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Abstract 

A separable representation for the two-nucleon T-matrix in coupled channels 
has been obtained from a unitary pole expansion for the potential and the method has 
been tested with the Reid soft-core potential in the 3S,_3D1 channel. A 3-term expan­
sion provides a T-matrix that is sufficiently accurate for a perturbation theory calculation 
of the three-nucleon bound state, while a IS-term expansion closely reproduces the 
exact T-matrix. In addition, a unitary pole approximation is presented that gives a 
better fit to the phase shifts and coupling parameter than that of Siebert et al. (1972). 

1. INTRODUCTTON 

There has been a growing interest in the treatment of the three-nucleon problem 
and nuclear structure calculations by means of the two-nucleon T-matrix and 
Brueckner G-matrix in separable representations. This interest has been motivated 
by the simplifications that separable representations introduce. Thus, in the three­
nucleon problem, the separability of the two-body T-matrix reduces the Faddeev 
equations from an integral equation in two variables to a set of coupled one­
dimensional integral equations (Watson and Nutall 1967). Similarly, in nuclear 
matter calculations, the separability of the G-matrix enables the Bethe-Faddeev 
equations to be solved directly, thus facilitating evaluation of the contributions to 
the binding energy from the three-body correlations (Bhakar and McCarthy 1967; 
Day et al. 1972). In addition, the derivation of effective operators for finite nuclei 
(Jackson and Lande 1972) and the performance of Brueckner-Hartree-Fock calcula­
tions can both be simplified by the use of a separable G-matrix. 

Separability of the T- and G-matrices may be achieved through the use of 
separable potentials that are adjusted to fit the two-nucleon data. Unfortunately, 
this has the drawbacks that most separable potentials fail to reproduce the one-pion 
exchange tail of the nucleon-nucleon (N-N) interaction and have a weak tensor force 
in the 3SC 3D1 channel (Clement et al. 1969), the latter property being important 
for the saturation of infinite nuclear matter and finite nuclei (Afnan et al. 1971). 

One method of overcoming these problems, while still retaining the separability 
of the two-nucleon T- and G-matrices, is to form a unitary pole expansion (hereinafter 
designated UPE; Harms 1970) of a realistic interaction potential such as the Reid 
(1968) soft-core potential. The UPE is a separable expansion of the two-nucleon 
potential in terms of the eigenfunctions of the kernel of the homogeneous Lippmann­
Schwinger equation. Upon truncating the expansion to N terms, say, the resulting 
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UPE potential may be substituted in the Lippmann-Schwinger equation to obtain a 
separable T-matrix which satisfies the requirements of two-particle unitarity and 
reproduces the important features of the actual T-matrix. In the three-nucleon bound 
state problem and in nuclear matter calculations, the two-body T-matrix is restricted 
to the negative energy axis, where its most important features are the bound state 
pole and its residue (the bound state wavefunction), and the UPE potential is 
specifically designed to reproduce the two-body binding energy and wavefunction for 
all N. 

For central potentials, the accuracy of the UPE is well established and, even for 
N = 1 (the case of the unitary pole approximation, UPA), has been shown to give 
reliable results (Harms 1970; Harms and Laroze 1970; Jackson and Lande 1972; 
O'Donoghue and Levinger 1972; Afnan and Read 1973). However, the generalization 
of the UPE to include the tensor and spin-orbit components of the more realistic 
N-N interactions has not been previously accomplished, and it is the purpose of the 
present paper to develop a separable expansion of the two-nucleon T-matrix in the 
important 3SC 3D1 channel. 

In generalizing the UPE for coupled channels, we impose the conditions that, 
for any N, the UPE T-matrix has the same position and residue of the two-body 
pole as does the T-matrix obtained from the original potential and that, in the limit 
of large N, the two T-matrices are for practical purposes identical. The second 
condition is important if the UPE is to be used in the calculation of triton binding 
energies for realistic N-N potentials (Afnan and Read 1973). In Section II, it is 
shown that the UPA potential is not uniquely determined by the requirement that 
it yield the same deuteron binding energy and wavefunction as does the original 
potential, and an additional condition, which unambiguously specifies the UP A in 
the 3SC 3D1 channel, is found. In Section III, the UPE is generalized to include the 
tensor and spin-orbit components of realistic N-N interactions and the convergence 
of the generalized UPE is tested using the Reid soft-core potential. 

II. UNITARY POLE ApPROXIMATION 

The justification for a separable representation of the nucleon-nucleon T-matrix 
on the negative energy axis lies in the fact that the T-matrix is almost separable in the 
vicinity of the bound state pole. This can be demonstrated (Lovelace 1964) by 
considering the Low equation for the T-matrix, 

T(E) = V- VG(E) V, (1) 

where G(E) = (H - E) -1 is the Green's function for the Hamiltonian H. If the 
system has a single bound state, equation (1) can be written in the spectral represen­
tation of G(E) as 

T(E) = V VIB><BIV IdE' vIPk-;»<Pk-;)1V 
+ E+B + (E-E') ' 

(2) 

where IB> is the wavefunction and - B is the energy of the bound state. In the 
vicinity of the bound state pole, the second term on the right-hand side of equation (2) 
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dominates the behaviour of the T-matrix and we may write 

T(E) ::;:: (E+B)-l VIB)<BIV as E~ -B, (3) 

thus demonstrating that the T-matrix is separable near the bound state pole. 
The aim of the UPA method is to form a separable potential VA that gives a 

T-matrix TA(E) with the property 

for E::;:: -B. (4) 

However, we now show that equation (4) does not uniquely determine the UPA 
potential, and that an additional condition has to be introduced. 

In the 3SC 3D1 channel, the deuteron wavefunction is a solution of the homo­
geneous Lippmann-Schwinger equation 

(5) 

where Go(E) = (Ho-E)-l is the free Green's function. Partial wave expansion of 
the wavefunction reduces equation (5) to two coupled equations of the form 

(6) 

where 
(7) 

with the normalization 

and led), with ex == {JST}, is an eigenstate of the total angular momentum J, spin S, 
isospin T, and orbital angular momentum l. The sum over lis 1 = J± 1, and the 
potential VII' = <exlIVlexl'). If we define the form factors IX/) by the relation 

l,u/) = Go( - B) IX/) 

then the IX/) satisfy the coupled equations 

IX/) = - L v,1' Go( - B) IXI.) , 
I' 

with the normalization 
L <xII Go( -B) Ix/) = 1. 
I 

(8) 

(9) 

The T-matrix at the pole can now be written in terms of the form factors IX/) using 
equations (3) and (9) as 

T, ,(E)::;:: iX/) <xI'I for E::;:: -B. (10) 
II fJ2(E+B) 

To reproduce this T-matrix for E::;:: - B with a one-term separable potential, 
we write the UPA potential as 

(11) 
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where IXI> are the form factors obtained from equation (9) and the Cll' are the 
strengths of the different potential components and satisfy the hermiticity condition 
Cll' = Cn For the UPA T-matrix to equal the T-matrix of the original potential 
at the bound state pole, the strengths Cll' must satisfy the nonlinear equations (see 
the Appendix) 

Coz = Coo + (Coo Czz - C5z) <xzl Go( - B) Ixz> 

= C22 + (Coo C22 - C5z) <Xo I Go( - B) Ixo> , 

1 + Coo <Xol Go( - B) Ixo> + Czz <xzl Go( - B) IX2> 

= -(Coo C22 - C5z) <xol Go( -B) Ixo> <xzl Go( -B) Ixz> , 

(12) 

where the angular momentum labels refer to the 3SC 3D 1 channel. Equations (12) 
do not uniquely determine the strengths Cll" although a possible unique solution 
may be obtained by imposing the linearizing condition 

(13) 

This condition is satisfied by all Yamaguchi-type potentials (Yamaguchi and 
Yamaguchi 1954) and allows the strengths to be determined as 

Coo = C22 = CO2 = -1. (14) 

Equations (11) and (14) define the UPAI potential, which has been shown by Siebert 
et al. (1972) to give the wrong sign for the 3D1 phase shifts (although the wrong sign 
also found by them for the coupling parameter is actually due to a factor of ii-I' 
erroneously included in their T-matrix). The deficiencies of the UP AI potential are 
due, in part, to the fact that the strengths Coo, CO2' and C22 are not independent, 
while an angular momentum decomposition performed on a realistic N-N potential 
with central, tensor, and spin-orbit interactions 

(15) 

yields the potential components 

(16) 

which in general are independent. This means that the inclusion of central, tensor, 
and spin-orbit interactions requires three independent strengths in the parameteriza­
tion of the UPA potential. 

Removal of the condition (13) leaves equations (12) nonlinear and the strengths 
undetermined, with Coz and C22 expressed in terms of Coo by 

Coz = _l+Coo <XoIGo(-B)IXo> } 
<x21 GoC - B) IXz) , 

(17) 

CZ2 = <Xol Go( -B) IXo> -<Xzl Go( -B) iXz> +Coo<Xol Go( -B) IXoi. 
<x21 Go( -B) IX2>Z 
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Our prime concern in finding an additional specifying condition is to ensure that 
the bound state. systems for potentials VII' and vlt, correspond as closely as possible, 
and so this condition should only involve these potentials and the set of bound state 
wavefunctions 11l1) of equation (7). The relationships 

(18) 

afford such a condition because the equations (17) are insufficient to guarantee this 
equality. The matrix element (1l11 VII'IIlI,) is the contribution from the Il' component 
of the potential to the potential energy of the deuteron and so provides a measure 
of the relative importance assigned to the different components by the potential V. 
Consequently equation (18) ensures that the same relative importance is maintained 
in the UPA potential. By means of equations (8) and (11), equation (18) becomes 

which determines the strengths as 

ell' = (xII Go( - B) Vii' Go( - B) IXI') . 
(xII Go( - B) IXI) (xl,1 Go( - B) IXI) 

(19) 

The strengths (19) satisfy equations (17) and ensure that if VII' is a one-term separable 
potential then vlt, == VII" The potential defined by equations (11) and (19) is shown 
in Section III to be the one-term attractive UPE potential (hereinafter designated lA). 

Figure 1 presents a comparison of calculated bar phase shifts and coupling 
parameter in the 3SC 3D1 channel for the Reid (1968) soft-core potential and its 
UPAI and lA approximations. The improvement occasioned by substituting the 
condition (18) for the condition (13) is evident. In particular, the lA potential yields 
the correct sign and approximate magnitude for the 3D1 phase shifts at low energy. 
This is important in nuclear matter calculations since an attractive contribution from 
the 3D1 channel leads to over-binding and an excessive saturation density. The 
failure of the UPA potential to reproduce the 3D1 phase shifts at high energy is 
remedied in the UPE potential which includes both attractive and repUlsive terms. 

The coupling parameters for the UPAI and lA potentials are in poor agreement 
with Reid's (1968) values even at low energies. The coupling parameter is very 
sensitive to variations in the on-shell T-matrix and the inability of the UPA to 
approximate it may restrict the usefulness of this type of potential at positive energies. 
It is interesting that Afnan et al. (1971), in fitting separable potentials (with varying 
D-state probabilities) to the bound state and low-energy data in the 3SC 3D1 channel, 
obtained coupling parameters within a few per cent of the lA values. This suggests 
that it may not be possible to fit the deuteron observables and the 3S1 and 3D1 phase 
shifts and simultaneously obtain reasonable values for the coupling parameter with 
a one-term separable potential. The potentials of Afnan et al.(197l) give results for 
infinite nuclear matter that are in excellent agreement with those given by the Reid 
potential when allowance is made for the difference in D-state probability. This 
is a strong indication that the failure of the lA potential to reproduce the coupling 
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parameter is not an important consideration in any calculation which only requires 
the negative energy two-nucleon T-matrix. It is shown in Section III that a large 
number of terms must be retained in the UPE to give a good representation of the 
coupling parameter. 

III. UNITARY POLE EXPANSION 

In some problems a more accurate separable representation of the T-matrix is 
required than can be given by the UPA potential. Thus, in the three-nucleon bound 
state problem, one needs a separable representation of the T-matrix that is sufficiently 
accurate for use in T-matrix perturbation theory (Afnan and Read 1973) while in the 
nuclear matter problem, where the UP A and two-term UPE fail at high density 
(k ~ 3 fm- 1) (Jackson and Lande 1972) one needs a more accurate separable 
representation of the Brueckner G-matrix for use in calculating three-body correla­
tions. In the present Section, we develop a UPE for coupled channels, with the 
3SC 3D1 partial wave in mind, and test the expansion with the Reid soft-core 
potential. 

The bound state wavefunction in momentum space for the 3SC 3D1 channel is 
a solution to the homogeneous integral equation (6). To symmetrize the kernel of 
this integral equation, we define the states I¢l) by 

(20) 

where Got = (Ho+B}I;;, with B the two-body binding energy. The I¢l) are then 
solutions of the equation 

I¢l) = - L Kll' I¢l,) , 
I' 

where the kernel KII' is now hermitian and is given by 

KII' = G& VII' G3 . 

(21) 

(22) 

Since equation (21) is a homogeneous integral equation with a symmetric kernel, it 
can be generalized to an eigenvalue problem with real eigenvalues An and eigenvectors 
I¢i) to obtain 

(23) 

with the normalization chosen such that 

Furthermore, the kernel KII' can be expanded in terms of the eigenfunctions I¢i) as 

00 

Kll' = L 1¢7) CiI'?(¢i!I. (24) 
n,m=l 

To. determine the constants C?Z?, we multiply equation (24) by (¢li from the left and 
I¢i-> from the right to obtain 

00 

(¢IIKlI' I ¢f.) = L (¢ll¢i)CiI'?(¢i!I¢f.). (25) 
n,m=l 
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Equation (25) may be written in matrix form as 

(26) 
where 

(27) 

Since the states 11>7) are linearly independent, the matrix Al has an inverse, which 
allows us to write the strength matrix Cll' as 

(28) 

Using the definition of the kernel Kll' and equation (24), we can write the potential 
in a separable form 

00 

~I' = I Ix?) Ci'{?<x~l, (29) 
n,m=l 

where the form factors Ix7) are solutions to the equation 

(30) 

with the normalization 
I <xi'I Go( - B) Ixi) = bnm • 
I 

We should note that the form factorslx7) are related to the states 11>7) by the relation 
Ix7) = G~/}; I1>D. The UPE potential of rank M is then given by 

M 

~T' = I Ixi') CIt <x~1 , (31) 
n,m=l 

where the strength matrix is given by equation (28) with the matrices Al and Kll' 
truncated to M x M matrices (i.e. in equation (27) i,j = 1,2, ... , M). This approxima­
tion for the UPE potential reduces to the lA UPA potential for M = 1 and Al = 1. 

To show that the T-matrix of the UPE potential in equation (31) has the same 
position for the pole and the same residue as the T-matrix of the original potential, 
we have to prove that the deuteron binding energy and bound state form factor for 
the UPE potential of any rank M are the same as those of the local potential. The 
proof of these results is indicated in the Appendix. Thus, the T-matrix for the UPE 
potential is equal to that obtained from the original potential in the neighbourhood 
of the bound state pole. Furthermore, our numerical results show that the size of 
the neighbourhood, in which this equality holds, increases with increasing M. 

To test the above method of constructing a separable representation for the 
two-nucleon T-matrix, we examined the Reid soft-core potential in the 3SC 3D 1 

channel. To use the UPE potential defined by equation (31) we need to know the 
form factors Ix7) and the strength matrix Cll" The form factors are obtained from 
the states 11>7), which are solutions to the two coupled homogeneous integral 
equations (23). In momentum space, equations (23) may be reduced to an eigenvalue 
problem for a symmetric matrix by using Gaussian quadratures to represent the 



SEPARABLE REPRESENTATION OF N-N INTERACTION 733 

integrals (Brown et al. 1969). With a 32-point Gauss-Legendre quadrature formula 
and the deuteron binding energy given by Reid (1968) for his potential, we obtain an 
eigenvalue Al = 1·0000. Since the potential has both attraction and repulsion, the 
eigenvalues An are either positive (attractive) or negative (repulsive). To construct 
the UPE potential, we take MI form factors corresponding to the smallest positive 
eigenvalues and Mz form factors corresponding to the smallest (in absolute value) 
negative eigenvalues. Such a choice for the UPE T-matrix is consistent with that 
used for the ISO potential by Harms (1970) and O'Donoghue and Levinger (1972). 
We label the UPE potentials by MIA+MzR to indicate that MI attractive and M z 
repulsive terms have been retained in constructing the potential, with M = MI + M z 
being the rank of the UPE potential. the evaluation of the strength matrix ell' as 
given by equation (28) is now straightforward, since all the required quantities have 
been determined in solving equation (23) and the only additional computing involved 
is the inversion of the M x M matrices AI' 

In comparing the T-matrices obtained from the UPE potential and from the 
Reid (1968) potential by direct solution of the Lippmann-Schwinger equation in 
momentum space, we have concentrated on the negative energy region for two reasons: 
(1) In the three-nucleon bound state problem one needs the two-body T-matrix at 
negative energies. In particular, it is important to know how many terms must be 
retained in the UPE potential to obtain a good approximation to the Reid T-matrix. 
At the same time we want to investigate whether the difference between the UPE and 
UPA T-matrices is small enough to be treated by T-matrix perturbation theory. 
(2) In evaluating the Brueckner G-matrix in nuclear matter or finite nuclei, the starting 
energy is usually about -100 MeV. Although the G-matrix is not considered directly 
here, it should be kept in mind that the reference G-matrix is very closely related to 
the two-body T-matrix, and that agreement between the UPE and Reid T-matrices 
at negative energy is a strong indication of agreement between the UPE and Reid 
G-matrices. This is confirmed by the success of Jackson and Lande (1972) in repro­
ducing the defect wavefunction for the Reid ISO potential at moderate densities with 
the UP A potential. 

In Table 1 we have tabulated the T-matrix elements <pi Tll'(E) Ip) for the exact 
Reid soft-core potential, the 9A+6R and 2A+ 1R UPE potentials, and the lA and 
UP Al potentials as functions of the momentum p for three negative energy values. 
The results are taken from our calculations of the fully off-shell T-matrix elements 
<pi Tll'(E) Iq), so that the validity of our conclusions is independent of the condition 
q = p, which has been chosen here because it allows the results to be presented in a 
compact form. 

It can be seen from Table 1 that the 9A + 6R UPE reproduces the exact T-matrix 
very well, even for large negative energies and high momenta. The agreement is good 
enough to ensure that the three-nucleon properties are identical for these two 
T-matrices. Furthermore, the trinucleon energy and wavefunction is mainly sensitive 
to the matrix element <pi Too(E) Iq) for moderate values of p, q, and E (Siebert et al. 
1972), and Table I shows that the 2A+ 1R T-matrix provides a very good approxima­
tion to this component of the exact T-matrix. These two facts suggest that the 
properties of the trinucleon, as predicted by the Reid potential, may be calculated 
by T-matrix perturbation theory (Fuda 1968; Afnan and Read 1973) using the 
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2A + 1 R T-matrix to determine the unperturbed system and the 9A + 6R T-matrix to 
approximate the exact T-matrix. 

A comparison of the lA, UPAI, and exact T-matrix elements <PI T22(E) Ip) 
for the 3DI channel again provides support for our removal of the constraint (13) 
in the UPA case. If the UPAI and 1A T-matrices were to be considered as reference 
G-matrices then the former would give considerably more attraction in nuclear 
matter. In fact, the binding energy and saturation density are highly dependent on 
the sign of the 3DI contribution, which is repUlsive for all realistic potentials (Hafte1 
and Tabakin 1970) but attractive for most one-term separable potentials satisfying 
the condition (13). 

The domain of agreement between the exact and UPE T-matrices as a function 
of the rank M of the expansion can be roughly estimated from Table 1. It is evident 
that, with increasing M, one can move further from the pole and still reproduce the 
exact T-matrix to reasonable accuracy. This is clearly evident in the values of T02 

where, for E = -10·3675 MeV, the agreement between the 1A and exact T-matrices 
is reasonably good but, at E = -124·41 MeV, more than one term is required in 
the UPE for a comparable degree of accuracy. 

A more detailed comparison of the exact and UPE T-matrices is presented in 
Table 2, in which the bar phase shifts and coupling parameter are given for the exact 
and UPE potentials for different values of M. We find that, for the 1A potential, 
the coupling parameter PI and 3DI phase shifts change sign at high energy but that 
this effect is removed by the addition of one repulsive term (in the 2A+ lR potential). 
As more terms are included in the UPE potential, the UPE values for the phase shifts 
and coupling parameter approach the exact values. The agreement is reasonably 
good for the 9A+6R UPE potential although there are still discrepancies between 
the coupling parameters at high energies. 

The Reid soft-core potential was used here because it provides the best fit to 
the two-nucleon data of all the current phenomenological two-nucleon potentials 
(Reid 1968). However, the main feature of the N-N interaction which makes the 
UPE approach so attractive is the importance ofthe deuteron wavefunction in deter­
mining the negative energy T-matrix. The pole dominance argument (Lovelace 1964) 
is applicable to any N-N potential and this suggests that the UPE will have more 
general application to potentials other than the Reid soft-core potential. Preliminary 
results for the one-boson exchange potential (Bryan and Scott 1969) and the Hamada­
Johnston potential (Hamada and Johnston 1962) strengthen this conclusion. 
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ApPENDIX 

Derivation of Equation (12) for the UP A Potential 

The T-matrix corresponding to the one-term separable potential (11) can be 
written as 

TME) = IXI> {Nll,(E)/ D(E)} <xl,1 ' 

where, in the 3S1 _3D1 channel, Nll'(E) and D(E) are given by 

Noo(E) = Coo + (Coo C22 - C52) <x21 Go(E) IX2> , 
N2iE) = C22 + (Coo Cll - C52) <Xol Go(E) IXo> , 
NoiE) = NlO(E) = CO2 , 

D(E) = 1 + Coo <Xol Go(E) IXo> + C22 <x21 Go(E) IX2> 
+( Coo C22 - C52) <Xol Go(E) IXo> <x21 Go(E) IX2>' 

To determine the strengths Cll' from the condition 

TM -B) = Tll'( -B), 

(AI) 

(A2) 

(A3) 

we consider the neighbourhood of the bound state pole, for which E = -B+e with 
e small. To first order in e, we have 

Go(E) = Go( -B) +e G~( -B), 

D(E) = D( -B) +ed( -B), 

Nll(E) = N Il ( -B) +e(Coo C22 - C52)<XI,1 G~( -B) IXI'> , 

where l' = 1/-21 and 

d( - B) = Coo <Xol G~( - B) IXo> + C22 <x21 G~( - B) IX2> 

} 
+ (Coo C22 -C52) {<x21 Go( -B) IXl> <Xol GM -B) IXo> 

(A4) 

+<Xol Go( - B) IXo> <XzI G~( - B) IXl>}' (AS) 
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The condition that TINE) have the same position for the bound state pole and the 
same residue as Tll'(E) requires that 

D(-B) = 0 and (A6) 

where the normalization constant 11 of equations (7) and (10) is determined from 

The conditions (A6) can now be rewritten as the set of three nonlinear equations (12) 
for the strengths Cll' of the potential VA. 

Deuteron Binding Energy and Bound State Form Factor for UPE Potential 

We may write the UPE potential (31) in the form 

(A7) 

where Ix> represents a row vector of form factors 

and <xl is the corresponding column vector. The 2Mx 2M matrices e and Al are 
given by 

and (AS) 

which are formed from the M x M matrices ell' of equation (31) and the M-dimensional 
unit I and zero 0 matrices respectively. The Lippmann-Schwinger equation for the 
T-matrix corresponding to the potential (A 7) may be solved in a closed form and 
the solution Tti,(E) written as 

(A9) 

where 

M(E) = I + I AL <xl Go(E) Ix> AL e. (AlO) 
L 

The binding energy of the deuteron ED for the potential (A 7) is determined from the 
equation 

det[M( - ED)] = o. (All) 

If we multiply both sides of the equation conjugate to equation (30) by Go( - B) Ix\m» 
we obtain the relationships 

(AI2) 

between the M x M matrices Al and ell' defined in equation (27) and the matrix 
A - 1 defined as 

for i,j = 1, ... ,M. 
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Using the relationships (AI2) and the fact that ..1.1 = 1, it can be shown that, for 
E = - B, the first and (M + I)th rows of M(E) in equation (AlO) differ only by a 
multiplicative constant of minus one. Thus 

det[M( - B)] = 0 (AI3) 

and the UPE potential (31) produces the same deuteron binding energy as the original 
local potential V. 

To prove that the UPE T-matrix has the same residue at E = - B as the T-matrix 
for the potential V we must show that the bound state form factors for the UPE 
potential are identical to those for the potential V. Consider the equation for the 
UPE bound state form factors IX7), where 

Ixi) = - L V;7' Go( - B) Ix~) 
I' 

M 

= - L L Ix7) C71"! <x~1 Go( - B) Ix~) . 
I' n,m=l 

The solution of equation (AI4) may be written as 

M 

Ixi) = L an Ix7) , 
n= 1 

where 
M 

an = - L L C71"!<x~1 Go( -B) Ix~)· 
I' m=1 

From equations (AI5), (AI6), (28), and (30) we obtain 

anCI-A;I) = o. 

(A14) 

(A15) 

(A16) 

(AI7) 

Since An = 1 implies n = 1, equation (AI7) requires that an = 0 for n = 2, ... , M. 
From the normalization condition 

L <xii Go( - B) Ixr) = 1 
1 

we determine that ai = 1 and thus 

IX7) == Ix}), (AI8) 

where the Ix}) are the bound state form factors for the potential V. 




