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Abstract 

A simple model Hamiltonian is used to calculate exactly the line shapes of magnon sidebands in 
excitonic spectra in a ferromagnet, using Green functions. The effect of a spin defect in the crystal 
is included in the calculation. In contrast to previous work, no approximations involving Green 
function decoupling are necessary for this Hamiltonian which, however, contains the essential 
physical features of the problem. Some one-dimensional crystal line shapes are calculated to 
illustrate the features of the theory, and application to realistic crystals is discussed. 

Introduction 

Magnon sidebands, the result of interactions between magnons and excitons, have 
been observed in the excitonic spectra of magnetic crystals by several experimenters 
(Green et af. 1965; Stevenson 1966; Johnson et al. 1966). Tanabe et af. (1965), 
Parkinson and Loudon (1968), Loudon (1968), Parkinson (1969) and Bhandari and 
Falicov (1972) have put forward theories to explain the magnon sideband based on the 
mechanism of magnon-exciton interaction proposed by Sugano and Tanabe (1963). 
All these theories required approximations to obtain results because their Hamilton­
ians, although physically realistic, were nonlinear, and could not be diagonalized. The 
Hamiltonian chosen in the present paper retains the physical significance of earlier 
theories but also includes the effect of an impurity. Computation of the effect of the 
impurity is made manageable by defining a Hamiltonian which is quadratic in form 
and is exactly soluble despite the lack of translational invariance caused by the defect. 
We are able to make a clear physical interpretation of the results. The theory may 
also be extended to antiferromagnetic crystals near the ground state. 

Model Hamiltonian 

The phenomenological Hamiltonian is chosen to represent the magnons and 
excitons (of the Frenkel type) in the crystal, and includes a magnon-exciton inter­
action term. The defect is accounted for by an interaction term between magnons. 
The advantage of this Hamiltonian is that it is exactly soluble and one can keep 
track of the physical significance of the results, in contrast to previous theories where 
the approximations necessary for solution of the more accurate Hamiltonians have 
tended to make interpretations more difficult. The present Hamiltonian takes the form 

JIf = I £l(k)a: ak + L £2 bt bk +g L (at bk +bt ak) +yN- 1I at ak" (1) 
k k k k,k' 
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for N atoms in the crystal. The operators at, ak and bt, bk are creation and annihila­
tion operators for the magnons and excitons respectively, while 81(k) is the magnon 
energy and 82 the exciton energy. We neglect any dispersion of the exciton branch 
which is generally small. The strength of the magnon-exciton interaction is taken 
to be independent of wave number. The effect of a spin impurity is given by the last 
term of equation (1). In general y would be dependent on k and k', but for simplicity 
we ignore this here, although it could be treated, in principle at least, under this 
model. Callaway (1963) has given an expression for y(k, k') (his equation (A3». 

The magnon energy may be written as 

8 1(k) = 2JSL:(1-cosk.A) -2zJs2p, 
A 

(2) 

where we have set the zero of the energy scale at the ground state energy -JNSz2 and 

p = (J ' S I -JS)/JS, 

with J and S the exchange coupling and spin of the host atoms and J I and S I the 
corresponding characteristics of the defect. The sum over A in equation (2) js over 
nearest-neighbour sites in the crystal, z being the number of nearest neighbours. 

The form of the magnon-exciton coupling proposed by Sugano and Tanabe (1963) 
is an interaction arising out of the coupling between a pair of nearest-neighbour ions. 
It is an exchange coupling where one of the ions is raised to an excited electronic state 
and has its spin component changed by unity, while the other ion has an accompanying 
unit change in spin to conserve the total spin of the system. Parkinson and Loudon 
(1968) have used this type of interaction to describe the isotropic magnon-exciton 
interactIon, as well as including it in the electric dipole moment which couples to an 
external electromagnetic field. Instead of including the interaction at both places in 
the present Hamiltonian, we have assumed that the external· electromagnetic field 
E cos Wo t couples only to the excitons. The interaction term chosen represents the 
exciton interaction of Sugano and Tanabe (1963) in a phenomenological manner. 

Calculations 

We are interested in the optical absorption of a crystal with the Hamiltonian (1) 
which is perturbed ~y a Hamiltonian of the form 

£ = - LPn. E , (3) 
n 

for an electric dipole moment Pn of the nth ion. We ignore the effect of the magnetic 
component of the external field and represent the Frenkel exciton as a simple harmonic 
oscillator. Then the Hamiltonian (3) becomes, in second quantized form, 

£1 = ilXN-t 'L(bt-bk)Ecoswot, 
k 

(4) 

where the electric field is in the direction of polarization and IX represents unit 
polarization of the ion. 

The optical absorption is given by the imaginary part of the Green function 

G(t-t') = (<P(t-t')'£l(O»)/E (5) 
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for a crystal dipole moment 
P Lern • 

n 

rn being the displacement of the nth exciton in the lattice. The Green function (5) 
depends on Green functions of the operators bt and bk , and to evaluate these latter 
functions we will use the equation of motion method (Zubarev 1960). Thisrequires 
firstly a diagonalization of the Hamiltonian (1), which in matrix form becomes 

$f = [at; bt ] [: :] [::], (6) 

where 
ak1 

[::] = 

akN 

bk1 
[at;btJ = [at., ... ,atN;bt., ... ,btNJ, 

bkN 

A= [

81(k1)+YN-1, yN-t, ... , yN-1 ] 
yN-t, 8 1(k2)+yN-t, ... , yN- 1 

. , 

yN-1, ... , 81(kN)+yN-1 

B= [

g, 0, ... , 0] 
0, g, ... , ° 
.. .' 

~, .: .... , ~ 
D= [

82' 0, ... , ° 1 
0, 82, ... , ° 
..' .. .. . .. . 
0, ...... , '82 

To diagonalize equation (6) we first attempt to diagonalize the submatrix A. Note 
that submatrices Band D are scalar matrices so that any transformation which will 
diagonalize A will leave Band D unchanged. The secular equation for A is 

D(A) = n {81(k) -A} +yN-1 L n {81(k') -A} = O. (7) 
k k k'","k 

This is more conveniently written by dividing by the defect-free secular equation 

DO(A) = n {81(k) -A} (8) 
k 

to give 
!'}(A) = 1+ yN- 1 L {81(k) -Ar1 = 0. (9) 

k 

The eigenvectors of A have the form 

{81(k1) _A}-l 

SA = Nil I {81(k i) -A} -1 I , (10) 

{81(kN) _A}-l 
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where 

N" = (f{61(k)-A}-2f. (11) 

The matrix S formed with (10) as columns will then give the transform to diagonalize 
A. Since A is symmetric and S is normalized, we have that S is unitary and so 
S -1 = S +, the transpose of S (Bellman 1960). 

We now form the matrix 

p = [: :], (12) 

where 0 is the null matrix. The Hamiltonian (6) may then be written 

Yf = [at; htJ pp+ [: :] pp+ [::] 

= [at;htJ p [~ :] p+ [::] , (13) 

where A. is the diagonal matrix whose diagonal elements are the eigenvalues of A, 
given by equation (9). 

The matrix in (13) is now block diagonal and symmetric and may thus be com­
pletely diagonalized by treating it as 2 x 2 matrix. The eigenvalues will then be 
given by 

A ±(A) = t(A+62H-t{(62 _A)2+4g2}t (14) 

(from equation (9), A has N values) and the transition matrix to diagonalize the 
matrix in (13), properly normalized, is 

[T11 T12] , (15) T= 
T21 T22 

where 

X(Al) + Y(Al) 0, ° [1 + {X(Al) + Y(Al) }2]t' 

0, 
T11 = I, (ISa) 

° 
0, 0, 

X(AN) + Y(AN) . 
[1 + {X(AN) + Y(AN)}2]t 

[1 + {X(Al) + Y(Al) }2] -t, 0, . ° 0, 

T21 = I , (ISb) 

° 0, 0, [1 + {X(AN) + Y(AN)}2]-t 
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X(A'l) --' Y(Ai) 0, • ° [1 + {X(Ai) - Y(Ai) V]t' 
. 

0, 

T12 = I I , (15c) 

° 
0, ° x(AN) - Y(AN) 

. , [1 + {x(AN) - Y(AN) }2]t 

[1 + {X(Ai)-Y(Ai)}2]-t, 0, • ° 0, 

T22 = I I , (15d) 

° 0, 0, [1 + {x(AN)-Y(AN)V]-t 

with 
x(A) = (e2 -A)/2g, yeA) = {1 +x(A)2}t. (l5e) 

The matrix T is also unitary, so T- i = T+. Thus equation (13) may be written 

yt = [at; btJ pTT+ [~ :] TT+P+ [::] 

[ +. b+] [A + 0 ] [ak ] = ak , k PT 0 A _ T+ p+ b
k 

' (16) 

where the A ± are diagonal matrices with elements A ± (A) as given by equation (14). 
We can now define new operators Cu and Cu for which the Hamiltonian is 

diagonal: 

[Cu ] = T+ p+ [ak ] = R + [ak ] , 

Cu bk bk 

(17) 

where 
R=PT. (18) 

If we expand the square root in equation (14), it will be seen to first order that 

,1+(,1) ~ e2' r(A)~A. (19a, b) 

Hence, since yt in diagonal form is 

yt = I {A+(A)Ci~Cu +r(A)C2~CU}, (20) 
). 

we thus generate two bands of energy: one near the exciton energy, which we term 
the 'exciton band', and one near the magnon energy, the 'magnon band'. It will be 
seen that the width is influenced by the magnon-exciton interaction, and given by the 
dispersion formulae (14). Thus one may interpret Cu and Cu as representing 
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magnon-exciton pairs formed as a result of the interaction g, the operator Cu being 
exciton-like and Cu being magnon-like. 

Putting 

[Rll Rl2] R= , 
R21 R22 

then R-1 = R+ = [Rtl 
Rt2 

and, on performing the multiplication (18), we obtain 

1 X(A) + yeA) _1 
Rll(k;A) = N.t [1 + {X(A) + Y(A)}2]t Bl(k) -A' 

1 X(A) - yeA) _1 , 
R 12(k;A) = N.t [1 + {X(A)- Y(A)}2]t Bl(k)-A 

1 1 1 
R 21(k;A) = N.t [1+{X(A)+Y(A)}2]tBl(k) -A' 

1 1 _1. 
R22(k;A) = N.t[1+{X(A)-y(l)}2]tcl(k)-A 

Ril] 
Ri2 

(21) 

(22a) 

(22b) 

(22c) 

(22d) 

We thus have the complete diagonalization of the Hamiltonian (1), given by the 
form (20). Equation (5) becomes, in terms of the operators bt and bk , 

G(t-t') = _a2N- 1 I «bt(t-t')-bk(t-t'), bt,cO)-bk·(O») , (23) 
k,k' 

giving four distinct Green functions. On transforming to the new operators Cu and 
Cu , using equation (17) and its conjugate, we obtain the following Green functions, 

«bt(t-t'), bt.(O») 

= I {R21(k;A)R21(k';A')«Cl~,Cl~'» +R21(k;l)R2ikl;A')«Cl~,C2~'» 
.t,.t' 

+R2ik;l)R21(k'; A')«C2~' Cl~'» +R2ik; A)R22(k'; A') «Ci.t, ci.t.»} , 

(24a) 
«bit-t'), bt·(O») 

= I {R21(k;A)R21(kl;A')«CWC1~'» +R21(k;l)R2ik';A')«CU,C2~'» 
;.,;.' 

+ R 22(k; A)R21(k'; A')«CU ' Cl~'» + R 22(k; A) R22(k'; A')«C2)., Ci.t.»} , 

(24b) 
«bt(t- t'), bk.(O») 

= I {R21(k;A)R21(kl;A')«Cl~'CU'» +R21(k;A)R22(k';A')«Cl~'C2).'» 
A,A' 

+R22(k; A)R21(k'; A/)«C2~' Cu·» +R2ik;A)R2ik'; A')«C2~' CU '»} , 

(24c) 
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«bit-t'), bk.(O») 

= L {R21(k;A)R21(k';A')«CU,Cu'» +R21(k;A)R22(k';A')«Cu,Cu'» 
;.,;.' 

+R22(k; A)R21(k'; A')«Cu , Cu '» + R22(k; A)R22(k'; A')«Cu , Cu '»}. 

(24d) 

The commutation rules for the new operators are obtained from equation (17), e.g. 

[Cu,Cij.,] = L [R11(k;A)ak +R"li(k;A)bk, RilCk'; A') a; +Rii(k';A')bt,] 
k,k' 

= L {R1/(k;A)R1/(k';A')[ak,at.] +R1lCk;A)R1l(k';A')[bk,bt,]} 
k,k' 

= L {R1/(k;A)R1/(k;A') +R1lCk;A)R1lCk;A')} = I5(A,A'), (25) 
k 

using the boson commutation rules for ak and bk and the fact that they commute with 
each other. Similarly we have 

[Cu , Ci;.,] = I5(A, A') (26) 

and all other commutators are zero. 
U sing the commutation rules (25) and (26) it is possible to show that all the Green 

functions on the right-hand sides of equations (24) are zero except < < Ci;., CU '»' 
«CwCi;..», «Ci;.,Cu '» and «Cu,ci;.,». The equation of motion of the first 
of these is 

ih :/<Cl~'CU'» = l5(t)<[Cl~(O),Cu'(O)]) -A+(A)«Cl~'CU'» 

and, taking a time Fourier transform, 

Similarly 
«Ci;..Cu '»", = -N-l l5(A,A')/{hw+A+(A)}. 

«Cw CiA'»'" = N- 1 O(A,A')/{hw-A + (A)}, 

«Ci;.. Cu '»", = -N-l l5(A,A')/{hw+A -(A)}, 

«Cu , Ci;.,»", = N- l l5(A,A')/{hw-r(A)}. 

Using the relations (24) and (27), equation (23) becomes 

G(W) = _rx2N- 2 L [R21(k;A)R21(k';A){(hw+A+(A)rl_(hw-A+(A)rl} 
k,k'jJ.. 

(27a) 

(27b) 

(27c) 

(27d) 

+R2ik; A)R22(k' ;A){(hw+A -(A)r 1-(hw-r (A) )-l}]. 

(28) 
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As the elements of R are all real, the optical absorption, which is given by the 
imaginary part of equation (28), is 

rx.2rr 
X(w) = - ---, L [R21(k;A)R21(k';A){<5(liw+A+(A»)-<5(liw-A+(A»)} 

N k,k';). 

+ R22(k; A)R2ik'; A){<5(liw+A ~(A) )-<5(IiW-A -(A»)}], 
using 

Im(x-ie)-ll ..... o+ = rr<5(x). 

As both <5(IiW+A+(A») and <5(IiW-A+(A») cannot be nonzero, we choose the second 
of these, so that 

rx.2rr 
X(w) = + -2 L {R21(k;A)R21(k' ;A)<5(IiW-A+(A») 

N k,k';)' 

+R22(k; A)R22(k'; A) <5(IiW-A -(A»)}. (29) 

The delta function may be written 

• <5(IiW-A±(A») = <5(A-Av)/I At±(A)I, (30) 

where the prime denotes differentiation with respect to A here, and Av satisfies the 
relation IiW-A±(Av) = 0, or 

Av = {liw(liw-e2)-g2}/(liw-e2) (31) 

using equation (14). 
We can sum (29) over A if we use the density of states function g(A) defined by 

(Callaway 1964) 

g(A) = rr- 1 Im;A(lnD(A») = rr- 1 Im;A(ln~(A) +lnDO(A») , (32) 

from equations (7) and (9). After summation over A, equation (29) then becomes 

2 

X(W) = rx. ~ L {R21(k; Av)R21(k'; Av)g(Av) 1 A' + ()'v) 1- 1 

N k,k' 

+R2ik; Av)R22(k'; Av)g(Av) 1 X-CAy) 1- 1}. (33) 

However, from equation (14) 

A:±(A) = 1(1+ -(e2- A) ) (34) 
"2 - {(e2-A)2+4g2}t 

and using (31) it can be shown that, in equations (22c) and (22d) respectively, 

A'+(Av) = 1+{x(A)+Y(A)}2 and A'-(Av) = 1 + {X(A)-Y(A)} 2 , 

where X(A) and yeA) are as defined by equations (15e). Thus (33) becomes 

rx.2rr (1 1 1 A ) 
X(w) = N2 k~' Nt. e1(k)-Ay e1(k')-Ay g( v) • (35) 
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The ranges for the magnon and exciton bands are given in equation (35) by the 
ranges for which g(A.) is nonzero. The 'magnon sideband' is considered to be the 
exciton band in this expression. Apart from these two bands, equation (35) allows 
the possibility of local modes produced by the presence of the defect. These will be 
represented as D-functions at frequencies outside the bands given by 

I D(A) I = 0 

(Maradudin et al. 1963). When the number of defects is n, this may be accounted for 
by summing over all defect sites. If we assume that all defects are identical, we may 
introduce the concentration C = n/ N of defects into the first term of equation (32), 
provided that C is sufficiently small for the interaction between the defects to be 
ignored. 

For the ideal crystal, with y = 0, the matrix P becomes the identity matrix, as A 
in equation (6) is already diagonal, so that the sum of any column of the submatrix S 
of Pis 1, that is, 

Hence in this case 

N A- l L {8l(k)-A}-l -+ 1 
k 

as 

XO(w) = (ahc/N)go(A.) , 

y -+ O. (36) 

(37) 

where go(A) is the density of states function defined from the secular determinant (8). 
It should be pointed out that although we have used the external electric field 

magnitude E in expressions for X(w), this will not be the actual field present at the 
exciton dipole. The true field is that which is modified by the environment of the 
exciton and would more accurately be given by 

E' E.E, 

for some dielectric tensor E. 

One-dimensional Model 

To illustrate the properties of the results obtained above, we consider a one­
dimensional crystal, or equivalently a crystal in which the magnons propagate in 
one dimension only. For this problem we can obtain an exact analytic solution. 

Now there are two nearest neighbours, z = 2, and equation (2) becomes 

8l(k) = 80(l-occosk), 
where 

80 = 2JSz(l-Sp), oc = (l-Sp)-l. 

(38) 

(39) 

The secular determinant (9) may now be evaluated by changing the sum to an integral 
to give 

!')(A) = 1 +iY/{OC28~-(80-A)2}t, 
for 

OC28~ > (80 - A)2 . 
Thus using equation (32) 

(A) _ yn180-AI 
g - 1tfOC28~-(80-A)2}i {OC28~+y2_(80- ,,?, +gO(A), 

(40) 

(41) 

(42) 
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with 
go(A) = N/n{ex2e~-(eo-A)2}t, (43) 

and g(A) is only nonzero for the condition (41), apart from any local modes. Use of 
equation (31) in (41) gives the ranges of the two bands, for ex > 0: 

eo(1-ex)-e2{1 (1+ g2 )t} 
2 !{eo(1-ex)-e2}2 

eo(1 + ex) - e2 1 - 1 + 2 ( g2 )t} 
< IiW- e2 < 2 { !{eo(1+ex)-e2} (44) 

and 

eo(1-ex)-e2{1+(1+ 1 (1~:)-e2}2r} 
2 4leO 

eo(1+ex)-e2 g . (45) 2 )t} 
< Iiw-e2 < 2 {1+(1+ !{eo(1+ex)-e2}2 

For ex < 0 the inequalities are reversed. Then, (44) gives the range of the exciton band 
and (45) the range of the magnon band. It is the former which is usually termed the 
magnon sideband. 

From equations (9) and (11) we have 

Nf = L ( 1 )2 = N d I ~(A) I 
k el(k)-A Y dA ' 

and so, using equation (40), 

Nf = Nleo-AI/{ex2e~-(eo-A)2p/2. (46) 

Then equation (35) becomes, for a one-dimensional model, 

2 {2 2 ( 1 ·)2}3/2 
(w) = ex n ex eo- eo-/\'v (A) 

X N y2 I eo - Av I g v (47) 

for the two ranges (44) and (45). 
The presence of the defect will also contribute some local modes which lie outside 

the ranges of (44) and (45). Such modes will be represented as delta functions, of 
strength equal to the concentration C of the defect, and at frequencies w given by 
the solutions of 

1- y/{(eo-Av)2-ex2e~}t = 0, 

which are, from equation (31) 

IiW- e2 = eo+(ex2e~+l)t-e2{1±(1+ g2 )t}. (48) 
2 t{eo+(ex2eo+y2)t-e2Y 

It will be seen that the frequencies given by (48) lie outside the two bands (44) and 
(45), and that one local mode is just above the magnon band and one just above the 
exciton band. The separation from the band is dependent on y, the defect energy. 
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A plot of the two line profiles is .shown in Fig. 1 for the specified values of the 
parameters 80/82' Y/82, g2/8~, (X and concentration C of the defect. The frequency 
scale is given in terms of 82' It is seen from the figure that the effect of introducing 
an imperfection into the lattice is to dramatically alter the excitonic spectrum from 
that of a perfect lattice by shifting the square root discontinuity fro~ the. edges of 
the two branches of the spectrum to approximately the centre of each branch (the 
case when y -+ 0 is discussed above). The displacement of the discontinuities from 

3 

.-.. 
.~ 

~ 2 
.-:: 
of 
..!!.-
§ ., 
~ 

o 

Magnon branch 

X Pure crystal 

• With impurity 

0·75 

Frequency (E 2 units) 

Exciton branch 

Fig. 1. Excitonic spectrum of a one-dimensional ferromagnet with impurity, of concentration 
C = 0·5, for the parameters Bo/B2 = 0'5, "I/B2 = 0'01, g2/8~ = 0·16 and Of: = 0·5. The exciton 
branch contains the 'magnon sideband'. The frequencies are given in units of the exciton energy B2' 
For the parameters chosen, the branches have the ranges: magnon, 0'07670782 to 0'45592482; 
exciton, 1.17329382 to 1· 294076 82. 

the exact centre of each branch is caused by the interaction g, the magnon peak being 
shifted to higher frequencies and the exciton peak to lower frequencies. The effect 
of 9 may be seen from Fig. 2, which shows the dependence of the exciton branch 
line profile on g2 /8~ (in this figure the branch has been normalized to the frequency 
range 0 to 1). It is this branch which is studied in optical absorption experiments and 
which is known as the 'magnon sideband'. The magnon branch frequency is normally 
of the order of 10 cm-1 and is thus outside the scope of most optical absorption 
apparatus, while the exciton branch frequency is in the infrared or optical region and 
more readily studied. 

Fig. 2 shows that, as the interaction 9 is reduced, the exciton branch becomes more 
skewed. At the same time, the result (44) shows that the width of the branch reduces 
to zero, so that at 9 = 0 we have only a delta function at the exciton frequency. The 
magnon branch becomes symmetric in the range 0 to 1 as g2 /8~ approaches zero. 

It should be noted that the spectrum of Fig. 1 should include two local modes at 
frequencies given by equation (48). There will be one at a frequency just above the 
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magnon branch (here at 0.4560582) and one just above the exciton branch 
(1'2941482), As pointed out earlier, the separation of the local mode from the 
branch depends on the defect energy y, approaching the upper limit of the branch 
as y approaches zero. 

.--. 
'" "S 
" 
~ 
1 

§ 
'-5. 
(3 

~ 

o 

10-6 =g2/€~ 

'" 

" 

0-16 

0-5 

Frequency 

Three-dimensional Model 

Fig. 2. Dependence of the 
exciton branch spectrum on the 
interaction g, as illustrated by 
the variation in the profile for a 
change in the parameter g2/e~ 
from 0·16 to 10-6 • As g2/e~ 
decreases the curve becomes more 
skewed, while the width of the 
branch reduces to zero (from 
equation (44». The other 
parameters here are as in Fig. 1, 
except that the impurity 
concentration Cis 0-01. Note 
that the frequency range is 
normalized to (0,1). 

A comprehensive quantitative account of the calculation of the excitonic spectrum 
of a three-dimensional crystal will be given in a future publication, but a brief 
qualitative discussion is included here. We consider a simple cubic crystal with the 
vector A representing the positions of nearest neighbours in the crystal, and 
1/1 1 1 = 1/1 2 1 = 1/1 3 1 = a the crystal lattice constant. Equation (2) now becomes 

8 1(k) = 2JSz{l-2z-l(coskla +cosk2a +COSk3a)}-2zJS 2p, (49) 

for k = (kl' k2' k3) and z = 6. 
The difficulty with three-dimensional calculations arises from the evaluation of the 

sum in equation (9), which leads to a lattice Green function (for a simple cubic 
crystal) of the form (Mahanty 1966) 

G(j .. )- 1 r d3kexp{ik.(jl-j2)} 
l,h,Z - V* Jv- 8(k)-z (50) 

where the energy band dispersion 8(k) is given by equation (49) and V* is the volume 
of the first Brillouin zone. There are several ways of evaluating equation (50). Joyce 
(1973) has given expansions in terms of hypergeometric functions while Mahanty 
(1966) has described a Fourier series expansion. For the present case it is more 
convenient to follow Mahanty's work. 
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Using the Dirac relation 

lim (X±iS)-l = Pix =tint5(x), 
8-+0+ 

equation (9) may be written (with N replaced by N 3 for a three-dimensional crystal) 

~(A) = 1 +yR(A) +inygo(A) , (51) 
where 

P f dk 
R(A) = N3 sl(k)-A (52) 

and 
go().) = c5(Sl(k)-A). (53) 

Equation (53) is the pure-crystal density of states. The quantities R(A) and go(A) are 
the real and imaginary parts of the lattice Green function (50), and Mahanty (1966) 
has given Fourier series expansions for them, where go(A) = ImG(O;x) and R(A) = 
ReG(O;x). 

From equations (32) and (51), we have 

-1 I yR'(A) +inyg~(A) I +g (A) 
g(A) = n 1m 1 +y R(A) +iny go(A) 0 

_ I g~(A){l+yR(A)} -y R'(A) g{A) I +go(A), 
- Y {I +yR(A)Y+ {nygo(A)} 

(54) 

where the prime denotes differentiation with respect to A. As for the one-dimensional 
case, the coefficient of g(Av) in equation (35) may be expressed in terms of ~(A) so that 

1 1 1 N 3 1 
N f k~' Sl (k) - A Sl (k') - A = "7 :---:--:-::---:---:-~ (55) 

Substitution of (54) and (55) into (35) then gives the solution of the problem (with 
N replaced by N 3). 

All the functions in equations (54) and (55) may be evaluated by Fourier series. 
It can be shown, however, that go(A) and R(A) have cusp points (the infinite dis­
continuities disappear), so that at these points go(A) and R'(A) are not defined. Never­
theless, it is expected that these latter functions will be well behaved in the intervals 
between the cusp points, thus enabling a numerical determination of X(w). 

The condition that g(A) be nonzero again yields two branches of the excitonic 
spectrum, and in addition there will be local modes at frequencies determined by 

I~(A)I = 0, (56) 

outside the magnon and exciton branches. The existence of solutions and their 
values will again depend on y. 
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