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Ab8tract 

The frequency spectrum of electromagnetic radiation from accelerated 
magnetic dipoles is computed for circular and Keplerian motion. For circular motion 
three orientations of the dipole are considered: (1) parallel to the velocity vector, 
(2) parallel to the radius vector, and (3) perpendicular to the plane of the circle. For 
Keplerian motion the orientation is taken as perpendicular to the orbit. Expressions 
that are valid for velocities arbitrarily small and arbitrarily close to the velocity of 
light are derived. The mean power radiated is determined numerically. 

I. INTRODUCTION 

Radiation from accelerated point dipoles is relevant to the study of spinning 
white dwarf and neutron stars with shifted dipole fields, and to the motion of such 
stars in a Keplerian orbit. In recent years several authors (Ellis 1963, 1966; Ward 
1964, 1965; Kolsrud and Leer 1967; Monaghan 1968) have established expressions 
for the radiation from an arbitrary point dipole moving in any manner. This work 
is extended in the present paper by calculating the spectrum to be expected from 
point dipoles in uniform circular motion or in a Keplerian orbit. 

II. FIELDS OF THE DIPOLE 

Consider a point dipole moving in an unspecified way. Let the dipole be a pure 
magnetic dipole in the reference frame at rest with the dipole. In any other reference 
frame the dipole will appear as a point magnetic dipole 11 and a point electric dipole 
p (Panofsky and Phillips 1962). Let the velocity of the dipole be v and let R be the 
vector from the point where the fields are measured to the position of the dipole. 
It may then be shown (Monaghan 1968) that the magnetic field due to the moving 
dipole is 

B = [3(Il. n)n-JL +~~(3(J1.n)n-Il)_~{(3(Il.n)n-ll)dR _P X n} 
R3 c dt R3 dt R2c2 dt KR2c 

+i d2
2(n x(n X 1l)+P X n)] , 

c dt KR ret 
(1) 

where c is the velocity of light, 

n = RIR, P=PXIl, P = vic, (2) 
and 

K=l-n.p. 

* Department of Mathematics, Monash University, Clayton, Vic. 3168. 

Aust. J. Phy8., 1972, 25, 197-206 
\ 



198 J. J. MONAGHAN AND C. M. SHAPCOTT 

The subscript ret indicates that the expression in square brackets is to be evaluated 
at the retarded time 

t' = t-R(t')jc, (3) 

where the time dependence of R has been shown explicitly. The expression for the 
electric dipole moment in the second equation of (2) follows from the Lorentz trans­
formation. 

When R is very large only the last term on the right-hand side of (1) is important, 
and it is this term which gives the radiation. We therefore concentrate on Brad 

defined by 

B _ [.!. d2 (n X (nxJl) +P X n)] 
rad - c2 dt2 KR ret' 

(4) 

or, since derivatives of R may be neglected when only the radiation field is of interest, 

B _ [_1_d2 (n X (nxJl) +P X n)] 
rad- 22 . 

Rc dt K ret 
(5) 

The radiated power is given by the Poynting vector. Since the electrical field 
is equal in magnitude and perpendicular to Brad in the radiation zone, the radiated 
power per unit solid angle is then 

dPjdQ = (Cj47T) 1 RBrad 12 . (6) 

III. POWER SPECTRA 

Set 
(7) 

so that 
dPjdQ = 1 A(t) 12. (8) 

If the motion is periodic, with period T, it is convenient to consider the mean power 
radiated per unit solid angle. This quantity is given by 

dwjdQ = T-1 f: 1 A(t) 12 dt. (9) 

Since A(t) is periodic by assumption, it can be written in the form 

00 

A(t) = ~ as exp(iswt) , (10) 
-00 

where w = 27TjT. From Parseval's theorem and the fact that A(t) is real, we find 

00 

dwjdQ = 2 ~ , 1 as 12 , (11) 
s~O 

where the prime indicates that half the first term is taken. The power radiated per 
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unit solid angle in the 8th component is then 

(12) 

From the usual expression for Fourier coefficients, 

as = T-1 f: A(t) exp( -iBwt) dt, (13) 

so that, with the help of (5) and (7), we find 

1 iT [d2G] . all = 3 i -2 exp( -IBwt) dt, 
(47TC ) T 0 dt ret 

(14) 

where 
G = {n X (n X p.) +(P X p.) X n}jK. (15) 

It is convenient to work with the retarded time t', noting from the third equation of 
(2) and from (3) that 

dt = Kdt'. 
Accordingly, (14) becomes 

1 iT d (1 dG) {. ( , R)} dt' all = 3 i - -- exp -IBw t +- 0 

(47TC ) T 0 dt' K dt' C 
(16) 

Recalling that R is the vector from the point where the fields are measured to 
the position of the dipole, and letting x be the vector from the origin to the observa­
tion point and r the vector from the origin to the dipole, we have 

x= r-R 
so that, when I x I ~ I r I , 

R "'-'x -no r 0 (17) 

Consequently (16) becomes, apart from an overall phase factor exp( -iswxjc) which 
we henceforth omit, 

1 iT d (1 dG) {. ( , nor)} d ' a8= 3t - -- exp -IBw t-- to 
(47Tc ) T 0 dt' K dt' c 

(18) 

Integrating by parts twice, and noting that in the radiation zone 

d(t' -n orjc)jdt = K, 

we find 

a8 = i~2! fT {n X (nxp.) +(P X p.) X n}exP{-iBw(t'- nor)} dt' 0 (19) 
(47Tc) T Jo c 

IV. UNIFORM MOTION IN A CIRCLE 

The case of uniform circular motion is relevant to a spinning neutron star with 
a shifted dipole field of the type recently proposed for magnetic stars (Landstreet 
1970; Preston 1970). Once the point dipole is shifted from the centre, it will be 
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carried on a circular trajectory at uniform velocity (provided the slowing down due 
to radiation is neglected). We consider three orientations of the dipole: (a) parallel 
to p; (b) parallel to the radius vector, and (c) perpendicular to the plane of the circle. 
The case of general alignment may be treated, but it leads to complicated expressions 
which are not very informative. 

(a) J1 Parallel to p 
For this orientation equation (19) becomes 

(20) 

We use a spherical polar coordinate system with origin at the centre of the circle and 
polar axis z perpendicular to the circle. The azimuthal angle of the dipole is denoted 
by cfo, the radius of the circle by a, the constant angular velocity by w, and the polar 
angle of the line of sight bye. Without loss of generality, cfo can be measured from 
the plane containing n and the polar axis. With the above coordinate system and 
the use of the instantaneous Lorentz transform, the components and magnitude of J1 
are given by 

J1 = (fLo/y)( -sin cfo, cos cfo, 0), (21) 

where the vector components correspond to the x, y, z cartesian axes, y is the relativ­
istic factor 

(22) 

and fLO is the value of fL in the rest frame of the dipole. Substituting (21) into (20) we 
find as depends on integrals of the form 

f2 17 exp[ -i8(cfo-wa(sinecoscfo)/C)](s~ cfoj dcfo, 
o coscfo 

where one of the terms in the braces may occur in the integrand. Such integrals can 
be expressed in terms of Bessel functions (Watson 1958) with the result that 

(23) 

where 
z = 8wa(sin e)/c 

and the standard notation for Bessel functions has been used. The prime denotes a 
derivative of the Bessel function with respect to its argument. The expression (23) 
is the dipole analogue of the formula derived by Schott (1912) for the power radiated 
by a charged particle in uniform motion. It may be noted, in the interest of historical 
accuracy, that the prediction of the harmonics in the fields of a charged particle 
in uniform circular motion and the calculation of the first few terms are due to 
Heaviside (1904). 
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When f3 is sufficiently small the main contribution to the power comes from the 
term 1 all 2 • In this case 

(24) 

The mean radiated power is then 

(25) 

to this approximation. The expression (25) for w is exactly the same as the corre­
sponding expression for the mean power radiated by a spinning point dipole with its 
centre at rest. 

In the general case the mean power radiated per unit solid angle is 

~ = . w ~02 ~ S4{J;(z)}2 + co~ ~ s4J~(z) . 
d 4 2 (00 28 00 ) 
d.Q 27TC Y s~l f3 s~l 

(26) 

It is shown in the Appendix that 

(27) 

and 

(28) 

and accordingly 

dw _ w4fL~ (COS2B(64 + 592€2 +472€4 +27€6) 64+ 624€2 +632€4 + 45€6) (29) 
dQ - 5127Tc3l (1_i)13/2 + (1_€2)11/2 ' 

where € = f3sinB. It is evident from (29) that the radiation is beamed strongly in the 
plane of the circle when the motion is highly relativistic. The average radiated power 
may be obtained most conveniently by integrating dwjdQ numerically. The resulting 
values of w for various values of f3 are given in column 2 of Table 1. It should be 
noted from the numerical results that the spinning dipole formula (25) becomes a 
very poor approximation for f3 ~ 0·5. 

(b) IlParallel to ~ 

With the coordinate system as in (a), and making use ofthe properties of Bessel 
functions, the following expression for 1 as 12 is readily found 

(30) 

The argument of the Bessel functions occurring in (30) is s{3 sin e. When f3 ~ 1 the 
mean power radiated per unit solid angle is given approximately by 

(31) 

so that in the low f3 approximation the radiated power varies as w 4 as for (a) above. 
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In the general case w may be found for various values of fJ by numerical integration. 
The results are given in column 3 of Table l. 

As in the previous case the radiated power increases very rapidly with fJ. 
When 1-fJ is small we find 

Furthermore, by the use of equations (27) and (28), the expression for dw/dQ can be 
shown to have a sharp maximum in the orbital plane when fJ is close to 1· O. 

TABLE 1 

POWER RADIATED BY MAGNETIC DIPOLE IN UNIFORM MOTION FOR 

THREE ORIENTATIONS 

The values of power are given in units of I"~ w'jcS 

( 1) (2) (3) (4) 

f3 
Energy for dipole orientation 

(a) Ilil ~ (b) Ilil ~ 

0·01 6·672x 10-1 6·672x 10-1 

0·05 6·805 X 10-1 6·808 X 10-1 

0·10 7'233xl0-1 7 ·247 X 10-1 

0·15 7·999x 10-1 8·031 X 10-1 

0·20 9·190x 10-1 9·251 X 10-1 

0·25 1·096 X 100 1·106 X 100 

0·30 1· 354 X 100 1· 370 X 100 

0·35 1· 733 X 100 1'757xl00 

0·40 2'301x100 2·337 X 100 

0·45 3·171 X 100 3·225x 100 

0·50 4·556x 100 4·635x 100 

0·55 6'859xl00 6·978 X 100 

0·60 1'091xl01 1'109xl01 

0·65 1· 856 X 101 1·885 X 101 

0·70 3·439x 101 3 ·489 X 101 

0·75 7 ·155 X 101 7 ·245 X 101 

0·80 1'756x102 l'775x102 

0·85 5'592xl02 5·637 X 102 

0·90 2·856 X 103 2'872xl03 

0·95 4'616x104 4·629 X 104 

0·99 2'910xl07 2'912xl07 

(c) J.l Perpendicular to the Circle 

With the coordinate system as before we find 

(c) Il ..l ~,~ 

2·668x 10-5 

6·759 X 10-4 

2·818x 10-3 

6·794 X 10-3 

1'331xl0-2 

2·360x 10-2 

3·972x 10-2 

6 ·522 X 10-2 

1'063x 10-1 

1'740xl0-1 

2'897xlO-1 

4·955x 10-1 

8'812xl0-1 

1·655 X 100 

3·351 X 100 

7 ·549 X 100 

1· 992 X 101 

6·770x 101 

3·671 X 102 

6 ·268 X 103 

4'1l7xl06 

(32) 

where the argument of the Bessel functions is sfJ sin 8. When fJ ~ 1 the mean power 
radiated per unit solid angle is given approximately by 

(33) 
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The w 6 dependence is a special feature of this orientation. Oolumn 4 of Table 1 
shows the values of w for various values of f3 for the perpendicular orientation of the 
dipole. The radiated power is always less in this case than for the other two 
orientations. 

V. KEPLERIAN ORBITS 

The case of Keplerian orbits is relevant to stars with a dipole field moving in a 
binary orbit. The orbit, in the x-y pl~ne, may be defined parametrically by the 
equations 

x = a(cosg -€), (34) 

where the period is 27Tlw, a is the semi-major axis, € is the eccentricity, and g is a 
parameter which goes from zero to 27T in one revolution. 

It is convenient to measure azimuthal angles from the x axis and to take the z 
axis as the polar axis of a spherical polar coordinate system. The polar and azimuthal 
angles of n are taken to be 8 and", respectively and we assume that ~ is perpendicular 
to the plane of the orbit. By using the variable g instead of t', and defining A and 
S by 

and 
€+wa(1-€2)l(sin 8 sin "')Ic, 

tanS = ---------­
wa(sin 8 cos "')Ic 

as is found to depend on integrals of the form 

r exp[ -i,(O -A OO'(H»lb~i) dO, 

(35) 

(36) 

where one of the terms in the braces occurs in the integrand. Such integrals may be 
written in terms of Bessel functions, and in this way I as I 2 is found to be given by 

jas j2 = w6s:L~os28[J~{C~f(1_€2Sin2S)_ ~2(I- Es;Sf} 

where the argument of the Bessel functions is sA. '¥hen E is zero, equation (37) 
reduces to (32), as it should. For f3 ~ 1 and ~ E we find 

. \2 _ OJ S /.LOa cos B J2 I-E (1 . 28 . 2,1')+(J,)2(I . 28 2,1.) 6 4 2 2 2 [( 2) ] 
I as - 5 s 2 -SIn sm'f' s -sm cos'f' , 

47TC E 
(38) 

where the argument of the Bessel functions is now SE. The general expression for 
dwldQ may be obtained using equation (37) together 'with (27) and (28). 

The case where fl has any other orientation is more difficult since a Lorentz 
factor of y-2 appears and this varies during the orbit. The complications introduced 
seem hardly worth assessing in detail unless a specific model is being explored. 
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VI. IMPLICATIONS FOR PULSARS 

Consider firstly a spinning neutron star carrying a dipole magnetic field shifted 
from the centre. The point dipole is carried on a circular trajectory and traverses it 
at uniform velocity if the gentle slowing down due to radiation reaction is neglected. 
If the velocity is always much less than the velocity of light, which is true for all 
observed pulsars interpreted with the spinning neutron star model, then the energy 
radiated is dominated by terms which vary as w 4 , as for the centred dipole. This is so 
even in a general orientation unless J1 is extremely close to the perpendicular to the 
circle, when the energy radiated varies as w 6 . 

During the early stages of formation of the star larger values of f3 can be envisaged, 
and provided f3 ;s 0·5 the typical relativistic effects on the structure of the star and 
on the metric may be ignored. It is clear from Table 1 that during the early stages 
the energy radiated can be much greater than the spinning centred dipole formula 
would suggest. Accordingly, estimates of the age of pulsars must take into account 
a short period of rapid energy loss (and therefore rapid slowing down) followed by a 
period of much slower variation. 

For the case of Keplerian motion with f3 ;::: 0·5, the dipole radiation is sub­
stantial. However, when f3 is very small, and J1 is perpendicular to the orbit, the 
energy radiated by the dipole is always less than that radiated by gravitational 
radiation (Landau and Lifshitz 1962) by a factor of approximately 

1 ( magnetic energy of star ) (radiUS of star) 2 

"8 gravitational energy of star orbital radius ' 

where the eccentricity of the orbit has been assumed to be small (~ 1). Each factor 
in the foregoing expression is very much less than unity and the gravitational 
radiation dominates. If the dipole is parallel to the radius vector the equivalent 
factor is approximately 

1 ( magnetic energy ) ( rest energy ) (radiUS of star) 
10 gravitational energy gravitational energy orbital radius ' 

where the energies refer to the star carrying the dipole and f3 and the eccentricity have 
been assumed to be small. In general, gravitation is again the dominant factor. The 
electromagnetic radiation from the dipole magnetic field is therefore dynamically 
important only when f3 ;::: 0 ·5. This can occur as the star loses energy and spirals 
into the other member of the binary, although eventually for f3 C"oJ 1 the present 
analysis becomes invalid. 
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ApPENDIX 

Let 
00 

_F' = ~ n4J;(nE). 
n~l 

From the following identity established by Watson (1958, p. 31) 

equation (AI) may therefore be written as 

with z = nE. Then, using the result (Watson 1958, p. 556) 

with 

d 
cliV! 

1 d 
I-EcosEdE 

it is easy, though tedious, to show that 

w 

~ n4Jn(nE) = E(I+9E)/2(I-d. 
n~l 

Interchanging the signs of E and :adding the results shows that 

and hence equation (A3) becomes 

F = _Z_J21T cos<:/> (l+gzcos~) d<:/> . 
6417" 0 (l-z cos 4» 

(AI) 

(A2) 

(A3) 

(A4) 

(A5) 
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The integrals involved in (AS) may be evaluated easily by appropriate differentiation 
of the definite integral 

In this way we find 

(A6) 

which is the result (27) quoted in Section IV. 
To evaluate 

00 

~ n4{J~(nE)}2, 
n=l 

consider the relation 
00 

]{ = ~ n2J;(nE) = E2(4+i)/16(1_/)7/2 , 
n=l 

where the summation has been evaluated by the method indicated above. By 
partial differentiation with respect to E it can be shown, with the help of the differen­
tial equation satisfied by Bessel functions, that 

Then using (AS) and the expression for K in terms of E we find 

(A7) 

which is the required result (28). 




