
COHERENT GYROMAGNETIC EMISSION AS A RADIATION MECHANISM 

By D. B. MELROSE* 

[Manuscript received 27 Apri11972] 

Abstract 
The properties of coherent gyromagnetic emission of radiation which can escape 

from a source of astrophysical interest by a bi-Maxwellian distribution of nonrela­
tivistic electrons (thermal velocities P 1.0 C and PII 0 c, and streaming velocity p, c) are 
considered. It is found that: (1) Coherent emission occurs only for Pio ;0;. PliO, and 
only for a more extreme anisotropy for waves close to their cutoff frequencies. 
(2) Coherent emission in the x-mode at the second harmonic, i.e. at OJ "'" 2Qe > OJp , is 
the dominant process except for p, > OJ~/Q; when coherent emission in the x-mode at 
the first harmonic, i.e. at OJ ~ Q. }> OJp , is possible and dominates. It is argued that these 
results are not strongly dependent on the choice of distribution function. It is pointed 
out that the use of the quasilinear equations can be justified in any astrophysical context 
but that the above properties apply even when the quasilinear treatment is not valid. 
Limitations imposed on the mechanism by the presence of absorption in the thermal 
plasma and by competing instabilities are shown to be relevant except for emission in 
the x-mode at the first harmonic. 

1. INTRODUCTION 

The fact that certain nonthermal distributions of electrons could lead to the 
growth of waves with frequencies close to the electron gyrofrequency (and its har­
monics) was suggested by Harris (1959) and Bekefi et al. (1961) (for other references 
see the review by Timofeev and Pistunovich 1970) and was first demonstrated in the 
laboratory by Hirshfield and Wachtel (1964). Four distinct types of astrophysical 
application have been suggested for this mechanism: (1) the scattering (in pitch angle) 
of suprathermal particles, e.g. electrons in the Van Allen belts or solar and galactic 
cosmic rays, in which anisotropic distributions of particles can cause the waves 
involved in the scattering to grow; (2) a related situation to (1), in which certain v.l.f. 
emissions from the magnetosphere are interpreted as resulting from the growth of 
waves in the whistler mode due to the presence of an anisotropic distribution of 
electrons; (3) coherent synchrotron radiation (see e.g. McCray 1966; Zhelezniakov 
1967), which involves emission of ultra-relativistic electrons; and (4) coherent gyro­
magnetic emission by nonrelativistic electrons of waves which escape from the source, 
as has been suggested for the Jovian dekametric radiation (see e.g. Ellis 1962, 1963, 
1965; Hirshfield and Bekefi 1963; Fung 1966; Goldreich and Lynden-Bell 1969; 
Goldstein and Eviatar 1972) and for solar bursts of spectral type I (Fung and Yip 
1966) and type III (Kuckes and Sudan 1971). For all the suggested applications in (4), 

* Department of Theoretical Physics, Faculty of Science, Australian National University, 
P.O. Box 4, Canberra, A.C.T. 2600. 

Aust. J. Phys., 1973, 26, 229-47 



230 D. B. MELROSE 

alternative radiation mechanisms based on some form of the plasma emission mechan­
isms, as defined by Melrose and Sy (1972a), have been proposed: see Zhelezniakov 
(1965, 1970, p. 616) on the Jovian dekametric radiation and Takakura (1963) on type I 
bursts; plasma emission is the widely accepted mechanism for type III bursts. 

The purpose of this paper is to present a detailed discussion of the theory 
behind the above class (4) of suggested astrophysical applications. An important 
restriction imposed is that the emitted waves have a refractive index less than unity. 
The argument behind this is simply that the only waves able to escape directly from 
a source to infinity (without requiring nonlinear conversion processes) are those 
at W > wp in the o-mode and at W > Wx = -tQe+-t(Q2+4w~)t in the x-mode of 
magnetoionic theory. These waves do have a refractive index less than unity. For 
11" < 1, in the notation used by Melrose and Sy (l972a), wave-particle interactions are 
possible only via the normal Doppler effect, i.e. only for harmonics s > 0, in the 
present notation. If isotropic distributions f(p) with 8f(p)/8p > ° are excluded, co­
herent emission at s > ° is possible only if the distribution is anisotropic in the sense 
of having an excess of perpendicular (to the magnetic field lines) momentum. Such a 
distribution could be generated by a stream of suprathermal electrons propagating in 
the direction of increasing magnetic field strength, this being the mechanism used by 
Hirshfield and Wachtel (1964) in obtaining such coherent gyromagnetic emission in 
the laboratory. 

Throughout the present paper the distribution of (nonrelativistic) electrons is 
assumed to be of the form 

ji( ) _ {(2 )3/2 3 3/32 /3 } -1 (_ /32 sin2 rt. _ (/3 cos rt. - /3s)2) 
p, rt. - n m c 1-0 110 exp 2/32 2/32 ' 

1-0 II 0 
(1) 

where pc is the speed of the electron, rt. is the pitch angle, and /31-0, /3 11 0' and /3s are 
dimensionless constants. This is the bi-Maxwellian streaming distribution, which was 
used extensively by Stix (1962, Chapter 9). There are a number of formal advantages 
in this choice of distribution function: in particular, all the relevant integrals can be 
performed explicitly in evaluating growth rates, the condition for coherent emission to 
occur takes on a particularly simple form, and the limit of a b function distribution can 
be approached continuously (for the relevance of this fact see Section V). In the 
Appendix a different choice of distribution is examined to check that the results of the 
present paper are not strongly dependent on the specific form of the distribution 
function. 

In Section II the quasilinear equations describing the interaction between 
electrons and waves in an arbitrary magnetoionic mode are written down and applied 
to evaluate the absorption coefficient for a distribution of the form (1). In Section III 
the growth rates at harmonics s = 1 and s ;;. 2 are evaluated for both o-mode and 
x-mode waves. It is found that the extreme anisotropy f3l0 <: /3110 is required for 
coherent emission of the waves of interest to occur. In Section IV limitations imposed 
by the requirements that the waves escape and that other instabilities do not dominate 
(thereby preventing the coherent emission of interest from occurring) are shown to be 
severe. In Section V the alternative reactive-medium instabilities (in the nomenclature 
of Briggs 1964) and their relevance are discussed. The conclusions are summarized 
in Section VI. 



COHERENT GYRO MAGNETIC EMISSION 

II. QUASILINEAR TREATMENT 

(a) Emissivity 

231 

The emissivity in the magnetoionic waves is defined here to mean the power lost 
by an electron per unit solid angle about the wave normal direction per unit (angular) 
frequency range. It has the functional dependence r!"(s, OJ, 8), on separation into 
contributions from each harmonic s = 0, ± 1, ±2, .... The wave properties used 
are the refractive index /1,,(OJ, 8) and the two quantities K,,(OJ,8) and T,,(OJ,8) which 
describe the polarization (see Appendix I of Melrose and Sy 1972a). The electron is 
described in terms of its speed ep, pitch angle a, and gyrofrequency Qe(1- p2}t, where 
Qe = I ell B lime. 

For s i= ° (this restriction is not maintained throughout the paper) one has 
(Eidman 1958, 1959; Melrose 1968a, 1968b; Trulsen and Fejer 1970; Sakurai 1972) 

where, in the notation of Wild and Hill (1971), 

x" = /1"psinasin81(1 -/1aPCosacos8) , 

Za = (cos 8 - /1aP cos a)/(1 - /1aP cosa cos 8). 

(b) Quasilinear Equations 

(2) 

(3a) 

(3b) 

(3c) 

The quasilinear equations can be written down in terms of the emissivity and a 
quantity describing the distribution of waves by rewriting equations given by, for 
example, Melrose (1968a). Let the distribution of waves be described by the energy 
density W"(OJ,8) per unit solid angle about the wave normal direction per unit 
frequency range. If all variations are assumed to be temporal, one has 

o W"(OJ, 8)/ot = 8"(OJ, 8) - y"(OJ, 8) W"(OJ, 8) (4) 
and 

(5) 

If it is assumed thatf(p, a) is normalized by 
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2n f1 d(cos IX) foo dp p2 f(p, IX) = 1 
-1 0 

(6) 

with number density n1 then the volume emissivity in equation (4) is given by 

00 f1 foo BO{w, 8) = S~~OO n12n -1 d(coslX) 0 dpp2r/,,(s,w,8)f(p,IX) (7) 

and the absorption coefficient by 

w(a a ) x {Jc ap _p-l(COSIX -fla{Jcos8) a(coslX) f(p,IX). (8) 

In equation (5) the coefficients describing the effects of spontaneous emission are 

[Da] 00 f1 fOOdW w[_p-1(COSIX-fla{JCOS8)] 
= ~ 2n d(cos 8) _1]a(s, w, 8)-{J 

Dp s~-oo -1 0 W C 1 
(9) 

while those describing the net effect of the induced processes are 

(10) 

When all variations are assumed to be spatial, equation (4) is often more con­
venient in the form of a transfer equation. Let t be a distance along the ray path and 
let r(w,8r) be the intensity, i.e. the power crossing unit surface area per unit solid 
angle about the ray direction per unit frequency range. One then has (Bekefi 1966, 
p.38; Enome 1969; Zhelezniakov 1971) 

with 

2 a (r(W,8r)) a( 8) a( 8)Ia( 8) flra at 2 = Br W, r - K W, r W, r , 
flar 

(J' a a(cos 8) 
Br (w,8r) = B (w,8) a(cos8r), 

ya(W, 8) 
Ka(w,8 r ) = ~( 8)' 

Vg w, 

2( 8) = 2( 8)v~(w,8)a(Wfla) a(cos8) 
flar W, r fla W, a a( 8 ) . 

C W cosr 

(11) 

) (12) 
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The relevant ray properties v;(OJ, e) and er were given explicitly for the magnetoionic 
waves by Melrose and Sy (l972b). 

For the waves with Ji" < 1 rough calculations indicate that the ray angle er 

differs little from the wave normal angle e, for instance, I er-e I < 10°, while the 
group velocity is substantially less than c only for Ji" <,g 1. In view of this, the more 
cumbersome transfer equation (11) could be replaced by the simpler equation (4), 
with I = ct, I" = c W", and K" = y"fc, for semiquantitative purposes. 

(c) Bi-Maxwellian Streaming Distribution 

On making the nonrelativistic approximation in expressions (7) and (8) and 
inserting the distribution (1), the integrals can be performed analytically. The integrals 
over the products of Bessel functions in the emissivity (equation (2)) lead to modified 
Bessel functions IsCA,,) and their derivatives Is'(A,,) with the argument 

(13) 

No approximations to the wave properties (not even the magnetoionic approximation 
made throughout this paper) need be made. The results apply not only for any 
s#-O but also for s = O. 

On separation into contributions from each value of s, 

00 00 

e"(OJ, e) = I: e"(s, OJ, e) and y"(OJ, e) = I: y"(s, OJ, e). (14) 
s= - co s= - co 

(15) 

and 

" (2n)3 c "" 
y (s,OJ,e) = 2 2 {8( )f8} 13 2 g (s,OJ,e)e (s, OJ, e), 

OJ Ji" OJJi" OJ m .10 

(16) 

with 

" sQ. fJio( sQe ) g (s, OJ, e) = - + 13 2 1-- - Jiqf3scose . 
OJ 110 OJ 

(17) 

The modified Bessel functions appear only in the quantity 

+2(~e(K"COSe -T"sine)tane +sT" sec e)(I;(A,,) -IsCA,,)) 

+C: +2Aq)IsCA") -2AqI;(Aq)}. (18) 

It should be noted that equation (15) predicts an interaction between particles and 
waves with Ji" ~ 1 at s ~ 0 only because the distribution (1), being a nonrelativistic 
distribution, includes unphysical particles with 13 > 1. 
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(d) Approximations 

For W ~ sQe, f3.l0 ~ 1, sinO ~ 1, and Ilq < lone has Aq ~ S2. This is just the 
condition for the power series expansion of the modified Bessel functions to converge 
rapidly. On retaining only the lowest order terms in Aq for each value s and keeping 
s ~ 0 for completeness, the expression (18) reduces to 

1 (Vq)l sl-l 
Aq(s, W, 0) ::::; 2(1 + T;) 1 s 1 ! 

x (;e(KqCOSO -TqsinO)tanO +sTqsecO + IS I)2. (19) 

For s ~ 2 one can usually justify setting W = sQe, Kq = 0, 

To = -cos 0/(1 cos 0 I), . and Tx = cos 0/(1 cos 0 I) 

in equation (19). This gives 

AO,X(s ~ 2, w, 0) ~ (s2/4s !)(tAq)S-l(1 =+= 1 cos 01)2, (20) 

where the minus sign refers to the o-mode, (This also applies to the x-mode at s = 1 
when such emission is allowed; see the inequality (37) in Section III(e).) 

For s = lone can rewrite equation (19) using 

K =XYsinO Tq d 2 __ Ysin20 (21) q an Tq - 1 Tq, 
(1- X) Tq - Y cos 0 (1- X)cos 0 

with Y = Qe/w and X = W 2/W2 . However, as shall emerge, the next order terms in 
Aqare not necessarily negligible for the o-mode at s = 1. Retaining these terms one 
has 

1 
AO(s = 1, w, 0) ~ ---;;-

~ 2(1 +T/) 

x (0- Y) To (1- X cos2 0) - (1- X)cos 0(sin2 0 - Y cos2 0) _ Il~ f3io sin2 0)2 
Y(1-X)(To-YcosO)cos20 y2 (22) 

This result further simplifies in the following three limiting cases, each for Y ::::; 1, 

( 3 (1- Y) 1 2 )2 2 4 
AO(s = l,w,O)::::; 8(1-X) -"4f3.l0 (2-X) 0 , 02 ~ I-X, (23a) 

~ _1_((1- X cos2 0)(1- Y) _ (_ )2 f32 20)2 
~ 2 20 . 20 1 X .10 cos , cos sm 

sin2 0 }> 2(1- X) 1 cos 01, (23b) 

X ~ 1. (23c) 
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These three cases correspond respectively in equation (22) to 

cos e ( (2 ) sin2 e 
To = - 1 cos ell + 2(1- X) , To = - (1- X)cos e ' To = 

III. MAXIMUM GROWTH RATES 

1 
cose' 
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(24) 

For semiquantitative purposes, the detailed expressions for the growth rates 
(or, equivalently, minus the absorption coefficients) derived in Section II can be 
approximated by the maximum growth rate together with the bandwidth of the 
growing waves (i.e. the half-width in frequency about the maximum) and an estimation 
of the angular dependence. In this section the maximum growth rates and bandwidths 
are estimated and it is argued that the dependence on e differs little from the well­
known case of gyromagnetic absorption in a thermal plasma. 

As indicated in the Introduction, the restriction to waves which can escape 
implies that only s > 0 need be considered. (It should be commented that the 
absence of particle-wave interactions at s .:;; 0 for Jl" .:;; 1 implies that /l"(s, ro, e) and 
y"(s, ro, e) should be zero for s .:;; 0, Jl" .:;; 1. The finiteness of expressions (15) and (16) 
for s .:;; 0, Jl" .:;; 1 results entirely from the inclusion of unphysical particles with 
13 > 1 in the nonrelativistic distribution (1).) 

The frequency range in which y"(s, ro, e) is negative (and hence the growth rate 
positive) follows directly from the fact that the sign of y"(s, ro, e) is determined by the 
sign of g"(s, ro, e), as may be seen from expressions (16) and (17). If the "centre of 
the line" for emission or absorption at the sth harmonic is defined by the zero of the 
exponent in expression (15), i.e. by 

ro = sQe/(1 - Jl" f3s cos e) ~ sQe(1 + Jl" f3s cos e) , (25) 

one concludes from (17) that coherent emission can occur only on the low frequency 
side of the centre of the line. (This is necessarily the case only for Jl" .:;; 1.) 

(a) Angular Dependences 

The variation of y"(s, ro, e) with e, as shown by equations (16) and (17), is only 
weakly dependent on the value of f3s (I f3s 1 ~ 1 necessarily) for Jl" < 1, while the e 
dependence is independent of 13 -LO when the approximation (19) is made. Consequently, 
the e dependence would be the same as that for a thermal plasma with 13 -LO = 13 11 0 == 13th 
and f3s = O. (Gyromagnetic absorption in a thermal plasma has been discussed by 
e.g. Zhelezniakov 1970, pp. 447-52.) 

If y~(s, ro, e) is the absorption coefficient in the thermal plasma then this is 
given by expression (16) with nl replaced by ne and with f3-LO = 13 11 0 == 13th and f3s = O. 
Granted that the e dependence of the maximum value of yo(s, ro, e) is known, on 
defining the function ~~(e) by writing 

(26) 

the above arguments imply that the same function ~~(e) should describe the e depen­
dence of the growth rates of interest. This argument applies only for s > 1 as 
equation (26) is not valid for s = 1. 
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The angular dependence strongly favours coherent emission in the x-mode over 
that in the o-mode, just as preferential absorption of the x-mode occurs in a thermal 
plasma (see e.g. Zhelezniakov 1970, p. 456). For s = lone may identify the function 
G(e) with AX(s = 1, OJ, e) given by the relation (20) for the x-mode. For the o-mode 
at s = 1 the angular dependence is determined by the relations (23). 

with 

and 

(b) Coherent Emission at s ~ 2 

For s ~ 2 the absorption coefficient (16) can be written in the form 

"( >- 2 e) = (1. )~nl OJ; A"(s, OJ, e) f310ji( ) y s ~ ,OJ, zn 2 us, 
ne OJ /1" o( OJ/1,,)/ OOJ 13 11 0 

feu) = {u(l -d/1" 13 11 01 cos e I) -b+ d} exp{ --t(U-b)2} 

~ (u-b+d)exp{ --t(U-b)2} 

f3s cos e 
b = . , 

13 11 01 cos e 1 

(27) 

(28) 

(29) 

The maximum negative value of y"(s ~ 2, OJ, e) as a function of frequency occurs at 
the negative extremum of f(u) , namely, 

(30) 

If this value of u were much less than unity, any coherent emission would be 
negligible. For the negative maximum not to be exponentially small, it is required 
that d ;; 1, a condition which reduces to 

(31) 

irrespective of f3s. Condition (31) requires 1310 <: 13 11 0 and becomes all the more 
extreme for /1" ~ 1, i.e. near the cutoff frequencies, or for 1 cos e 1 ~ 1, i.e. for emission 
at large angles relative to the ambient magnetic field. 

For s ~'2 the maximum growth rate is of the form (for /1" ~ 1,1310 <: 13 11 0) 

n OJ2 f32 S 

1 "( >- 2 e) 1 ):" 1 p 1-0 Y s "" ,OJ, max ~ ':>8---13 2 • 
ne sQe 11 0 

(32) 

The maximum as a function of e occurs at an intermediate angle 0 ~ e ~ -tn. 
Because the condition (31) is so very extreme for /1" ~ 1, coherent emission close 

to the cutoff frequencies is implausible. It is reasonable to suppose that the inequalities 
OJ > OJp (o-mode) and OJ > OJ x (x-mode) are well satisfied. Supposing that any 
coherent emission at the sth harmonic occurs at frequencies satisfying 

1 OJ-sQe 1 ~ 1 OJ-OJp 1 or I OJ-OJx I, 

one has the requirements 
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and (33) 

for coherent emission to be permitted for the o-mode and x-mode respectively. 
The conditions (33) imply that there is a range of values of Qe/wp for which 

emission into the o-mode is allowed while emission into the x-mode is forbidden. 
This range of values is given by 

that is, (34) 

Even for s = 2 this is an implausibly restrictive range, in that it seems unlikely that 
coherent emission at any s ~ 2 would be restricted to the o-mode due to the ratio 
Qe/wp falling in the appropriate range. 

Finally, the bandwidth of the growing waves can be estimated from the width 
of the negative peak in yO"(s, w, e). To within a factor of order unity it follows from 
the first of equations (29) that the width is given roughly by Aus '" 1, or 

(35a) 

However, relativistic effects 'cannot necessarily be neglected in estimating the band­
width for large s. In fact the relativistic modification to the gyrofrequency leads to an 
effective bandwidth of 

(35b) 

(see Bekefi 1966, p. 202). If the evaluation of expression (35b) exceeds that of (35a), 
the relativistic effects are significant and the effective bandwidth of the growing waves 
would then be determined by (35b). Of course, there would be an associated re­
duction of the maximum growth rate given by equation (32) due to this smearing out 
of the instability over a wider bandwidth. 

(c) Coherent Emission at s = 1 in x-mode 

Coherent emission at s = 1 in the x-mode has a maximum growth rate given by 
equation (32) with ~~ ~ 1 whenever such emission is possible. The requirement that 
such coherent emission occur at W > Wx is severe. For wp ~ Qe one has 

(36) 

For a large streaming velocity and for emission of waves in the forward streaming 
direction, i.e. for f3s cos e > 0, the centre of the line as defined by equation (25) is 
above Wx for 

(37) 

This is the condition that must be satisfied for coherent emission at s = 1 in the 
x-mode to be possible. The bandwidth of the growing waves is again given by one of 
the equations (35). In this case the maximum as a function of e occurs very close to 
I cose I = 1. 
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(d) Coherent Emission at s = 1 in a-mode 

Coherent emission at s = 1 in the o-mode would be possible for Qe > wp under 
less restrictive conditions than those required for coherent emission at s = 1 in the 
x-mode. Ignoring the corrections of order Pio in equation (22), the absorption 
coefficient at s = 1 in the o-mode would reduce to 

213 2 2e o 1 ' n1 wp 1.0/10 cos 
y (s = l,w,e) = (271:)2_- 8( )/8 G(w,e)h(U1), 

ne 01 01/10 01 
(38) 

where G(w, e) is the factor multiplying (1- y)2 in (22) and where, by comparison 
with equations (28) and (29), 

h(u) = u2(u-b+d)exp{ --!-(U-b)2}. (39) 

The neglected terms in (22) are important for u2 ;s d -2G(W, e). 
The function h(u) has one negative maximum for b < d, which lies at 01 > Qe' 

while for b > d it has two negative maxima, one at 01 < Qe and the other at 01 > Qe• 

Again the negative maxima are not exponentially small only for d ;S 1. ,With u2 ;S 1 
in the range of interest, the terms involving f3'io in equation (22) are of the same order 
as those retained in equation (39) The maximum negative value of h(u) is of order 
unity and the maximum growth rate is given roughly by 

2 {f3 2 o _ 0 n 1 wp 1.0 
I y (s - 1,01, e) Imax ~ ~1 -Q x 

ne e f3Yo/f3T!o, 

(40a) 

(40b) 

where (40a) or (40b) apply according to whether the term involving 1310 in equation 
(22) is neglible or dominant respectively For f3'io ~ 13 11 0 the alternative expressions 
(40a) and (40b) are approximately equal. The factor ~~ is of order unity here. 

It should be noted that equations (40) imply that the growth rate for the o-mode 
at s = 1 is less than the growth rate for the o-mode at s = 2, which is in turn less than 
that for the x-mode at s = 2. 

The bandwidth of the growing waves is again given roughly by one of equations 
(35). The function (39), as compared with (28), leads to a somewhat broader negative 
maximum at 01 < Qe than is predicted by equations (35), while for b > d, that is, for 

/1" f3s cos e <: 13 11 0(13;"0/13 11 0) -1 , (41) 

the secondary negative maximum at 01 > Qe has a somewhat narrower bandwidth. 

IV. LIMITATIONS ON MASER MECHANISM 

Coherent emission could be a significant effect only when the number of e-folding 
growth lengths (or times) is much greater than unity. This number of growth lengths, 
called the effective optical depth for negative absorption, also needs to be greater than 
the optical depth due to absorption in the overlying plasma if the radiation is to 
escape. Besides these limitations there are further ones associated with the saturation 
of the maser, particularly when other instabilities should occur under milder con­
ditions than those required for the coherent emission of escaping radiation. 
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(a) Optical Depth Effects 

As pointed out in Section II(b) it is reasonable to ignore the details of the ray 
properties and treat absorption per unit length by dividing yO" by c. Thus if L is the 
characteristic distance over which wave growth occurs one can define the effective 
optical depth (r;)O" for negative absorption at the sth harmonic for waves in the mode 
0" by 

(r;)O" = 1 yO"(s, w, 8) ImaxL/c. (42) 

The length L is limited by the dimensions of the region containing the distribution (1), 
a linear dimension L1 say, and also by /lws/sQe times the characteristic length 
LB = B/(I grad B I) over which De changes. Thus one has 

(43) 

The occurrence of significant wave growth at the sth harmonic requires (r;)O" ~ 1. 
From equations (32) and (42) this implies 

n1 1 sQe /3ITo c 
- ~ j:0"~--ZS-' 
ne 'os wp /31.0 L 

(44) 

except for the o-mode at s = I (when (40) is to be used in place of (32». Thus this 
requirement places a lower limit on the number density of the nonthermal particles. 
The inequality (44) becomes more restrictive on n1 with increasing s. 

(b) Gyromagnetic Absorption 

Gyromagnetic absorption in the thermal plasma occurs in layers where the 
frequency passes through w = sQe• (Such absorption at s = I is possible for the 
o-mode but requires a special treatment; the present author believes the well-known 
treatment of this case by Gershman (1960) to be unphysical.) The optical depth 
associated with absorption at the sth harmonic, r~ say, is given by 

(r;)O" n1 Pit L 
--:;a ::::: ~ /32 /32s 2 LB • 

·s ne 110 th 
(45) 

It is useful to distinguish between two cases and to discuss them separately: 
(A) Radiation coherently emitted at the sth harmonic needs to pass through the 

layer with w = sQe in order to escape to infinity. 
(B) Radiation coherently emitted at the sth harmonic does not encounter the layer 

with w = sQe in escaping to infinity. 

In case (A) one requires (r;)O" ~ r: in order for the radiation to escape. On setting 
L = /3 11 0 LB in equation (45) this reduces to the condition 

(46) 

where Pio ::::: /3110 is assumed. This condition applies only to s ;;. 2. It should be 
noted that because the ratio (45) is the same for both modes, preferential gyromagnetic 
absorption of waves in the x-mode cannot overcome preferential emission and thereby 
allow the preferential escape of waves in the o-mode. 
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Special conditions are required for case (B) to obtain. Because coherent 
emission occurs on the low frequency side of the line defined by equation (25), one 
has w < sQe at the point of emission except when the centre of the line is Doppler 
shifted to well above sQe• From equation (25) it is seen that this requires Ps cos (] > 0, 
with the magnitude of the Doppler shift such that one has b ? 1 (see the second of 
equations (29)), that is, I Ps I ? Plio, For waves generated at a frequency slightly in 
excess of sQ. not to encounter the layer with w = sQ. requires either that the waves 
be propagating outwards, i.e. in the direction of decreasing Q., or be propagating 
inwards but be reflected before reaching this layer. Except for s = 1 in the x-mode 
such a reflection requires an implausibly restrictive range of the ratio Q.lwp. Con­
sequently, except for s = 1 in the x-mode, case (B) requires I Ps I ? Plio, Ps > 0, and 
cos (] > 0 (an outward propagating stream emitting in the forward streaming direc­
tion). An immediate implication is that in case (B) the observed frequency drift is 
from high to low frequencies. 

Case (A) is forbidden for s = 1 in the x-mode, but case (B) applies either with 
Ps > 0, cos (] > 0 or with Ps < 0, cos (] < 0 because inward propagating waves 
necessarily reach the layer w = W x ' where they are reflected, before reaching the 
layer w = Q •. 

(e) Saturation of Maser 

The back-reaction on the distribution of particles resulting from coherent 
emission must be such as to reduce the deviation from thermal equilibrium that causes 
the coherent emission. In the present case an excess of perpendicular momentum 
causes the coherent emission and so the back-reaction should effectively reduce p~o. 
When the intensity of the waves reaches a level such that P~o decreases on a time scale 
comparable to the growth time of the waves, the maser saturates. This places a limit 
on the intensity of the escaping radiation. 

The back-reaction can be treated using the quasilinear equations. Although the 
functional form of f(p, IX) changes it is reasonable to take moments of equation (5) to 
find the way Pio, PTIo, Ps' etc. change. To lowest order in Ploo, PliO' and Ps only, Pio 
changes as 

dPio 2 fl d( ) foo d 2p2' 2 af(p, IX) -- = n cos IX p p sm IX---
dt -1 0 at 

~ - I ya Imax W aln1 me2 , (47) 

where the distribution (1) is inserted in equation (IO) and so in (5), where only the 
contribution from the growing waves is retained, and w a is the total energy density 
in the waves (i.e. integrated over bandwidth and solid angle). 

The maser saturates for 

dPio '" 2 
dt - I ya ImaxPloo, (48) 

i.e. for 
(49) 

Thus a significant fraction of the energy in the electrons can be transferred to waves as 
a result of the coherent emission, a result that may be compared with that of Shapiro 
(1963) in a related context. 
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Alternatively, a steady state could result from a balance between the rate of 
decrease in f3~o, given by equation (47), and the rate of increase of f3~o due to a 
stream propagating in the direction of increasing magnetic field strength, given by 

(50) 

Balancing equations (47) and (50) gives a steady-state integrated (over bandwidth and 
solid angle) intensity of escaping radiation of 

(51) 

This method of achieving an excess in perpendicular momentum was the one used by 
Hirshfield and Wachtel (1964) in obtaining coherent gyro magnetic emission in the 
laboratory. 

(d) Competing Instabilities 

So far only the instabilities which give rise to escaping radiation have been 
considered. For f3s ;::; 13 11 0 (> 13th), which is required for case (B) of Section IV(b) , 
coherent emission of electron plasma waves should occur. This would reduce f3s 
and so destroy the condition required for case (B) to apply. More generally, the 
instabilities of interest require Pio ;::; 13 11 0' while similar instabilities involving waves 
which cannot escape, e.g. whistlers, should occur under milder conditions so pre­
venting the extreme anisotropy f3'io ;::; 13 110 from being set up. 

The coherent emission of electron plasma waves for f3s > 13 11 0 (the so-called two­
stream instability) is considered first. Retaining only the Cerenkov term, i.e. for 
s = 0, the growth is independent of 13.10 with (see e.g. Tsytovich and Kaplan 1968) 

(Qe < OJp ) } 

(Qe > OJp). 

(52) 

Comparing this with the growth rate (32) for f3'io ~ 13110' f3s ~ 13110' one finds that the 
growth rate (52) is the greater for s > 3 and for s = 1 in the o-mode, while the two 
rates are comparable for s = 2. This implies that case (B) of Section IV(b) may well 
prove untenable due to the competition from the two-stream instability tending to 
reduce f3s. For coherent emission at s = 1 in the x-mode no such objection applies. 

Another instability, which should occur when there is an excess of perpendicular 
momentum, is coherent emission of waves in the whistler mode. Assuming 
OJ ~ (Qe I cos e I or OJp) the properties of waves in the whistler mode are given by 

cos e sine 
T=-- K=--. 

Icosel' Icosel 
(53) 

On inserting these wave properties in equation (16) for s = 1, coherent emission, 
which occurs when condition (31) is satisfied, is found to have the maximum growth 
rate 

(54) 
occurring for 

(55) 
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For wp '" Qe' the frequency (55) does not satisfy the assumed condition w < Qe and 
the relevant growth rates are somewhat smaller than (54). Nevertheless it is apparent 
that for s ~ 2 and for s = 1 in the o-mode, the growth rate for waves in the whistler 
mode is comparable with or greater than the growth rates of interest. Because the 
refractive index is greater than unity for the whistlers, coherent emission of whistlers 
occurs for a milder anisotropy than Plo ~ PliO' 

It may be concluded that, for all cases other than coherent emission at s = 1 in 
the x-mode, competing instabilities cannot be ignored. The competing instabilities 
should prevent the conditions required for coherent emission from being set up. 

V. REACTIVE-MEDIUM INSTABILITIES 

A further limitation arises from the conditions for the quasilinear treatment to 
apply, namely that the growth rate is less than the bandwidth of the gro,wing waves, 
which is required for the random phase approximation to be valid. In this section 
the nature and relevance of the instabilities when the random phase approximation 
breaks down are discussed. Many authors have implicitly assumed that the growth 
rate exceeds the bandwidth by adopting a D function distribution implying zero band­
width. It is argued that this case is unlikely to be relevant in astrophysical contexts. 

(a) Random Phase Approximation 

According to the above prescription for the validity of the random phase 
approximation, the results derived above are valid only if the condition 

(56) 

is satisfied. This follows from equations (32) and (35). For s = 1 in the o-mode a 
slightly different condition applies. The condition (56) with Plo ~ PliO reduces to 

(57) 

No relevant restriction is implied by either equation (56) or (57) for s ~ 3 or for s = 1 
in the o-mode. For s = 2 with wp '" 20e, equation (57) gives nl :s nePllo, For s = 1 
in the x-mode, equation (57) gives nl :s ne (Oe/wp)2 PTI 0 but because the inequality (37) 
implies I Psi> w;/O; (and also I Psi ~ PliO) this condition is no more severe than for 
s = 2. Thus provided that Plio is not too small one is justified in using the quasilinear 
equations. 

However, many authors/in this and related contexts have treated the instability 
for a distribution function proportional to D(/JII- Ps) (see e.g. Bell and Buneman 
1964; Fung 1966; Fung and Yip 1966; Goldreich and Lynden-Bell 1969, equation 
(22); Yip 1970; Zhelezniakov 1970, p. 492 et seq.). The instability in this case is a 
"reactive-medium" one in the terminology of Briggs (1964) or a "hydrodynamic" one 
in the terminology used by Soviet authors such as Shapiro (1963). 

(b) Reactive-medium Stage 

If it is supposed that, initially, a stream did have a negligible velocity spread 
Plio ~ 0 so that a reactive-medium instability rather than a quasilinear one developed 
then according to arguments given by Tsytovich (1970, pp. 183-93) one would expect 
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an initial reactive-medium stage to have as its principal effect a broadening of the 
velocity spread 13110 so that this initial stage would suppress itself. Tsytovich showed 
for a special case that the reactive-medium stage passes over continuously into the 
quasilinear stage. Similar conclusions are implicit in the work of Shapiro (1963) and 
of Singhaus (1964). 

Although it is convenient to think of the quasilinear stage as a maser action 
involving negative absorption and the reactive-medium stage as resulting from an 
intrinsically growing disturbance with a negative feedback, the work of Singhaus, 
in particular, indicates that these two stages must be opposite limiting cases of a single 
instability. This is certainly not indicated by the results of Bell and Buneman (1964) 
and the other authors cited in subsection (a) above. The treatment given below of the 
reactive-medium instabilities for the distribution (1) does indicate that these are con­
tinuations of the quasilinear ones. Granted this, the rapid evolution from the reactive­
medium to quasilinear stages implies that any initial reactive-medium stage could be 
oflittle final consequence. 

(c) Reactive-medium Instabilities 

Let e\Jl(k, w) be the contribution to the total dielectric tensor from the distri­
bution (1), with the vacuum contribution included only in the part e~~)(k, w) due to 
the background medium. Following the approach summarized in Appendix I of 
Melrose and Sy (l972a) the dispersion relations are solutions of 

A(k,w) = 0 (58) 
with 

Reactive-medium instabilities appear when two real modes of the combined 
system become a double solution, say the modes (J and (J' at some ko satisfy 

and then become a complex conjugate pair of solutions. At the double solution one 
must have (compare with Melrose and Sy 1972a, equation (A5)) 

[ WT(ko)]l1 = [waACk, w)/aw]w=wl1(ko) = 0 
Wiko) Ass(k, w"(ko)) , 

(60) 

i.e. the total energy passes through zero and becomes negative (W~ < 0, with w; > 0 
by definition). Both complex wand negative energy indicate the appearance of an 
intrinsically growing wave. 

Ifthe effect of the stream can be treated as a perturbation on the wave properties, 
wl1(k) -t wl1(k) + Liwl1(k) say, one has 

Re[Liwl1(k)] = - [WE/WT]l1wl1ef* ej[eg>(k, W(1)]h, 

Im[Liwl1(k)] = i[WE/WT]"wl1ef ej[eU)(k, w(1)]a, 

(61) 

(62) 

where h and a refer to the hermitian and antihermitian parts respectively. The ab­
sorption coefficient (16) is just minus twice the imaginary part of Liwl1 as given by 
equation (62). 
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If only the contribution from a given harmonic is retained in equations (61) and 
(62), the hermitian and anti hermitian parts in equations (61) and (62) result from the 
real and imaginary parts respectively of a function F(a.) (F is iFo in the notation of 
Stix 1962, p. 179) with 

as = {w(l-fJI3scos8)-sQe}/J2wfl[3l1olcos81, (63) 

and, for I as I ~ 1, 
Im[F(as)] = - iJn {cos 81(1 cos 8 I) }exp( - a;), 

Re[F(aJ] ~ ~(1 +~ + ... ). 
as 2as 

(64) 

(65) 

The reactive-medium instabilities appear when the term as- 1 in (65) is the 
dominant term. In this case one solves equation (58) with (59) by first multiplying by 
as and then solving 

(66) 
where 

(67) 

is the unperturbed value for waves in the mode (J and 

( (1))2 = _ ~ w; g';(s, w, 8) A';(s, w, 8) 
as ne w2 fl; [3~ 0 cos2 8 fl,; 8(wfl,;)/8w 

(68) 

results from the remaining terms as in equation (16). 
It is apparent that equation (66) leads to complex solutions only for [a~1)]2 > 0, 

that is, for g';(s, w, 8) < 0. This is just the condition found for the quasilinear in­
stabilities to occur. For a~O) ~ 0, the complex solutions of equation (66) lead to an 
imaginary part of the frequencies of the order of 

(69) 

Comparing this with the growth rate I y';(s, w, 8) Imax of the quasilinear instabilities one 
finds the approximate algebraic identity 

I Im[w~1)] 12 ~ I y';(s, w, 8) Imax Wfl,; [311 0 I cos 8 I . 

Now equation (69) could only be valid for I as I > 1, that is, for 

I Im[w~1)] I > Wfl,; [311 0 I cos 8 I . 

(70) 

On the other hand the quasilinear treatment presupposes that the random phase ap­
proximation is valid, e.g. that one has I y';(s, w, 0) Imax < Wfl,; [311 0 I cos 8 I. At the re­
spective limits of validity, equation (70) indicates that the two instabilities pass over 
continuously into each other. 

The above discussion is heuristic in that a reactive-medium instability which is a 
continuation of the quasilinear one is sought and found. Nevertheless it is reasonable 
to conclude that reactive-medium instabilities are in one to one correspondence with 
quasilinear ones. Contrary to the results of those authors cited above, who chose 
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(j function distributions, the qualitative properties of the reactive-medium instabilities 
are the same as those of the corresponding quasilinear instabilities. Even if any initial 
reactive-medium stage were to occur, this could not affect the qualitative properties 
of the resulting radiation. 

VI. CONCLUSIONS AND DISCUSSION 

The supposition that coherent gyromagnetic emission by nonrelativistic electrons 
can act as a radiation mechanism in astrophysical contexts has been shown here'to be 
subject to some severe constraints. Assuming that any coherent emission results from 
an anisotropy, i.e. from Of/OIX =I 0 rather than from of/op > 0 as considered by 
Bekefi et al. (1961), for example, it was argued that the actual form of the distribution 
function chosen should not affect the general properties of the coherent emission and 
that one should be justified in using the quasilinear equations in the treatment. For 
the choice of the bi-Maxwellian streaming distribution (1) these properties emerge: 

(1) Coherent emission (of waves which can escape) can occur only for Pio ;(; PliO 
and, for even more extreme anisotropies, for {t" <iii 1 or I cos (J I <iii 1 (see equation 
(31)). 

(2) Coherent emission in the x-mode is favoured over coherent emission in the 
o-mode at the same harmonic s. For s ;;. 2 the growth rate decreases with in­
creasing s as Pit (see equation (32)). 

(3) Coherent emission at s = 1 in the o-mode has a growth comparable with that 
at s = 3 in the o-mode, i.e. less than that at s = 2 in the o-mode and so also 
less than that at s = 2 in the x-mode. 

(4) Coherent emission at s = 1 in the x-mode is possible only for a rapidly stream­
ing distribution, i.e. for I Ps I ;(; 'PliO, in a very low density plasma with wp <iii De 
(see equation (37)). 

These properties imply that (except under the implausibily restrictive condition 
(34)) this mechanism should produce radiation polarized in the sense of the x-mode. 
Furthermore the emission should be at the second harmonic, that is, W ~ 2D., except 
when the condition (37) is satisfied and then the emission should be at the fundamental, 
that is, W ~ De (~ wp). 

The discussion in Section IV of the limitations placed on the escape of the 
radiation due to absorption in the thermal plasma and those implied by the existence 
of competing instabilities shows that the present mechanism should not be considered 
for s ;;. 3. For s = 2 these limitations cannot be ignored in any detailed theory. Only 
for s = 1 in the x-mode are the limitations irrelevant. 

The conclusion that coherent emission at s = 1 in the x-mode should occur for 
pio ;(; Plio, I Psi ;(; Plio, I Ps I ;(; w;/D: appears to be consistent with the experimental 
results of Hirshfield and Wachtel (1964). The coherent emission at s = 2 described 
by Blanken and Kuckes (1969) (see also Blanken et al. 1969) apparently involves 
waves in the Bernstein modes, which could not escape directly from a source of astro­
physical interest. Waves in the Bernstein modes may be of interest in connection with 
plasma emission processes in sources with strong magnetic fields but their possible 
role has yet to be examined in detail (see, however, Kennel et al. 1970). 
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The author intends to discuss in another paper the implications of the present 
results in relation to the suggested astrophysical applications that were listed in the 
Introduction. However, it is immediately clear that the suggested applications to 
type I and type III solar bursts should be questioned if only because the observed 
emission is in the o-mode. 
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ApPENDIX 

The purpose of this Appendix is to demonstrate that the condition pio ;:::; Plio 
has close counterparts for coherent emission of waves with Jla .::; 1 by anisotropic 
distributions of nonrelativistic electrons other than the bi-Maxwellian streaming 
distribution (1). For simplicity we consider emission at s = 1, cos () = 1 in vacuo by 
the distribution (see e.g. Ramaty 1969) 

(
P- r sinmrx 

f(p,rx) oc 
o 

(P > Po) } 
(P < Po), 

(AI) 

with Po ~ 1, r ~ 1, and m ~ 1. On calculating the absorption coefficient (S) after 
expanding the Bessel functions in equation (2) and retaining only the lowest order 
terms, we obtain 

yes = 1, w, ()) oc roo dP p1 - r sinmrx{(r+m)sin2 rx -mtJ./w}, (A2) 
Jpo 

with the condition 

left understood. For 
w(l.-pcosrx) = D. (A3) 

(A4) 

sinm rx can be expanded in powers of cos2 rx in equation (A2) whence, on inserting the 
condition (A3), it follows that y is negative for 

D./w-I > rim. (A5) 

The maximum growth rate occurs close to the frequency given by the equality in 
(A4), that is, at 

D./w-l ~ (2/m)tPo ;:::; rim. 

The counterpart to Pio ;:::; PliO for the distribution (AI) is 

<p2sin2rx) > (2<p2cos2rx»)t, 
which reduces to 

P2 r-3 (p2 r-3 2. )t 
°m+3> 0 r-5 m+3 . 

On comparing the relation (A6) in the form 

mp~ ;:::; !r2 

with (AS) for r ~ 5, m ~ 3, that is, with 

mp~;:::; 2, 

it is apparent that there is a close correspondence between them. 

(A6) 

(A7) 

(AS) 

It is not difficult to generalize the above arguments to any distribution with 
<p2 ) ~ 1, <sin2 rx) ~ <cos2 rx) to conclude that coherent emission in vacuo is a 
significant effect only for <p2 ) ;:::; <cos2 rx) and that the maximum growth rate occurs 
at 
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