d(ble+1 fo*) +Wb f* - 3v L leJO 3e de Ie+IJO , k = 0,1,2, .... (54) 

In this way ble+2(e) is made to depend upon blc+l(e) and ble(e). In particular b2(e) is 
related directly to bl(e) and bo(e) == 1, both of which are known. Similarly b3(e) is 
determined from b2( e) and bi (e). As many as desired of the coefficients can, in principle, 
thus be found progressively. 

The formal expression for the ble+2(e) derived from equation (53) with cognizance 
of equation (47) is 

(55) 

where 

!f1c+2(e) = foe y2 V (Y){V2(Y):<02)}f0*(yJ f: {(3~:) -DL )blefo* +tx Vd(ble;~fo*) 
Wb f*}x2 dX] d (e y V(y) ble+! dy + Ic+IJO Y + Jo v(y){V2(y)+<02>}· 

It remains to show that b2(e) can be so determined that equation (51) is valid. 
We replace 8qj8t in equation (49) by DL 82qj8z2 and obtain the following equation 
from which to determine b2(e), 

- 3~2:e(e2v(V2 +<02»fo* d~~c) +c3Vbl(C) fO*) 

= (~: -DL )fo* + Wbrfo* +te Vd(bl!o*) . (56) 

Adopt as a first integral the equation 

{ {e ( x2 ) * 2 {e ( * d(bi fo*)) 2 d } 
= 3 Jo 3v(x) -DL fo x dx + Jo Wbrfo +txV -ax- x x. (57) 
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The right-hand side vanishes as c ---+ 0 (and it also vanishes when c ---+ 00 since it 
then becomes 3{(D-DL)+(DL-D)}/41T = 0). It follows therefore that 

vanishes at both limits as required. 
Equation (43) is now reduced to the final summation term and is, with oq/ot 

replaced by DLo2q/oZ2, 

; [(c2 D)b f* +Wb f* +1 V d(blc+1fo*) 
~ -3 - L lcJO lc+1JO llc d 

lc=l v C 

In order to evaluate the coefficients blc(C) in which k > 1, we equate separately 
to zero the coefficients of the olc+2q/oZlc+2 as described above. Of the coefficients 
blc(C) the most important is b1(c) since it appears in the formula for DL (equation (50b)). 
We therefore consider b1(c) and DL in the section that follows. The coefficient DL 
is the longitudinal coefficient of diffusion and D the lateral or, alternatively, the 
isotropic coefficient of diffusion. 

The fact that diffusion is apparently anisotropic when electrons move in a gas 
in the presence of an electric field remained long unremarked, although Wannier 
(1952) commented on this phenomenon in relation to the motion of ions in strong 
electric fields. The first reference in the literature to such a possibility in the motion 
of electrons was made by Wagner, Davis, and Hurst (1967), who suggested anisotropic 
diffusion to explain apparent anomalies between coefficients of diffusion measured by 
time of flight methods and those measured by the Townsend-Huxley method of the 
spreading stream. The suggestion was shown to be correct by Parker and Lowke 
(1969) who developed a theory of the phenomenon by use of the technique of Fourier 
transformations to obtain a solution ofthe scalar equation from which DL was derived. 
The topic has also been discussed by Skullerud (1969). These authors have computed 
curves and tables of DL/D for various gases, monatomic and diatomic, as functions 
of E/N. 

The formula for DL given in equation (50b) was derived by Parker and Lowke 
(1969) but in another notation and by a procedure different from that followed here. 

VI. FORMULAE FOR b1(c) AND DL WHEN qm IS CONSTANT AND V2 ~ (02) 

Equation (45) is equivalent to 

_f*db1 = cV f* 3 (a (.lXVdfo* Wii*)x2 dx 
JO dc v(V2+<02»)JO + c2v(V2+<02») Jo 3 dx + 0 . 

(59) 

When V2 ~ (02) over the effective range of integration the factor c V7v( V2+(02») is in 
effect c/vV = (m/eE)c and the factor c2v(V2+<02») becomes v(cV)2 = v(eE/mNqm)2. 
The factor eE/m is related to the drift velocity W through equation (23) which gives 

(60) 
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Two special cases are of interest: 

(i) v = Neqm is independent of e, that is to say, qm(e) oc e-1. Equation (60) 
shows in this case that the drift velocity is 

W = eE(mv = V. (61) 

It then follows from equations (50b) and (47) that DL = D. In general, however, 
where qm(e) is not proportional to e-l, DL is not equal to D except when eE is zero. 

(ii) qm is independent of e. This case is useful in practice because in circum­
stances where qm varies slowly with e it can be treated as independent of e. 

It is shown in Appendix II that when qm is independent of e and V2 ~ <02>, 
the distribution function is 

(62) 
where 

0(4 = (4M(3m)(eE(mNqm)2 (63) 
and 

(64) 

in which the mean value of an xth power of e is written 

(65) 

and 
2'\=W(D. (66) 

With this definition of ,\ and the replacement of V by eE(mNeqm and qm constant, 
the formula for DL/D (equation (50b)) can be transformed to read 

DL = 1- 417 roo b1(e)fo*d(e3 V) de 
D 3D Jo de 

2r(!)0(,\( roo * ) 
= 1- 17t 417 Jo b1(e) fo (e) e de . (67) 

It can then be shown that when b1(e) in equation (67) is replaced by its representative 
series as given by equation (64) (or equation (A1S) of Appendix II) the following 
formula is found for DL(D: 

DL _ 1 r(~)<e2><e-l>-<e> _ t r(~)( ~ 1 <e4n+3><e-l>_<e4n+2) 
15 - - 4 0( 17 . 4 n~O r(n-t-~) (4n-t-3)0(4n+2 

00 1 <e4n+6><e-l>_<e4n+5» 
-L . 

n~O r(n-t-~) (4n-t-6)0(4n+5 
(6S) 
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By means of equation (65) (or (A7) of Appendix II) this formula is transformed to 

DL = l_(r(~)7Tt -1)-7Tt (£ 1 r(n+~)7Tt/ra) -r(n+~) 
D r(~) n~O r(n+~) 4n+3 

_ £ 1 r(n+~)7Tt/r(~) -r(n+2)) (69) 
n~O r(n+~) ----4n+6 ---- . 

This expression gives for the special case under discussion, that is, qrn = const. and 
<C2)/V2 ~ 1 (high field limit), the value DL/D = 0·495, which is the value found 
by quadrature (Lowke and Parker 1969) when all encounters are elastic. 

VII. MOTION IN THREE DIMENSIONS IN A UNIFORM FIELD 

It is necessary to allow for the presence of mixed derivatives of the form 
81{(82j8x2)m}j8z1 and we therefore adopt the following representation of nfo: 

(70) 

in which V;,y === 82/8x2 +82j8y2 and a2k, bk, and elm imply a2k(e), bk(e), and elm (e) 
respectively. It suffices to show how the coefficients of lowest order are determined 
and to establish the equation that corresponds to equations (35), (51), and (52). 

When nfo is replaced in equation (29) by the right-hand side of (70) and the 
terms are grouped in ascending order of the spatial derivatives, it is found that 

~~(C2V(V2 + <C2»)fo* d(t~* jfo*))n 
3e2dc de 

+ [tevdl;* + Wfo* + 3~~:ekv(e: fo* +(V2+<C2»)fo*:1) }]~; 

+(_8nf*+e2 f*(82n+82n)+(e2j'*+l Vd(b1fo*)+Wb f*)82n 
8t JO 3v JO 8x2 8y2 3v 0 ae de IJO 8z2 

+-.!...~[e2v{(eV b +(V2+<C2»)f*db2)82n +(V2+<C2»).t:*da2(82n + 82n)}]) 
3e2de v lOde 8i 0 de 8x2 8y2 

+ (-b fi* ~(8n) + (e2 b fi* +1 V d(a2fo*) + W fi*) ( 8~n + 83n ) 
1 0 8z 8t 3v 1 0 ae de a2 0 8z 8x2 8z 8y2 

+(e2 b1fo* +leV d(b2fo*) + Wb2 fO*) 83n 
3v 3 de 8i 
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the final term 8 being a. sum of mixed and pure spatial derivatives with coefficients 
that are functions of e plus terms with on/ot as a factor. The coefficient of n in 
equation (71) vanishes identically. To determine b1 we equate to zero the coefficient 
of on/oz. It is then seen that b1 satisfies equation (44) and is identical with the b1 

of the one-dimensional case. Next, equating to zero the group of terms with on/ot 
in association with second-order derivatives and integrating each term of this group 
over all shells of velocity space, we arrive at the following equation to be satisfied 
by n( r, t), with the requirement that the coefficients a21e( e) etc. conform to equation (47), 

(72) 

in which D and DL are the coefficients defined by equation (50b). 
In the stationary system of coordinates equation (72) is replaced by 

_ dn +D(02n + o2n) +D o2n _Won = O. 
dt ox2 oy2 L oi oz 

(73) 

We are now able to replace on/ot in equation (71) by D V;,lIn +DL 02n/oz2 from 
equation (72). When this is done equation (71) becomes (since the terms in nand 
on/oz have vanished) 

+ e b f*+lV d (a2jo )+W f* Db 1.* [ 
2 * 

3v 1JO 3e de a2JO - 1JO 

+8' = 0, (74) 

where 8' indicates the sum 8 with on/ot replaced by D V2n + (DL-D)02n/oz2. 
The coefficients of the spatial derivatives are equated to zero to provide 

equations from which the coefficients a2k(e) etc. can be found. For instance, a2(e) is 
required to satisfy 

(75) 
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Similarly, b2(c) and Cll(C) are solutions respectively of 

and 

and so on. Thus b2(c) can be found in principle since bi is known, and Cll because 
a2 and b i are known. Similarly b3 is found in terms of b2 and bl. The same procedure 
is adopted to find the coefficients included in 8' by equating the coefficients of the 
spatial derivatives individually to zero. In practice no use is made of any coefficients 
except bI(C) which determines the form of DL. 

We note that when eE = 0 equations (75) and (76) reduce to the same form as 
that satisfied by a2 in equation (37a); moreover Cll vanishes. In general the b 2k 

become a2k and the b2k+1 and CZ,m vanish. Thus the expansion in equation (70) 
reduces to that in equation (31) as it should. 

VIII. EXTENSION OF THE THEORY TO A STEADY STREAM 

The discussion has hitherto concerned the properties of an isolated travelling 
group but it follows from the fact that a steady stream of electrons in a gas can be 
regarded as a sequence of overlapping travelling groups that it is legitimate to apply 
equation (73) with dn/dt = 0 to the calculation of the distribution of number density 
n(r,t) in a steady stream. It is useful to illustrate this general comment by a specific 
example, that of a steady stream from an isolated point source. 

We consider in the first instance a steady stream of electrons from a pole source 
at the origin. Let the electric field be uniform and the electric force eE be directed 
along +Oz. Suppose the stream to carry current i; this current may be regarded as a 
continuous succession of elementary groups of electrons with populations (idt)/e 
liberated by the source with a spatial S-function concentration. The time-independent 
number density in the stream may be regarded as the sum of the contributions from 
those elementary groups whose times of travel range continuously from zero to 
infinity. Thus the number density in the steady stream can be represented in the form 

00 

n(x,y,z) = ~ amn, 
m=I 

where the am n are the number densities contributed by the elementary groups. 
It follows that each an satisfies equation (31) which refers to the moving system of 
coordinates and therefore that n = ~ amn does so also. We therefore replace 
~ am n by n and integrate over all shells (c, dc) and find that n for the steady stream 
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satisfies the same equation in the moving system as n for a travelling group, namely 

However, when this equation is referred to the stationary system it takes the form 

(77) 

with dn/dt = ° since n = ~ D.m n is independent of time. We note the important 
fact that D and DL are the same for the steady stream as for the travelling group. 
Similarly the formulae for all the coefficients in equation (70) remain unchanged. 

In order to illustrate more precisely the representation of a steady stream as a 
succession of overlapping elementary travelling groups we note that the centroid 
of an elementary group (i dt)/e that has travelled for time t lies at the point (0,0, Wt) 
and consequently that the number density contributed by the group at the point 
(x, y, z) is 

The total number density at (x, y, z) is therefore 

i roo C 3/2 ( p2 (z- Wt)2) dt 
n(x,y,z) = e(47TD)(47TDd Jo exp - 4Dt - 4DLt . 

Putting 2AL = W/DL and 7 = tW2/4DL= tAL Wt gives 

But (Watson 1944, Section 6.22, equation (15)) 

50007 -(v+1) exp( -7-82/47) d7 = 2(2/8)V Kv(8) , 

where Kv(8) is a modified Bessel function of the second kind and order v. Consequently, 

i exp{ -II.L(r' -z)} (78) 
e(47TD) r' 

where 

This expression for n(x, y, z) in the steady stream does in fact satisfy equation (77). 
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IX. CURRENT DENSITY AND CURRENT 

In order to simplify the discussion we first consider the specific case of diffusion 
in the absence of an electric field. It follows directly from equation (12) that when 
V=O 

_ d(nfo) + e2 n2( ,f.) + _1_ o(ucon) = 0 
dt 3v v nJo 41Te2 oe . (79) 

We note that equation (30) is the special case of equation (79) when all encounters 
are elastic. In (79) we replace nfo by its series representation postulated in equation 
(31) and then integrate each term over all shells of velocity space. The third term of 
(79) thus becomes uconiO' and vanishes at both limits. The following equation is 
therefore obtained 

dn . 2 ; 2k 
--+Dv n+"" Dk(V) n = 0, 

dt k=l 
(80) 

where 

(81) 

However, from equation (35), which is the equation of continuity for n, it 
follows that 

Thus the total contribution to the particle flux from spatial derivatives of n of order 
higher than the first is zero and the flux is given simply by 

-Dgradrn.dS. 

We consider next the general case in which an electric field is present. We 
refer again to equation (12) with V no longer equal to zero. In this equation replace 
nfo by its series representation in equation (70) ,and again integrate over all shells 
(e, de) of velocity space. It will be found that equation (12) then yields the following 
equation 

_ dn +D(02n + o2n) +DL o2n _W~n +R = 0, 
dt ,,2 ,,2 ,,2 oz . ux uy uZ 

(82) 

where.R is the sum of terms dependent upon higher order spatial derivatives of n 
analogous to the third term of equation (80). We have, however, postulated that n 
shall be a solution of equation (73) and consequently R = O. It follows from 
equation (73) that the particle flux across a vector element of surface dS is 

where 
n(Wcv)x = -Don/ox, (83) 
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n(Wcv)y = -Don/oy, (S4) 

(S5) 

Equations (S3) and (S4) are the equations normally used to calculate fluxes of particles 
across surfaces. Equation (S5) is different from the standard form in that in the 
presence of an electric field D is replaced by DL. 

It is to be noted that the mutual cancellation of the contributions of the higher 
order spatial derivatives in equations (SO) and (S2) is a consequence of the form 
postulated in equation (31) for the dependence oflo on position and of the constraints 
(i), (ii), and (iii) that follow equation (27). 

An important practical application of equations (77) and (85) is the Townsend­
Huxley method for investigating the properties of the motions of electrons in gases and 
collision cross sections. The quantity measured in these experiments is the ratio R 
of the current to a central disk to the total current when a steady stream of electrons 
is received by a plane metal electrode. 

In previous analyses that have related the ratio R to the geometry of the 
apparatus and to the transport coefficients, two assumptions were made, namely 
that diffusion is isotropic and that the hole in the cathode acts as a pole source of 
electrons. The first assumption appeared reasonable prior to the experimental and 
theoretical work that revealed the extent of the anisotropicity in certain circum­
stances (Wagner, Davis, and Hurst 1967; Parker and Lowke 1969). The second 
assumption, although violating the normally accepted boundary condition n = 0 
over the cathode except at the source hole, appeared to be justified by the success 
which the formula based on jt, enjoyed in predicting consistent values of the ratio 
D/W from a large body of experimental data (Huxley and Crompton 1955; Crompton 
and Jory 1962; Crompton, Elford, and Gascoigne 1965). A detailed analysis by 
Hurst and Liley (1965), while retaining the assumption of isotropic diffusion in 
regions of the apparatus removed from the boundaries, showed that the experimental 
results could be accounted for on the assumption of artificial reflection coefficients 
at the electrodes. In a recent paper Lowke (1971) has analysed the problem assuming 
ani.sotropic diffusion and the boundary condition n = 0 at both anode and cathode. 
His analysis shows that the earlier semi-empirical formula for R is applicable with 
little error for a wide range of experimental conditions provided the momentum 
transfer cross section is constant. The anomaly of many years standing has been 
thereby explained. 

In order to relate the theory of the experiment based on equation (77) to the 
earlier theory, we assume first that the source of current is an isolated pole source. 
Then according to the discussion given in Section VIII the appropriate solution of 
equation (77) for the number density in the stream is 

i exp{ -Adr' -z)} 
n = 4rrDe r' (S6) 
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Equation (86) refers to a stream that proceeds to infinity. When the stream 
falls upon an infinite plane electrode in the plane z = h over which n = 0, it is 
necessary to add another term which is a separate solution of equation (77). The 
appropriate solution that gives n = 0 when z = h is 

(87) 

in which 

The current received by a central circular disk with radius b and centre on the axis 
Oz is 

When n is replaced by the right-hand side of equation (87) it is found after reduction 
that 

R pole = iobji = 1-(hjd') exp{ -AL(d'-h)} , (88) 

in which d'2 = h2+(DL/D)b2 = h2+(AjAL)b2 with 2A = WjD. 
If the source is now assumed to be a dipole instead of a pole, thus satisfying the 

normally accepted boundary condition at the cathode, the distribution of number 
density in the presence of a plane electrode in the plane z = h is 

( ' ) 8 (exp( -ALr') exp( -ALrD) 
n oc -exp I\L z -8 ' + , 

z r rl 
(89) 

and the current ratio becomes 

iOb (h l_h2jd,2)h 
RdiPole = -:-- = 1- - - A h -exp{ -AL(d' -h)}. 

~ d' L d' 
(90) 

This formula assumes a simpler and more useful form if the design of the apparatus 
is such that (bjh)2 ~ 1. When such is the case, 

Add'-h) = AL[h{I+(AjAL)b2jh2P-h] 

= Ab2j2h -A2b4 j8ALh3 + ... 
'"" Ab2j2h . 

However, when (bjh)2 ~ 1 
A(d-h) '"" Ab2j2h 

and consequently 
exp{ -Add'-h)} '"" exp{ -A(d-h)}. 

Moreover, when ALh}> 1 the factor hjd' -(I-h2jd'2)jALh C"'-' hjd. Thus in practice 
in an apparatus in which b = 0·5 cm and h = 10 cm, formula (90) is insignificantly 
different from 

RdiPOle = 1-(hjd)exp{-A(d-h)}. (91) 
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This formula was originally derived on the assumption of a pole source and 
isotropic diffusion. That equation (91) results from these assumptions can be seen 
by substituting '\L = ,\ (that is, DL = D) into equation (88). As has already been 
stated, the formula was found to agree with the experimental measurements with 
remarkable accuracy over a wide range of experimental parameters; in fact good 
agreement was found for a wider range of the parameters than is to be expected from 
a comparison of equations (90) and (91) using the values of band h appropriate to the 
experiments of, for example, Crompton and Jory (1962). This now surprising agree­
ment has recently been shown (Lowke 1971) to be a consequence of the fact that, 
for the gases for which the most extensive investigations of the applicability of equa­
tion (91) have been made, the momentum transfer cross section is approximately 
constant in the range of investigation and, as a consequence, DLjD ~ 0 ·5. However, 
at the time of the experimental investigations of the validity of the ratio formula, 
there remained the theoretical inconsistency that the assumption of a pole source did 
not give n = 0 over the metal surface of the plane z = 0 of the cathode. The present 
theory resolves this difficulty. We note that when (bjh)2 is kept very much less than 
unity the quantity measured by the Townsend-Huxley method is 2,\ = WjD and not 
2'\L = WjDL as might have been expected, although erroneously, from the form 
of equations (88) and (90). 

x. INELASTIC COLLISIONS 

The analysis presented in this paper leads to results that are in close agreement 
with the measured properties of the motions of electrons in both monatomic and other 
gases, but the detailed analysis has been based on the supposition that all encounters 
are elastic and is therefore not strictly applicable to gases other than monatomic 
gases. We note, however, that the vector equation (8), which is an expression of 
the law of conservation of momentum, is not concerned essentially with the nature 
of the encounters whether elastic or inelastic and that even in the scalar equation (6) 
it is only the term uCOll(e) that is directly affected by the nature of the encounters. 
Although it is possible to derive an expression for uCOll(e) when the influence ofinelastic 
encounters is important, a result that leads to a simple formula for fci, such as 
Davydov's formula, is not obtained. One possible course to follow, other than one of 
immediate numerical analysis, is to assume some form for fci(e), as for instance 
Druyvesteyn's distribution formula fci = const. X exp(ejoc)4 in high field conditions 
where V2 ~ <02). In this case oc is no longer given by equation (63) but is directly 
related to the mean square velocity of the electrons. It is found, however, that when 
inelastic encounters are important the factor (3mjM)e in equation (28) is replaced by 
some more general function of e, say h(e), and that in consequence fci(e) becomes 

* ( IC h(e) ) fo (e) = const. X exp - 2 2 de , 
o V +<0) 

which includes Davydov's function as a special case. The formal analysis can then 
proceed as for the case of elastic encounters. This analysis again leads to the basic 
equation (73) while the conclusions of the previous section remain unchanged. 
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ApPENDIX I 

When gradr nf and eE are not parallel it is impossible to choose a direction for 
the polar axis such that f(e) is independent of the azimuth cP as supposed in the 
representation 

00 

Take a.n arbitrary direction for the polar axis and assume that when both 
gradr nf and eE are present each "polarizes" the distribution of velocity point density 
in the shell (e, de) with an axis of symmetry about its own direction. Let the direction 
of gradrnf be ((JG, cPG) and of eE be ((JE, cPE) in the reference system. Also let yG and 
y E be the angles between an arbitrary direction ((J, cP) and the directions ((JG, cPG) 
and ((JE,cPE) respectively. Now suppose that 

00 00 

(AI) 

where 
cos yG = cos (J cos (JG +sin (J sin (JG cos(cP-cPG) 

and 

But, from the addition theorem for spherical harmonics, 
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~ (k-m)! m m 
Pk(COSYE) = Pk(cosO)Pk(COSOE) +2 m~l (k+m)!cos{m(.p-.pE)}Pk (COSO)Pk (COSOE), 

where 

Let the polar axis 0 = ° lie in the plane containing the directions (OG,.pG) and 
(0 E,.p E), that is to say, the polar points on the sphere lie on the same line oflongitude 
which we may take as .p == 0. It then follows that 

Since P,r(l) = 0, the value of f when 0 = ° (at the pole of reference) is 

00 

flH = fo+ ~ t!kGPk(cosOG) +fkEPk(COSOE)} ' 
k~l 

in which the lowest order term dependent upon 0 is (k = 1) 

(A3) 

Let the direction of the axis 0 = ° lie in the plane containing the directions 
(OG,O) and (OE,O) and be chosen to giveflGcosOG+flEcOSOE its maximum value. 
Since OG-OE is constant it follows that dOG/dO = dOE/dO and that the condition 
for a maximum is therefore 

flGsinOa+hEsinOg == 0. (A4) 

If we define vectorsjlG andhE which have the magnitudes and directions {flG, (OG, On 
and {flE, (OE, O)} respectively, then the vector h = jlG+hE has the direction of 
the axis 0 = 0, since the projection ofjIG+hE on the plane normal toh is 

and is zero. It is this choice of axis that is in fact adopted in the derivation of the 
basic equations in Section II, that is to say, the direction of h is adopted as the 
polar axis of reference. Equation (10), which is based on considerations of conserva­
tion of momentum, exhibits h as the vector sum of 

JIG = -(c/v)gradr(nfo) and hE = - V 8(nfo)/8c. 

Returning to equation (AI), in which the polar axis 0 = ° is arbitrarily directed 
with respect to the axes of polarization, this equation is equivalent to 

00 

f = fo+ ~ fkPk(COSO) 
k~l 
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where 

and 

In particular 
II = fiG cos (}G +flE cos () E 

and, because fiG and flE are the magnitudes of fiG and jlE, the coefficient II when 
the reference axis and the axes of polarization are arbitrarily directed becomes the 
sum of projections of fiG and /tE on the reference axis () = o. The mean value of 
f around a parallel of latitude () = const. is 

and in the process of integration terms containing cos{m(cp-cpG)} and cos{m(cp-cpE}} 
are eliminated. 

The right-hand side of equation (A5) is thereby reduced to 

00 

fo+ Z; fk Pk( cos (}) , 
k=l 

which is the form adopted for f in Section II. There, however, in addition the direction 
of the axis () = 0 is taken as that of/t. Thus the representation off in a form indepen­
dent of cP is in fact the replacement off by its mean value around a parallel of latitude. 
However, had cP been retained at this stage it would have been eliminated in the 
course of integration over the whole sphere. It is therefore convenient to eliminate 
the dependence upon cP at the outset. 

ApPENDIX II 

Derivation of Formula for b1(c) 

The coefficient b1(c) is to be found from equation (59), Section VI. The dis­
cussion is restricted to the special case of qm = const. and V2> (02). In this case 
Davydov's distribution function gives 

* ( 3mfc cdc) 4 fo (c) = const. X exp - u 2 2 '" const. X exp{ -(cllX) }, 
.lJ'.J. 0 V +(0) 

where 
1X4 = (4M/3m)(eElmNqm)2, 

since V = eElmNcqm(c). Because 

fOO 

* 2 47T 0 fo c dc = 1 , 

it follows that 
(A6) 
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The mean value of the xth power of c is 

Also, when qm is independent of e, it follows from equations (36) and (23) that 

that is to say, 
2,,\ = WID = (2eE/m)<e-1)/<e) , 

or 
eE/m = ..\<e)/<c-1). (AS) 

When V2?> (02) equation (59) reduces to the form 

_fi*db1 ~ mefi* + W <e-1)2 rc (fi* + _1_dfo*)x2 dx 
o de eE 0 D ..\2<e) Jo 0 2<c-1) dx 

which, because of equations (A7) and (AS), is equivalent to 

If s = (x/rx)4 then equation (A9) can be written, using (A6), in the form 

4 d{b1(e)} 7Tt e 4 
-exp{ -(e/rx) }-d-~ -2 exp{ -(e/rx) } 

C rx ..\ 

(AlO) 

The definition of the incomplete gamma function y(a, x) is 

y(a, x) = LX exp( -t) ta- 1 dt, (All) 

whence it follows that 

r<c/a/ Jo {s -i -27T -i r(!) i}exp( -s) ds 

= y(i, (C/rx)4) -27T -i r(£)y(~, (e/rx)4). (A12) 

It is known, however, and may be established by successive integration by 
parts, that 

(A13) 
where 

(A14) 
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is a confluent hypergeometric function. In equation (AI4) the symbols (a)n and (b)n 
carry their usual meanings: 

(a)n = a(a+I)(a+2) ... (a+n-I) = r(a+n)fF(a) , 

(b)n = r(b+n)fF(b) , , (a)o = (b)o = 1. 

Equation (AlO) can therefore be given the form 

(AI5) 

When a = 1 then (a)n = n! and consequently equation (AI4) gives 

00 

M(I,b,x) = ~ {r(b)(r(n+b)}xn. (AI6) 
n~O 

Equation (AI5) now becomes 

(AI7) 

When the constant of integration is chosen to conform with equation (47) we 
find that b1(c) is represented by the series 

t < 2) 2 b ( ) _ ~ c -c 
1 C - 2,\ ri 

7T £ ( 1 <c4n+3)_c4n+3 1 <c4n+6)_C4n+6) 

+ 2,\ n~O r(n+~) (4n+3)oc4n+3 - r(n+~) (4n+6)oc4n+6 , 
(AIS) 

where V2 ~ <02) and qm is independent of c. 




