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Abstract 

A theoretical treatment is presented for the propagation of Alfven waves in a plasma. It includes 
the effects of resistivity, ion-neutral collisions, the ion cyclotron frequency and radial nonuniformities 
in ion density, neutral particle density and temperature. The theory is applied to plasmas with con­
ducting and nonconducting walls and the results are compared with those of experiments conducted 
in the afterglow of a shock-produced plasma. Nonuniformity in the ion density is found to have a 
marked effect on the dispersion relation and wave field profiles, while non uniformities in the total 
particle density and temperature are less important. Excellent agreement is obtained between theory 
and experiment and this allows unambiguous and accurate determinations to be made of the average 
total particle density, which is found to be - 50 % of the initial filling density, and of the cross section 
for momentum transfer between protons and hydrogen atoms. 

1. Introduction 

The hydromagnetic oscillations of a radially uniform cylindrical plasma have been 
investigated by a number of authors. The most general theoretical solution of this 
problem has been presented by Woods (1962) who retained all the dissipative and 
other second-order effects for a radially uniform plasma. Generally good agreement 
has been found between theory and experiment for both the compressional (or fast) 
and the torsional (or slow) Alfven waves over a wide range of frequencies. 

Confining our attention to the compressional wave, which is the subject of the 
present work, we note particularly the experimental work of Swanson et al. (1964), 
Malein (1965) and Cross and Lehane (1967). In each experiment, one or more 
parameters in the theory were adjusted to bring the predicted dispersion relation 
into agreement with experiment. Thus Swanson determined the degree of ionization, 
the resistivity and the ion-neutral collision frequency in his experiment. Malein, 
using a theoretical value for the momentum transfer cross section, determined the 
neutral particle density from such a fitting procedure. In these experiments, and in 
the theory of Woods, the plasma was assumed to be radially uniform. 

The effects of density gradients on the propagation of compressional Alfven waves 
in a resistiveless plasma have been considered theoretically by Pneuman (1965), Cross 
and Lehane (1968) and Morrow and Brennan (1971). Pneuman's theory was limited 
to frequencies less than the ion cyclotron frequency Wei' and required a moving plasma­
vacuum boundary. Cross and Lehane modified this theory so that it applied to a 
plasma with conducting walls and found a special case of the solution at W = Wei' 

They and Pneuman only considered density profiles in the form n = no (l-r2/a2), 
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where no is the peak density, r the radial distance and a the plasma radius. Morrow and 
Brennan (1971) numerically solved the relevant differential equation to find solutions 
which were valid from low frequencies through the ion cyclotron region to frequencies 
less than one-tenth the electron cyclotron frequency and which were applicable to a 
plasma with an arbitrary density distribution. Both Cross and Lehane, and Morrow 
and Brennan found fair agreement between the calculated and measured wave field 
profiles. For high frequencies, where the compressional wave becomes the helicon 
wave, Blevin and Christiansen (1968) found good agreement between their experimental 
results and a theory which included resistivity and the electron cyclotron resonance 
(Davies and Christiansen 1969). 

The present work extends both the theoretical and experimental investigations of 
the compressional wave, with special emphasis on the effects of radial nonuniformities 
on the dispersion relation and the field profiles. The comprehensive nature of the 
theoretical treatment facilitates calculations for both conducting and nonconducting 
boundaries. A more accurate treatment of the ion-neutral momentum transfer cross 
section, developed by Brennan and Morrow (1971), also enables an unambiguous 
determination of this cross section to be obtained from measurements of the dispersion 
of compressional waves in a laboratory plasma. 

2. Theory 

We restrict our discussion to small amplitude low-frequency waves (co ~ 0·1 coee), 
with axisymmetry (m = 0), propagating in a hydrogen plasma. The basic equations 
(the equation of motion, the generalized Ohm's law and Maxwell's equations) readily 
yield an equation for the wave magnetic field b, 

b + V)( [(BUco2p'Jlo){(V)( b»( z})( z 

+ (iBo/coenJlo)(V)( b»( z + (COJlo)-l",. V)( b] = 0, (1) 

where we have assumed that the wave propagation is in the direction of the unit vector 
z. The steady axial magnetic field is B = Bo z; the equilibrium macroscopic ion 
velocity, current density, and electric field are zero; the plasma resistivity is represented 
by the resistivity tensor "'; n is the ion number density and p' is a complex mass 
density given by the expression 

p' = Pi +po/(1-ian), 

where Pi and Po are the ion and neutral particle mass densities, and 

... -1 = H.J2)nQDv. 

We have also assumed that the ions and neutrals are in equilibrium at the same 
temperature T, with an average particle velocity v. The factor QD is the ion-neutral 
momentum transfer cross section for an incident ion energy of 5 kT (Brennan and 
Morrow 1971). 

Equation (1) is the same basic equation as that obtained by De Silva (1961) and 
others for a uniform plasma. However, we here retain the possibility of radial 
variations in the ion density, the neutral density and the temperature. 
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(a) Uniform Plasma with Conducting Boundary 

Before proceeding to the solution of equation (1) for the general case, it is useful to 
consider the solution for a uniform plasma bounded by a conducting wall at r = a. 
If we define the operator S as 

S = a2/ar2 +r-1 alar _r- 2 

then equation (1) may be written in cylindrical component form as 

(S+Yi)(S+y~){brr +be9 -(abz/ar)z} = 0, (2) 

where Yl and Y2 are functions of the plasma parameters and the wave frequency (see 
e.g. De Silva 1961). The operator s+yi is Bessel's operator for the first-order Bessel 
function. The requirement that the wave fields are finite at the origin thus leads to the 
solution for the by component, for example, 

br = A1J1(Yl r) +A2J1(Y2 r). 

In general, both Yl and Y2 are complex, and the boundary conditions in a given 
problem will require the use of both. However, with the exception of Swanson et al. 
(1964), previous workers have neglected one of the Yi and assumed that the Y used was 
real and defined by the relation J1(ya) = O. This approach leads to a dispersion 
relation in the form of a quadratic in k 2 • Swanson et al. calculated the real and 
imaginary parts of Yl for typical plasma conditions and found that the imaginary 
part was indeed very small (;:5 0·3 %) compared with the real part and that deviations 
of the real part from the value given by J 1 (ya) = 0 were also small (;:5 0 . 3 %). They 
did not quote values for Y2. 

It is instructive to obtain the solution to the dispersion relation, retaining both 
of the Yi' to see why Y2 can be ignored for the uniform plasma. We have obtained the 
solution to such a dispersion relation by numerical methods, using the rand () com­
ponents of equation (2) together with the two boundary conditions used by Davies and 
Christiansen (1969) in their treatment of the high frequency branch of the dispersion 
relation (helicon waves): 

(by)r=a = 0 and (abe/ar +r-1be)r=a = O. 

We find, as did Swanson et al. (1964), that the values of k computed from the 
'two y' dispersion relation are within 1 % of those obtained from the 'one y' dispersion 
relation of De Silva (1961) and others, over a wide range of frequencies. For example, 
for waves propagating at 6 MHz in hydrogen with Bo = 0·8 T, n = 2 x 1021 m - 3, 

T = 104 K and a neutral particle density of 8 x 1021 m - 3, the values of Yi (in complex 
notation) are given by 

Yla = (3·81,0·007) and Y2a = (6·88,15·74). 

The value of ya computed from J1(ya) = 0 is ya = (3 ·83, 0). We see that Yl ;:::J yand 
Y2 has a large imaginary part. Thus J1(Y2r) behaves very much like 11, a modified 
Bessel function of the first kind which diverges as r increases. Furthermore, since 
terms in Y2 enter the expressions for br and be in the form J1(Y2r)/J1(Y2a), they have 
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Fig. 1. Illustrations of three radial non­
uniformities in the ion density distribution (a), 
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and imaginary (c) parts of the dispersion curve, 
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radial profiles of b. computed at 10 MHz, for 
the plasma conditions described in the text. 
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little effect except near the boundary. We note, in passing, that it is precisely this 
feature that makes it possible to match the boundary conditions for nonconducting 
walls, where the conducting wall condition (br)r=a = 0 is replaced by the requirement 
that br, which is in general nonzero at a nonconducting boundary, is continuous across 
the boundary. 

(b) Nonuniform Plasma with Conducting Boundary 

In order to obtain the dispersion relation and radial wave field profiles for com­
pressional Alfven waves in a plasma including effects due to resistivity, neutral 
particles, and non uniformities in the ion density, neutral density and temperature, 
the appropriate components of equation (1) must be integrated numerically. For 
computational convenience, we choose to work with the rand () components of 
equation (1). The equations are solved, subject to the boundary conditions, as four 
simultaneous complex first-order differential equations by using the fourth-order 
Runge-Kutta integration method. The starting values for the integration, which 
begins at the origin, are obtained from the uniform plasma solution discussed in 
subsection (a) above. 

The input data to the calculation, which was performed on the Adelaide University 
CDC 6400 computer, specify the plasma conditions, including any measured or 
assumed radial variations in densities or temperature, and the wave frequency. The 
output gives the real and imaginary parts of the wave number and the radial depen­
dence of the amplitudes and phases of the wave magnetic fields. 

Since it is difficult to determine experimentally the radial variations in all three 
plasma parameters (ion density, neutral density, temperature), computations were 
first performed to evaluate the effects of radial variations in each of these parameters 
on the wave dispersion and field profiles. The gas used was hydrogen, and a standard 
set of average plasma conditions (corresponding quite closely to actual experimental 
conditions) was used in each computation: 

tube radius 

magnetic field 

momentum transfer cross section 

average ion density 

average total density 

average temperature 

a = 50mm, 

Bo = 0·8 T, 

QD = 8'Ox 10-19 m2 , 

n = 2·45 x 1021 m- 3 , 

nT = 10 x 1021 m - 3 , 

T= 1·06xI04 K. 

Fig. la shows the three ion density distributions chosen to determine the effects of 
radial variations in ion density, keeping total density and temperature uniform. All 
three ion density distributions are normalized to the same average density. Figs Ib 
and lc show the effect of these distributions on the real and imaginary parts of the 
wave number. We note that, as the frequency decreases, the curves for both kr and k i 

merge at f ~ 3 MHz whereas for the resistiveless case the curves for kr remain 
separated (Morrow and Brennan 1971). This effect is primarily due to the increased 
coupling between ions and neutrals at lower frequencies, which results in an effectively 
uniform mass density across the tube despite significant radial variations in ion 
density. 
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The amplitudes and phases of the axial magnetic field component bz are shown in 
Figs Id and Ie for 10 MHz, the highest frequency considered. We note the marked 
departures of these curves from the Jo(yr) Bessel function distribution, which holds 
for the uniform resistiveless plasma. Calculations of the Poynting vector show that 
there is a flow of energy from regions of lower density towards regions of higher 
density. Thus, with resistivity and ion-neutral collisions, the wave in a nonuniform 
plasma is refracted towards the high density regions, and this produces a phase 
velocity that is less than that for a uniform plasma of the same average density. 
Although the curves for bs and br are not given, they show similar departures from 
the Bessel function shape (in this case, J1(yr)). In particular, bs is not zero at the 
boundary but is always small (;$10% of the maximum value for the uniform plasma) 
and approaches zero as the plasma density at the boundary approaches zero. 
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Fig. 2. (a) Real part of the dispersion curve computed for the three total particle distributions 
shown in the inset and under the plasma conditions described in the text. (b) Imaginary part of the 
dispersion curve computed for the three temperature distributions shown in the inset and under the 
plasma conditions described in the text. The results for the parabolic and 'annular' temperature 
distributions are so close that they are both represented by the dot-dash dispersion curve. 

The effect on the dispersion relation of varying the total particle density distribution 
is considerably less than the effect of similar variations in ion density. As an example, 
Fig. 2a shows the effect on the real part kr of the wave number of the very large 
differences in total particle distributions shown in the inset. Each curve is obtained 
for the same ion density distribution, which was chosen to be the measured ion density 
of Fig. la. We note that, despite the very marked differences in the total particle 
distributions, the effect on kr is less than that shown in Fig. lb except at low frequencies. 
It is also of interest to note that the effect on kr is not very frequency dependent. The 
effect of radial variations in total particle density on the imaginary part of the wave 
number is similar, being relatively small and not strongly frequency dependent. 

The effect on the dispersion relation of radial variations in temperature is also 
small. Again, we choose conditions similar to those encountered in the experiments: 
the measured ion density of Fig. la and a uniform total particle distribution. We find 
that radial variations in temperature have a relatively minor effect on k r • The effect 
on k; is somewhat larger although still considerably less than the effects produced by 
radial variations in ion density. As an example, Fig. 2b shows the effect on k; of the 
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three temperature profiles shown in the inset. Clearly, radial variations in temperature 

have only a small effect on the dispersion curves. In later comparisons between theory 

and experiment, we make only a small error by assuming that the radial temperature 

profile has the same shape as the ion density profile. 

It is of interest to note that a nonuniform temperature distribution results in reduced 

damping. This effect was predicted by Woods (1963). Our calculations of the Poynting 

vector show that this effect results from the refraction of the wave towards regions of 

higher temperature and hence of smaller resistivity. 
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Fig. 3. Comparison of the real (a) and imaginary (b) parts of the dispersion curves obtained with 

conducting and nonconducting boundaries for the plasma conditions described in the text. Amplitude 

(c) and phase (d) of b, as computed with the nonconducting wall theory are shown for the plasma 

conditions described in the text. Note that the 6 MHz phase curve is not shown because it lies too 

close to the other curves. The plasma radius is 50 mm. 

(c) Nonuniform Plasma with Nonconducting Boundary 

The method of solution of equation (1) for a plasma with a nonconducting boundary 

at r = a closely parallels that used for the conducting boundary case. Again, we 

consider the rand () components of the equation, integrating out from the origin. 

At the boundary, the fields in the plasma must be matched to the vacuum fields. 

Since the wave frequencies are low we may neglect the displacement current and obtain 

for the vacuum wave magnetic field 

b = Al KI(kr); -iAI Ko(kr)Z, 

" 
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where Ko and Kl are modified Bessel functions of the second kind of orders zero and 
one. We now require three boundary conditions at r = a rather than two as in the 
conducting boundary case. These are readily obtained from Maxwell's equations and 
the requirement that surface currents of infinite density cannot occur in a plasma with 
finite resistivity: 

[by]r=a = 0, 'jump' in br = 0; 

(be)r=a = 0, be zero at boundary; 

[ebrler]r=a = 0, 'jump' in ebrler = o. 
The results of a typical calculation for a plasma with nonconducting walls are 

shown in Fig. 3. In Figs 3a and 3b we compare the real and imaginary parts of the 
dispersion relation for identical plasmas with conducting and nonconducting walls. 
The plasma conditions used for the calculations are a magnetic field of O· 8 T, the 
measured ion density of Fig. la, a temperature profile with the same shape as the 
ion density profile and an average value of 1·02 x 104 K, a uniform total particle density of 5·4 x 1021 m -3 and an ion-neutral collision cross section of 5·1 x 10-19 m2 • 

The radial dependences of the amplitude and phase of the br field component are shown in Figs 3c and 3d for three wave frequencies. We note that, whereas at high 
frequencies the wave fields are largely confined to the plasma, at low frequencies the 
fields penetrate for a considerable distance into the vacuum region. This behaviour results in the very significant difference that occurs at low frequencies between the 
dispersion curves for conducting and nonconducting walls. In particular we note that, 
even though there is a relatively sharp cut-off frequency for the nonconducting wall 
case, the damping remains relatively small because an increasing proportion of the 
wave energy is stored in the vacuum as the frequency decreases, leaving less energy in the plasma to be dissipated. 

3. Experimental Apparatus 

The experiments were carried out using the plasma source FPS-l, described by 
Blackburn et al. (1969). The cylindrical glass vacuum vessel is 0·9 m long and 102 mm 
in diameter. When conducting wall boundary conditions are required, a 100 mm 
diameter stainless steel tube can be inserted into the vacuum vessel. A residual gas 
pressure of 3 x 10- 6 torr is achieved by conventional pumping methods. For the wave 
experiments, hydrogen is continuously admitted to the vacuum vessel through a 
palladium leak. The resulting working gas pressure is 0·15 torr. 

The vacuum vessel is enclosed by solenoid coils energized by a capacitor bank, 
enabling axial magnetic fields of up to 0·8 T to be achieved. The rise time of the field 
is approximately 10 ms and the plasma is produced at the time of peak magnetic field. 
The plasma is produced by a normal ionizing shock wave which is driven down the 
tube by a square current pulse of amplitude ~ 45 kA and duration ~ 40 j.ls. The 
current in the plasma is produced by discharging a fast capacitor bank through a pair 
of coaxial electrodes located at one end (the 'firing' end) of the vacuum vessel. A 
schematic diagram of the source is shown in Fig. 4. 

Electron density measurements were made using an eight-channel polychromator 
(Stirling and Westwood 1968) to observe the Stark broadening of the Hp line of 
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hydrogen. Radial density profiles were obtained by observing along optic axis 1 
(OA1) of Fig. 4, located at different radial positions. The average density in the wave 
propagation region could be monitored by making observations along optic axis 2 
(OA2). 

The compressional waves were launched 100 J.1S after the plasma preparation pulse 
had ended, by means of a 40 mm diameter copper launching loop (WLL) shown in 
Fig. 4. The loop, which was encased in glass, was positioned '" 100 mm from the 
receiving end plate and was concentric with the tube axis. A damped oscillating current 
was produced in the launching loop by discharging a variable number of capacitors into 
the inductive circuit of the single turn loop and the coaxial lead. The arrangement 
provided axial wave magnetic fields of 20-30 mT at frequencies up to 10 MHz. The 
waves were detected with 40-turn centre-tapped coils sealed into the tips of 6 mm 
quartz tubes. As shown in Fig. 4, the probes could be inserted into the vacuum vessel 
at three points to enable determination of the spatial dependence of the three compo­
nents of the wave magnetic fields. 

AP ARP 
RP 

l8J 1l8J 1;<f~ 
SSL 

Fig. 4. Plasma source FPS-l. The abbreviations used are: G, gauges; GVV, glass vacuum vessel; 
OA2, optic axis 2; CE, concentric electrodes; HI, hydrogen inlet; AP, axial probe; ARP, axial and 
radial probe; RP, radial probe; WLL, wave launching loop; OAI, optic axis I; CC, coaxial 
conductor; P, pumps; SC, solenoid coils; SSL, stainless steel liner. 

4. Results and Discussion 

(a) Conducting Boundary 

The dispersion relation and the radial wave field profiles with a conducting bound­
ary were determined experimentally for two values of the steady axial magnetic field. 
Only the results for 0·8 T are presented here. The results for O' 4 T, experimental 
checks on the existence of only the lowest order radial wave mode, and results for a 
deuterium plasma have been given by Morrow (1970). We also restrict our discussion 
to the radial profile of the bz component of the wave field; the profiles for bo and b, 
have been presented by Morrow. 

Radial profiles of the bz component of the wave, wave velocity and attenuation 
were obtained for six frequencies in the range 3-10 MHz for a hydrogen plasma with the 
measured radial density distribution shown in Fig. 5a. For these experiments the wave 
launcher was positioned 100 mm from the receiving end plate and the waves were 
detected by the axial and radial probe (ARP) shown in Fig. 4. 
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Fig.S. (a) Radial density profile (full circles) determined from Stark broadening 
measurements for hydrogen at 150 mtorr and o· 8 T. The solid line is the poly­
nomial fit used in the calculations. Attenuation and velocity measurements (b) 
for the compressional wave at 6 MHz and dispersion curves (c) for compressional 
waves are shown for the above-mentioned plasma conditions. 

Wave velocity and attenuation were obtained by measuring the time of arrival and 
amplitude of the bz wave signal at the centre of the tube for different axial positions. 
A typical set of results is shown in Fig. 5b. From these measurements the real and 
imaginary parts of the wave number could be determined, the values so obtained being 
shown in Fig. 5c together with the theoretical curves obtained by a least squares fitting 
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method (Morrow 1970). In this method, we assume that the radial electron tempera­
ture distribution has the same shape as the ion density distribution with a mean value 
of 1·02 x 104 K, equal to that obtained from spectroscopic observations. The total 
particle density nT is assumed to be uniform across the radius of the tube, and this 
quantity, together with Qo, is then used as a variable parameter in the fitting procedure. 

The sensitivity of the fit to variations in Qo and nT is shown in Figs 6a and 6b. 
Clearly, the fit is more sensitive to a change in the total particle density than to a 
change in the cross section. If we take as a measure of the error in each of these 
quantities the values at 1·5 times the best-fit r.m.s. percentage error, we obtain 

nT = (5·4±0·8)x 1021 m- 3 and Qo = (6·0:!:r8) x 10-19 m2 • 

20 

---c 
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Fig. 6. Sensitivity of the r.m.s. error between theory and experiment to vari­
ations in (a) cross section for nT = 5·4 X 1021 m - 3 and (b) total particle density 
for QD = 6'Ox 10-19 m2 • The dashed lines indicate the r.m.s. percentage errors 
of the experimental results. Part (c) shows a comparison between measured b. 
profiles (full circles) and theoretical profiles (solid curves), computed using the 
best fit values of QD and nT shown in (a) and (b), for hydrogen at 150 mtorr and 
o· 8 T. The dashed curve is the theoretical profile for a uniform plasma. 

The value for Qo, which has already been reported by Brennan and Morrow (1971), is 
in good agreement with theoretical calculations and with measurements of the scatter­
ing cross section. The value for nT is '" 50 % of the initial filling density (l ·1 x 1022 

atoms m - 3). This result for the afterglow of a shock-produced plasma is similar to the 
results obtained by other workers, notably Forman (1966) and Cross and Lehane 
(1967, 1968). It is of interest to compare the above results with the best fit values for 
Qo and nT that are obtained if the plasma is assumed to be completely uniform with 
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the same average ion density and temperature: 

nT = 5·0 X 1021 ill - 3 and QD = 9'lxlO-19 m2 • 

Thus the plasma nonuniformity has only a small effect on the value deduced for the 
total particle density, but a very large effect on that for the momentum transfer 
cross section. 

The results of measurements of the radial variation of bz are shown in Fig. 6c for 
3, 6 and 10 MHz. Also shown are the theoretical profiles computed using the best fit 
values of QD and nT shown in Figs 6a and 6b and the measured ion density profile of 
Fig. Sa. The computed profile for a uniform plasma is also shown for the 10 MHz 
case. It is of interest to note the relatively small difference between these theoretical 
profiles and those for the resistiveless case reported by Morrow and Brennan (1971). 
It is also of interest to note that the experimental results do not exhibit the deep 
minimum of the theory. This effect, which has been observed by other workers, is 
presumably due to the finite size of the probe and its influence on the wave currents, 
particularly in the vicinity of the field minimum which corresponds to a maximum in 
the wave currents. 
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Fig. 7. Comparison of experimental results (crosses) for the (a) real and (b) imaginary parts of the 
dispersion curves for nonconducting walls with the indicated theoretical results (curves) computed 
for nT = 5·4x 1021 m- 3 and Qn = 6'Ox 10-19 m2 • 

(b) Nonconducting Boundary 

Prior to performing the experiments with a conducting boundary, we carried out 
some experiments with a nonconducting boundary. The measurements, although 
somewhat preliminary, are presented here. The only other experimental work on 
compressional Alfven waves with a nonconducting boundary appears to be that of 
Jephcott and Ma1ein (1964) and Malein (1965), in which a conducting wall was 
placed in contact with the outside surface of the glass vacuum vessel. The present 
experiments were performed in hydrogen at a pressure of 0·15 torr and a magnetic 
field of 0·4 T. The wave launcher was that used for the conducting wall case and the 
waves were detected by the axial probe (AP) shown in Fig. 4. Thus only the on-axis 
amplitude and arrival time of the bz component of the wave were determined. 

The determination of ion density was limited to observations of Stark broadening 
using optic axis 2 (OA2) of Fig. 4, i.e. across the tube. The 'average' density so 
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obtained was 3·0x 1021 m- 3 at the time of wave launching. For the purpose of 
calculating theoretical dispersion curves it was assumed that the density profile had the 
same shape as that shown in Fig. Sa, but with an average value of 3·0 X 1021 m - 3. 

The temperature and total particle density were assumed to be the same as those 
determined for the conducting boundary case at 0·8 T. With these rather approximate 
plasma parameters we cannot expect a good fit to the experimental result~. However, 
the theory should provide a semiquantitative description of the results. 

The experimental results are shown in Fig. 7 together with the computed dispersion 
curves for conducting and nonconducting walls. Above 2·8 MHz there is little differ­
ence between the computed dispersion curves for conducting and nonconducting walls, 
and the fit between theory and experiment is surprisingly good. Below 2·8 MHz the 
experimental values diverge quite markedly from both theoretical curves in a way 
which suggests that the waves are behaving as though they are propagating in a plasma 
with conducting walls and with a lower cut-off frequency than used in the theory. 

The agreement between theory and experiment at high frequencies indicates that 
the approximate plasma parameters used in the theory adequately describe the plasma. 
The behaviour at low frequencies is presumably due to the interaction of the vacuum 
fields of the wave (which are quite large and extensive at low frequencies) with the 
solenoid coils used to produce the axial magnetic field. These coils, which are '" 7 cm 
long with gaps of '" 5 cm, will act like a continuous conductor at low frequencies. The 
wave will thus exhibit a cut-off frequency which, because of the larger diameter, will 
be at a lower frequency than for the case when the conductor is at the vacuum vessel 
wall. 

5. Conclusions 

Our results show that radial nonuniformities in plasma parameters have significant 
effects on the propagation characteristics of compressional Alfven waves. Non­
uniformities in the ion density have the largest effect and must be taken into account 
before good agreement can be achieved between theory and experiment. Radial non­
uniformities in temperature and total particle density have less effect, although it is 
useful to take some account of the effect of radial nonuniformities in temperature on 
the attenuation length. 

The excellent fit between theory and experiment has enabled us to determine values 
for the total particle density in the afterglow of a shock-produced plasma and the 
cross section for momentum transfer between protons and hydrogen atoms. The 
values obtained are free from the uncertainties of earlier determinations in which a 
uniform ion density was assumed. In particular, we have shown that the assumption 
of uniform density for a plasma with a known nonuniform density produces an over­
estimate of the momentum transfer cross section. For the chosen plasma conditions, 
which are typical of those used by earlier workers such as Cross and Lehane (1967, 
1968), the error made is as much as 50 %. The average total particle density is, on the 
other hand, well determined even if a uniform ion density is assumed. 

The completeness of our treatment of the effects of plasma nonuniformities, ion­
neutral collisions and resistivity enables us to evaluate also the range of validity of 
previous approximate theories. In particular, the quadratic solution developed by 
De Silva (1961), Woods (1962) and others accurately predicts the phase velocity at low 
frequencies. Nonuniformities in ion and neutral particle density have only minor 
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effects on the wave attenuation. However, a nonuniform temperature distribution will 
lower the wave attenuation below that for a uniform temperature distribution at all 
frequencies. 

The solution presented for the compressional wave propagating in a plasma with 
a nonconducting boundary is the first to include ion-neutral collisions, the v x B term, 
the ion cyclotron term and the effect oflarge resistivity, as well as to extend the theory 
to include the effects of plasma nonuniformities. The theory agrees well with the 
experimental results at high frequencies. Better agreement at low frequencies could 
presumably be achieved by including effects due to conductors, such as solenoid coils, 
that are external to the plasma. 

Acknowledgments 

The authors acknowledge the financial support provided for this work by the 
Australian Institute of Nuclear Science and Engineering and the Australian Research 
Grants Committee. They also acknowledge helpful discussions with Dr H. A. Blevin, 
Dr B. Davies and Dr P. F. Liddle. 

References 

Blackburn, T. R., Brennan, M. H., and Fletcher, J. (1969). Plasma Phys. 11, 655. 
Blevin, H. A., and Christiansen, P. J. (1968). Plasma Phys. 10, 799. 
Brennan, M. H., and Morrow, R. (1971). J. Phys. B 4, L53. 
Cross, R. C., and Lehane, J. A. (1967). Nucl. Fusion 7,219. 
Cross, R. C., and Lehane, J. A. (1968). Physics Fluids 11,2621. 
Davies, B., and Christiansen, P. J. (1969). Plasma Phys. 11, 987. 
De Silva, A. W. (1961). Lawrence Radiation Lab. Rep. No. UCRL-9601 (ph.D. Thesis). 
Forman, P. R. (1966). Lawrence Radiation Lab. Rep. No. UCRL-17177 (ph.D. Thesis). 
Jephcott, D. F., and Malein, A. (1964). Proc. R. Soc. A 278,243. 
Malein, A. (1965). Nucl. Fusion 5, 352. 
Morrow, R. (1970). Ph.D. Thesis, Flinders University. 
Morrow, R., and Brennan, M. H. (1971). Plasma Phys. 13, 75. 
Pneuman, G. W. (1965). Physics Fluids 8,507. 
Stirling, A. J., and Westwood, W. D. (1968). Rev. scient. 111$trum. 39, 1575. 
Swanson, D. G., Gould, R. W., and Hertel, R. H. (1964). Physics Fluids 7, 269. 
Woods, L. C. (1962). J. Fluid Mech. 13, 570. 
Woods, L. C. (1963). Physics Fluids 6,729. 

Manuscript received 20 August 1973 




