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Abstract 

The influence of "parallel" viscosity on the resistive "tearing" mode in a cylin­
drical model of a plasma is investigated for a hard-core pinch. Iterative solutions of 
the basic equation indicate that the destabilization suggested by a previous cartesian 
model is not substantiated, and in fact under extreme shear there is slight stabilization. 
It is clear that geometrical effects must be properly included in order to obtain an accurate 
description of the role of parallel viscosity. 

There has been widespread investigation into plasma behaviour in pinch-type 
devices where the simple geometries make for relatively straightforward theoretical 
analyses. Interest is still maintained in suppressing the resistive instabilities (Furth 
et al. 1963), which are not stabilized by strong magnetic field shear. In this note, the 
influence of "parallel" viscosity (Stringer 1970) on the resistive "tearing" mode in a 
cylindrical geometry is considered for a hard-core pinch. The tearing mode is the long 
wavelength instability which is particularly noticeable in hard-core pinch experiments 
(Aitken et al. 1964). One is interested in the mode number m = 1 since it is well known 
that this corresponds to the fastest growing mode. It is to be noted that the m = 0 
mode is precluded as its wavelength would be much greater than laboratory dimensions 
(Aitken et al. 1965), and that higher m modes may be important in larger diameter 
vessels (Furth et al. 1972). Growth rates have been computed previously for a 
cartesian model (Marinoff 1971) and for an inviscid cylindrical model (Hosking 1967). 

The equilibrium configuration adopted here is exactly as described by Hosking 
(1967), with a magnetic field 

where 
Hoe(r) = Ar+ Cfr and Hoz = const. 

The notation and parameters used are essentially those of Hosking, but a range of 
resistivity values appropriate to a temperature range from 104 to 108 K has been 
included, rather than the single value 1'/ = 50 m2 S-1. As before, gravity and resistivity 
gradients are neglected and hydromagnetic stability is assumed. 
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For perturbation quantities of the form 

!1(r,8,z,t) = h(r) exp(wt+ im8 + ikz) , 

and adopting the Lagrangian displacement vector 

the linearized perturbation equations, including parallel viscosity, for an incompres­
sible plasma are 

pw2~r+Dn1 = fl{iFH1r-2(Hoe/r)H1e}-(3pv!~/r)s, (la) 

pw2~e+(im/r)n1 = fl{iFH1e+(D*Hoe)H1r}+3pv!2(iF/Ho)s, (lb) 

pw2~z+ikn1 = fl{iFH1z + (DHoz)H1r } +3pv!3(iF/Ho)s ; (lc) 

H 1r = iF~r+(rJ/w){(DD*-K2)H1r-(2im/r2)H1e}, (2a) 

H 1e = iF~e-(DHoe-Hoe/r)~r+(rJ/w){(DD*-K2)H1e+(2im/r2)H1r}, (2b) 

H 1z = iF~z-(DHoz)~r+(rJ/w)(DD*-K2)H1z; (2c) 

where 

s = w(iF ~.Ho +!~~r), 
Ho Ho r 

F = K.Ho = (m/r)Hoe+kHoz, 

!2 = Hoe/Ho, 

D == d/dr, D* == D+r- 1. 

The above equations apply in the whole plasma region, but the relations (2) 
may be replaced in the "outer" region by 

(2a') 

(2b') 

(2c') 

which are asymptotically valid as S = TR/TH -+ 00 except in the vicinity of F = 0, 
that is, in the "inner" or resistive region. The system of equations in the outer region 
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may be replaced by the equivalent differential equation 

where 

1 
G(r) - -,--,----;;-::::----:-:-= 

- 1-K2H oz/kF' 
N(r) =. G(l +rf2J/m) , 

1-(/3 -krf2/m)kJ/K2 

G(l +rf~HoJR/m2QF) 
I(r) = 2 • 

1- (/3 -krf2/m)kJ/K 

681 

(5) 

In the inviscid limit v -+ 0, equation (5) reduces to equation (11) of Hosking (1967) 
for pw2 ~ f1F2. 

From the approximation (2a /), equation (5) may be re-expressed in the form 

D 2H 1r +f(r)DH1r +g(r)H1r = 0, (6) 

where 

fi(r) = ~ _ 2DF D(RM) 2m2 

r F + RM + r2K2' 

D2F (1 DF)( 2) K2 g(r) = - - + - - - f(r) - - --
F r F r M 

M(r) = 1 +N(r)- G(r). 

All these expressions are valid for Hoz == Hoz(r). 
Following Marinoff (1971), equation (6) was solved as two initial value problems 

by the Gill-modified Runge-Kutta technique and the logarithmic derivative A'SO 
obtained was matched in an iterative procedure to that value of A' in the inviscid inner 
region derived by Furth et al. (1963). Only the estimated maximum growth rates for 
the viscous problem are presented in Table lea) as the inviscid results agree to the two 
significant figures shown, except that slightly larger values of Ro, the radial coordinate 
at F = 0, are applicable. Again retention of pw2 relative to f1F2 was necessary. 



'" 00 N
 

T
A

B
L

E
 

l(
a

) 

M
A

X
IM

U
M

 
G

R
O

W
T

H
 

R
A

T
E

S
 

A
T

 
V

A
R

IO
U

S
 

T
E

M
P

E
R

A
T

U
R

E
S

 
F

O
R

 
R

E
S

IS
T

IV
E

 
"T

E
A

R
IN

G
" 

IN
S

T
A

B
IL

IT
Y

 
IN

 
A

N
 I

N
C

O
M

P
R

E
S

S
IB

L
E

 
P

L
A

S
M

A
 

a 
=

 
0

-0
9

m
, 

b 
=

 
0-

11
 m

, 
H

oz
 =

 
1

-0
7

5
x

 1
05

 
A

m
-l

, 
Ii

 
=

 
1,

 m
 =

 
1 

R
o 

J
o 

H
09

 a
t 

R
o

 
s
=

 
b

-
a

 
k 

T
 

ni
 

1/
 

v 
W

rn
ax

 

(m
) 

(A
) 

(A
m

-I
) 

7:
R

/7
:H

 
R

o 
(m

-1
) 

(K
) 

(m
-3

) 
(m

2 
S

-l
) 

(m
2

s-
1

) 
t5 

,1
' 

(S
-l

) 

0-
10

84
 

9
-5

x
 1

04
 

1-
21

 X
 
10

3 
1

-4
6

x
 1

05
 

0-
18

4 
-1

-0
4

 
10

6 
10

21
 

1-
27

 
9-

21
 x

 1
03

 
1

-l
x

lO
-1

 
32

 
3

-0
 x

 1
05

 
0-

10
87

 
9

-5
x

 1
04

 
9-

88
 x

 1
03

 
3

-9
0

x
 1

04
 

0-
18

3 
-0

-8
4

6
 

10
7 

10
21

 
4

-7
8

x
lO

-2
 

2-
45

 X
 
10

6 
3

-8
x

 1
0

-2
 

95
 

I-
O

x
 1

05
 

0-
10

90
 

9
-5

x
1

0
4 

7-
59

 x
 1

03
 

1
-0

6
x

 1
06

 
0-

18
3 

-0
-6

4
8

 
10

8 
10

21
 

1-
75

 X
 
1

0
-3

 
6-

nx
10

8 
1

-3
x

 1
0

-2
 

29
0 

3
-4

 x
 1

05
 

c;
n 

0-
10

68
 

9
-5

x
1

0
4 

2-
45

 x
 1

04
 

6
-2

4
x

 1
0 

0-
18

7 
-2

-1
3

 
10

4 
10

18
 

9
-6

7
x

 1
02

 
1

-2
1

x
1

02
 

3-
1 

X
 
1

0
-1

 
11

 
2

-7
x

1
0

7 
::c:

 
0-

10
84

 
9

-5
x

1
0

4 
1-

21
 x

 1
04

 
1

-4
1

x
1

0
3 

0-
18

4 
-1

-0
4

 
10

5 
10

18
 

4-
18

 x
 1

0 
.2

-8
1

x
1

0
4 

1
-1

x
1

0
-1

 
32

 
9

-7
x

1
0

6 
0 

0-
10

88
 

9
-5

x
1

0
4 

9
-1

2
x

 1
03

 
3

-6
2

x
 1

04
 

0-
18

3 
-0

-7
7

9
 

10
6 

10
18

 
1-

63
 

7-
21

 x
 1

06
 

3
-8

x
lO

-2
 

94
 

3
-3

x
1

0
6 

El 
0-

10
92

 
9

-5
x

 1
04

 
6

-0
7

x
 1

03
 

1
-0

0
x

1
06

 
0-

18
3 

-0
-5

1
7

 
10

7 
10

18
 

5
-9

0
x

 1
0

-2
 

1-
99

 x
 1

09
 

1
-3

x
1

0
-2

 
28

0 
1

-l
x

1
0

6 
n 0 

0-
10

95
 

9
-5

x
1

0
4 

3-
78

 x
 1

03
 

2
-8

0
x

 1
07

 
0-

18
2 

-0
-3

2
1

 
10

8 
10

18
 

2
-l

O
x

1
0

-3
 

5 
-5

9 
X

 
1

0
" 

4
-2

x
 1

0
-3

 
87

0 
3

-6
x

 1
05

 
~
 

~
 e z ....., 

T
A

B
L

E
 

l(
b

) 
~ ...., .....

, 
M

A
X

IM
U

M
 

G
R

O
W

T
H

 
R

A
T

E
S

 
F

O
R

 
E

X
T

R
E

M
E

 
S

H
E

A
R

 
0 Z

 
a 

=
 

0
-0

9
9

m
, 

b 
=

 
0-

10
1 

m
, 

H
oz

 =
 

1
-0

7
5

x
 1

05
 A

m
-l

, 
I> 

=
 

1,
 m

 =
 

1 
c;

n 

R
o 

J o
 

H
09

 a
t 

R
o 

s
=

 
b

-
a

 
k 

T
 

n,
 

1/
 

v
, 

W
m

a
x

 

(m
) 

(A
) 

(A
m

-I
) 

7:
R

/7
:H

 
R

o 
(m

-1
) 

(K
) 

(m
-3

) 
(m

2
8

-
1 )

 
(m

2
8

-
1 )

 
t5 

,1
' 

(
8

-
1 )

 

0-
10

09
 

9
-5

x
 1

04
 

7
-5

6
x

 1
03

 
1

-0
6

x
 1

05
 

0-
01

9 
-0

-6
9

7
 

10
8 

10
2

1
 

1-
75

 X
 1

03
 

{6
-n

;W
 

5
-7

5
x

 1
0

-2
 

67
-0

 
1-

70
 x

 1
05

 
5

-7
7

x
 1

0
-2

 
67

-7
 

1-
71

 x
 1

05
 

0-
10

09
 

9
-5

x
1

0
5 

7
-5

6
x

 1
04

 
1-

30
 X

 
10

5 
0-

01
9 

-6
-9

7
 

10
8 

10
2

1
 

1
-7

5
x

1
0

3 
{6

-n
;W

 
2

-3
9

x
 1

0
-2

 
82

-3
 

5-
03

 x
 1

05
 

2
-4

0
x

 1
0

-2
 

85
-2

 
5

-1
7

x
 1

05
 



SHORT COMMUNICATIONS 683 

The destabilization suggested by the cartesian model (Marinoff 1971) is not 
substantiated here, and indeed in the extreme shear cases (expected maximum stabi­
lization) recorded in Table l(b) there is slight stabilization with about a 2% decrease 
in maximum growth rate. It is clear that geometrical effects must be properly included 
in order to obtain a more accurate description of the role of parallel viscosity. Finally 
it is emphasized that the present results are for an incompressible plasma and parallel 
viscosity has not been included in the inner region. 
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