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Ab8tract 

Similar solutions to those in Part I are given for two-fluid cosmological 
models when the Robertson-Walker metric in its usual form is replaced by 
"conformal" and "conformally flat" forms. In these cases the solutions can be 
written in terms of elementary functions when (3Vl-2)/(3v2-2) = I-m-1, 
m = 1,2,3,... The relation of these solutions to one-fluid solutions with k = ± 1 
is also discussed. 

I. INTRODUCTION 

It was shown in Part I (McIntosh 1972, present issue pp. 75-82) that for rel­
ativistic cosmological models with the Robertson-Walker metric in the form 

(1) 

exact solutions for R(t) can be found in terms of elementary functions for particular 
cases when k = 0 and there are two noninteracting fluids or when k = ± 1 and there 
is one fluid. The fluids are assumed to have equations of state 

o ~ Vi ~ 2 , i = 1, 2 , (2) 

where the Vi are constant and Pi and Pi are the pressure and density respectively of 
the ith fluid. For k = 0 and 

the solution is given by 

3V2(t+tO) = 202! R 3v2/2 F(t, tm; l+tm; -z), 

where 02 and to are constants and 

(3) 

(4) 

(5) 

Where m is an integer, this hypergeometric function can be written in terms of 
elementary functions. The resultant series are given in Part 1. Since there is no 
interaction between the fluids, the field equations together with the metric (1) yield 
the conservation equations 

i = 1,2, (6) 

where t.he 0i are constants and K = 87TG (c = 1). 

* Part I, AU8t. J. PhY8., 1972, 25, 75-82. 
t Department of Mathematics, Monash University, Clayton, Vic. 3168. 
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If VI = 0, R(t) can be expressed in terms of elementary functions for all values 
of V2. These solutions (equations (26) of Part I) are appropriate for the case of a 
single fluid and a nonzero cosmological constant, since the latter can be regarded as 
a fluid with V = O. 

A fluid with v = 2/3 has the same effect on the differential equations for R(t) 
as does the curvature in the 3-space part of the metric (1). Thus the solutions for 
R(t) with either VI or V2 = 2/3 are those of a one-fluid model when (1) holds with 
k = ±1 as well as being those for a two-fluid model with k = 0 and one of the 
Vi = 2/3. 

A two-fluid model with V2 = 2 has the same solution for R(t) as does a one-fluid 
anisotropic model or a one-fluid scalar tensor model. These solutions are also given 
by Jacobs (1968). 

There are two other forms of the Robertson-Walker metric (1) which are 
frequently used in the literature. These are the "conformally flat" form discussed 
by Infeld and Schild (1945) and, in a cosmological context, by Tauber (1967), and the 
"conformal" form used, for example, by Vajk (1969), Wataghin (1969), Agnese (1970), 
and Gilman (1970). 

Since the metric (1) is conformally flat, it can be written as 

where 

'Y)ij = diag(l, -1, -1, -1), Xi = (-r,x,y,z), 

v = -r/w, w = l-lks2 (k = 0, ±1), 
and 

(7) 

(8) 

(9) 

(10) 

The conformal Minkowskian metric (7) is metrically, though not topologically, 
equivalent to the Robertson-Walker form (1) (Infeld and Schild 1945). The mapping 
between the two forms is obvious for k = 0, in which case 

R(-r)d-r = R(t)d-r = dt, (11) 
and (1) becomes 

(12) 

so that 

w = 1, f(v) =f(-r) = R2(-r). (13) 

The conformal form occurs when the metric (1) is replaced by 

(14) 

under the mapping (ll). 
The two forms are obviously identical when k = O. Solutions in the cases when 

there is one fluid with k = 0, ±l have been given basically by Tauber (1967) for the 
metric (7) and explicitly by Gilman (1970) for the metric (14). In the present paper, 
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two-fluid solutions are discussed for both metrics when k = 0 and they are related 
to the one-fluid solutions when k = ±l. 

II. BASIC EQUATIONS FOR METRIC (7) 

Tauber (1967) has discussed the k = +1 case in terms of the variables defined 
in equations (7)-(10), and has discussed the k = -1 case with !(V)jw2 replaced by 
exp(r(s)). This latter step is not possible with k = +1, and all cases (k = 0, ±1) 
will be discussed here in terms of the variables of equations (7)-(10). The following 
equations are then a generalization of Tauber's k = +1 equations. 

The partial derivatives of wand v are 

such that also* 

WjVt = -(vkj2w)(2-w), 

Vjvt = (1+kv2)jw2 • 

The Einstein tensor is then given by 

where 
if! = In! 

and the primes denote differentiation with respect to v. 
For a perfect fluid the energy-momentum tensor has the form 

so that, upon equating terms proportional to Vt Vj and 'Y}jj, the field equations 

yield the differential equations 

and 

The conservation laws yield 

(15) 

(16) 

(17a) 

(17b) 

(17c) 

(19) 

(20) 

(21) 

(22a) 

(22b) 

(23) 

* There is a factor of t missing in the equation equivalent to (17b) in Tauber's (1967) 
paper. It should also be noted that in his equation (2.110.) the a in the term (12a/A2) should be 
deleted. 
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Equations (22a) and (22b) can then be replaced by (23) and 

(24) 

Where there are n fluids, each having an equation of state of the form (2), 
and where there is no interaction between the fluids, the relation 

i = 1,2, ... n, (25) 

follows from (23), where the Ai are constants and 

(26) 

Equation (24) can then be written as 

(1+kv2)V'/2V = (~l Ai V(2~3"i)/2_k r (27) 

A fluid with Vi = 2/3 and Ai = -k gives the same contribution on the right­
hand side of (27) as does the -k term. But as k also appears on the left-hand side of 
(27), a Vi = 2/3 fluid does not give the same form of V as does the curvature term. 

With k = 0 and a single fluid, equation (27) gives 

f(v) = e1fr = (Bv+C)4/(3v~2) , 

where Band C are constants. Then, from (13), 

R( T) = (BT+C)2/(3v~2) . 

This could have been immediately derived from (ll) with 

R(t) = (Bt+C)2/3v, 

the equivalent Robertson~ Walker solution. 
When k = -1 and with a single fluid, equation (27) gives 

exp{!(3v-2)rf} = B(l +v)(2~3v)/2+C(1-v)(2~3v)/2, 
where 

Al = -4BC 

and Band C are constants. 
When k = +1,* equation (27) gives 

exp{!(3v-2)} = (1+v2)(2~3v)/4Bsin(0+00) 

or 
V(3v~2)/4 = Bsin(O+Oo) , 

where 
2(0+00) = (3v-2)arctan(v+vo), 

B, 00 , and Vo are constants, and 

(28) 

(29) 

(30) 

(31 ) 

(32) 

(33) 

(34) 

(35) 

(36) 

* For k = +1 Tauber (1967) gives the solution as F(3vf4,(3v-2)f4;3vf2;I+kv2 ). (This 
solution also holds for k = -1.) He states that the solution becomes degenerate for particular 
values of v. In fact it is degenerate for all v. 
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If V = 0 when v = 0, then 80 = Vo = 0 in the k = +1 case and B+C = 0 in the 
k = -1 case. 

III. BASIC EQUATIONS FOR METRIC (14) 

The metric (14) and Einstein's field equations give the differential equations 
(cf. Agnese 1970) 

3R;/R4 +3k/R2 = Kp (37a) 
and 

2RTT /R3 -R;/R4 +k/R2 = -Kp, (37b) 
where 

Rr = dR/dT. (38) 

Under the transformation (11) these take the form of the usual Friedmann 
equations of the Robertson-Walker metric. Thus where there are n noninteracting 
fluids with equations of state (2), 

and 

Gilman (1970) gives the one-fluid solutions as 

Kp( T) R3v(t) = 3A, 

R3v-2(T) = AS2{t(3v-2)(T+To)}, 

where A is a constant and 

S(x) = sin X for k = +1, } 
=x = 0, 
= sinh X = -1. 

IV. TWO-FLUID SOLUTIONS FOR BOTH METRICS WITH k = 0 

With k = 0, the metrics (7) and (14) are the same with 

v == T, V(v) = f(v) = R2( T) . 

For two fluids, equations (27) and (39b) both give 

T+TO = J R-l(AlR2-3vl +A2R 2- 3v2)-i dR. 

(39a) 

(39b) 

(40a) 

(40b) 

(41) 

(42) 

(43) 

This has the same form as the integral (19) in Part I, and hence the solution can be 
written in terms of elementary functions whenever 

fLJ/fL2 = 1-m-1 , (44) 
where m is an integer and 

(45) 
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In such cases the solutions may be obtained from Section III of Part I by replacing 
Ci by Ai and Vi by 1'+ Thus the general solution when Al and A2 are positive is 

where 
m = fl-2/(fl-2-fl-I) = (3V2-2)/3(V2-VI) ' 

Z = (AI /A 2)R3(l'z-1'1) = (AI /A 2)R3(V2 -V 1). 

Thus when m is even, for example, and when Al and A2 are positive 

T+TO = 2(n+I)! A~+! (I+z)' i: (_I)n-A (A-t)! ZA, 

(3v2-2)(n+t)! A~+l A~O A! 

(46) 

(47) 

(48) 

(49) 

with m = 2(n+I), n = 0,1, ... The other three solutions (including the two cases 
where one of the Ai is positive and the other negative) may be deduced from Part I. 

When fl-I = 0 (VI = 2/3) and both Al and A2 are positive 

With Al negative, the sinh is replaced by sin. 

V. ONE-FLUID SOLUTIONS FOR k = ±I 

It was shown in the previous section that for k = 0 it is possible to find a solution 
when VI = 2/3 for any V2. In terms of the metric (14) the solutions for k = ± 1 have 
already been given. Solution (50) with Al = 1 is the same as solution (40b) with 
k = -1. Similarly (50) with Al = -1 is the same as (40b) with k = +1. 

For the conformally flat case the situation is slightly more complicated. The 
left-hand side of equation (27) is (1 +kv2 ) V' /2 V and thus it is no longer true that 
T = v. The solutions equivalent to (50) in this case (AI = 1) are 

arctan(v+vO) = 2/(3v-2)arcsin(A2' V(3v-2)/4), k = +1, (5Ia) 

artanh(v+vo) = 2/(3v-2)arsinh(A2' V(3v-2)/4), k = -1. (5Ib) 

These are the same as solutions (33) and (31). 

VI. CONCLUSIONS 

As was the case in Part I, the solutions for the most common values of VI and 
V2 are already in the literature and are included here in the more general solutions. 
The solutions in terms of elementary functions for the metrics (7) and (14) generally 
occur for different cases of (Vb V2) from those for the Robertson-Walker metric (1). 
Such solutions exist for the same values of (VI, V2) when and only when R( T) dT = dt 
(equation (U)) can be integrated in terms of elementary functions. For example, 
such special combinations as 

(VI, V2) = (1,4/3), (4/3,2), (5/3,2), (4/3,5/3) (52) 

allow solutions in any of the three metrics (e.g. Vajk 1969, where his if; is equivalent 
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to the present T). But the case with one fluid with /L1 = -2/3 (V1 = 0) cannot be 
integrated in terms of elementary functions for any value of /L2 for 0 < /L2 :S; 4/3. 
Thus no solution of this type can be found for the metrics (7) and (14) when there is 
a cosmological constant, unlike the Robertson-Walker case, for which solutions 
can be found for all V2 when V1 = o. 

Solutions for models with three noninteracting fluids are limited to a small 
range of (V1, V2, V3). The only solutions using common values of v are 

(V1, V2, V3) = (2/3,1,4/3), (4/3,5/3,2) 
(Vajk 1969) and 
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