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Abstract 

The tetrad formulation of general relativity allows a non-tensorial decomposition of the gravitational 
field into two components which have been thought to represent the permanent and inertial parts. 
It is shown here that this division does not hold for arbitrary motions in a flat space-time, and there­
fore cannot be expected to hold in more general spaces. 

A Riemannian manifold is one in which Euclidean geometry has been imposed in 
the tangent space at each point so as to permit the introduction of a smooth inner 
product. The natural frames, which arise in the study of such manifolds, lead in 
general to oblique coordinates in each of the tangent spaces. The relation between the 
Riemannian metric g JLV at a given point of the manifold and the metric induced into the 
tangent space at the same point is 

gJLV = ahJL bhv nab , (1) 

where nab is the flat space metric of the tangent space. By requiring that nab = 1Jab = 

1Jab == diag(l, -1, -1, -1) the usual (orthonormal) tetrad formulation results (Pirani 
1957). The tetrads ahJL then in addition to 

gJLV = ahJLbhv1Jba (2) 

obey the set of relations: 
ahJL bhJL = b;:' ahJLbh = nab 

JL ." (3a) 

ahJLahV b;, ahJL bhJL = 1Jab' (3b) 

The principle of equivalence guarantees that ahJL can be found at any point satisfying 
equation (2). That it be possible to find a tetrad satisfying (2) everywhere requires that 
the curvature tensor as calculated from the gJLV vanish everywhere. 

The unit vector fields ahJL are associated with four generally arbitrary congruences, 
one of which will be taken as timelike and identical with the world lines of the physical 
problem at hand. The structure introduced corresponds to a set of everywhere 
orthonormal but in general anholonomic coordinates (Schouten 1954). It should be 
noted that the 10 components of the g JL v are not sufficient to determine the 16 compo­
nents of the ahJL' The ahJL are determined only up to a Lorentz transformation which 
may vary arbitrarily with position (Utiyama 1956; Kibble 1961). 
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In consequence of using orthonormal rather than natural frames the connection 
coefficients are no lon,ger given in terms of the metric by the Christoffel symbols. 
Instead the Ricci rotation coefficients defined by 

Yabc == ah/l;v bh/l chv (4) 

playa fundamental role. By covariantly differentiating either of equations (3b), Yabc 
can be seen to be antisymmetric in the first two indices and has therefore only 24 
components. 

The following interpretation of the definition (4) is based in part on the work of 
Levi-Civita (1961): At any point P we have ah/lbh/l = b/:. Let the vector associated 
with the a-congruence be displaced from P by the local displacement law determined 
by the c-congruence, and let the vector associated with the b-congruence be displaced 
from P along the c-congruence by parallel transport. Then Yabc is the rate of change of 
the cosine of the angle between the two vectors. 

One may also define the tensors associated with the Ricci coefficients, the mixed 
form of which is (see equations (2) and (3)) 

tP - ah bhtP ch - h ahtP Y/lV = Yabc /l v - a /l;V • (5) 

In the next section we will be concerned primarily with these associate tensors. 

Decomposition of the Field 

Many authors (e.g. Davis 1970; Gatha and Dutt 1971) have noted that the field 

{~w} = tg/la{gav.w+gwa.v-gvw.a} (6) 

with the relation (2) yields 

{~w} = ah/lah(v.w) _t{g/la(gtPvA!a +gtPwA~a)}, (7) 
where 

A~w == 2 ah/l ah[v.w] • (8) 

Using the definitions (5) and (8), equation (7) may be written as 

{/l } _ r/l _y/l 
Vto - vco vm , (9) 

where 
r~w == ah/lahv.C!J (10) 

is an integrable affinity (SchrOdinger 1963). As the Riemannian curvature tensor 
formed from an integrable affinity is known to be zero, and since Y~w is a tensor, 
equation (9) has been thought to represent a non-tensorial decomposition of the 
gravitational field into its 'real' (or permanent) and inertial parts (Rosen 1963; 
Gatha and Dutt 1971). 

Note that 
tA~w = rtvW] YtVW] • (11) 

That this must hold is also apparent from the symmetry of {~w} in the lower indices. 
A~C!J is the associate tensor to the object of anholonomity which is defined as 

Ak - h/l hvkh 
ij = i j [/l.V]· (12) 
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The object of anholonomity is related to the Ricci coefficients by 

Yabc Aabc - Abca - Acab , 
(13) 

where 
Aabc = A!b I1dc . 

(14) 

From equations (7) and (11) we see that yew and r[eml depend entirely upon AeW" 

This becomes even more apparent if we define 

A{wO"v} == AwO"v - AO"vw + AvwO" 
(15) 

which, with equation (7), yields the decomposition 

{ Il } - rll _ J 110" A 
vw - vw 29 {wO"v} • 

(16) 

If the decomposition (9) or (16) is to be interpreted as meaning that the inertial field 

is contained entirely in the symmetric part of the first term on the right-hand side then 

the second term must exclusively contain the permanent gravitational field. By 

requiring the space-time to be flat, the second term and hence the object of anholo­

nomity must vanish. In this case the first term is required to describe the field for 

general accelerated motions. That this is not possible can be seen by noting that the 

vanishing of the object of anholonomity implies that all the congruences associated 

with the tetrad field are 3-normal and geodesic (Estabrook and Wahlquist 1964). This 

is equivalent to the introduction of holonomic coordinates and is too restrictive a 

condition to allow for arbitrary accelerated motion in a flat space-time. 

As mentioned in the introduction, the vanishing of the Riemannian tensor guaran­

tees that a tetrad satisfying equation (2) everywhere (holonomic coordinates) can be 

found. However, its vanishing does not necessitate the introduction of such coordi­

nates. For certain classes of problems, in fact, anholonomic coordinates are the most 

natural to use. An example is the anholonomity of a spatial triad introduced by the 

Thomas precession in curvilinear accelerated motion. 
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