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Lattice Vibrations in Vanadium 
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Abstract 

The phonon dispersion curves, frequency spectrum and specific heat of vanadium have been calculated 
on the basis of the lattice dynamical model of Sharma and Joshi (1963). The frequency distribution 
has been derived according to Blackman's (1937, 1955) root-sampling technique by the numerical 
sampling of 192000 frequencies corresponding to 64000 points considered in the first Brillouin zone. 
This computed frequency distribution has then been used to calculate the lattice specific heat of 
vanadium. The resulting values of the specific heat have been compared with experimental measure­
ments in terms of the Debye characteristic temperatures. The theoretical results for the phonon 
dispersion curves, frequency spectrum and specific heat are found to be in reasonable agreement 
with experimental data. 

Introduction 

Although the dispersion curves of the transition elements niobium (Nakagawa and 
Woods 1963) and tantalum (Woods 1964) of Group Vb were determined nearly a 
decade ago by inelastic neutron spectrometry, it was only recently that the phonon 
dispersion relations for the remaining element of the group, namely vanadium, were 
measured by Colella and Batterman (1970) by means of the thermal diffuse scattering 
of X-rays. The phonon dispersion relations for vanadium could not be studied by the 
conventional neutron scattering techniques because of its almost totally incoherent 
scattering cross section. On the other hand, this unusual feature allowed a rather 
direct measurement of the phonon frequency spectrum by incoherent inelastic neutron 
spectrometry and, as such, the frequency spectrum of vanadium was extensively 
investigated by this technique (Brockhouse 1955; Carter et al. 1956; Stewart and 
Brockhouse 1958; Eisenhauer et al. 1958; Turberfield and Egelstaff 1962; Cherno­
plekov et al. 1963; Haas et al. 1963; Pelah et al. 1963; Zemlyanov et al. 1963; 
Glaser et al. 1965; Mozer et al. 1965; Roy et al. 1967; Page 1967). There were also 
theoretical attempts by Singh and Bowers (1959), Alers (1960), Sharan (1962), 
Hendricks et al. (1963) and Clark et al. (1964) to calculate the frequency spectrum 
of vanadium. All these previous studies reveal some interesting and puzzling features 
about the frequency distribution function of vanadium. Most of the theoretical 
and experimental investigations disagree as to the location and intensity of the peaks 
in the frequency spectrum. Although several of the experimental spectra are quali­
tatively similar they differ in many details. In addition, some of the experimental 
results show a high-energy tail which is difficult to explain theoretically. 

The theory of lattice vibrations in crystals (Born and Huang 1956) has progressed 
a long way since the early work of Born and von Karman (1912) but the interatomic 
forces are so intricate th:tt it is difficult to solve lattice dynamical problems in an 
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exact way and it is usually convenient to resort to approximate models (see e.g. Joshi 
and RajagopaI1968). Sharma and Joshi (1963) have proposed a semi-phenomenologi­
cal model for the lattice dynamics of cubic metals by considering a central interaction 
between the nearest and next-nearest ions and an electron-ion interaction arising from 
the compressibility of the electron gas. The volume-dependent force due to the com­
pressibility of the electron gas and its interaction with ions is computed by an average 
over the Wigner-Seitz sphere. This concept of averaging the volume-dependent 
electronic force over the Wigner-Seitz sphere was first used by Laval (1963). In fact, 
the basic proposals of the so-called Sharma-Joshi model were outlined earlier by 
Laval, although he made no attempt at their application. However, this model has 
furnished a plausible interpretation of the lattice dynamical behaviour of a number of 
cubic alkali metals (Gupta 1966a; Pal 1970, 1972), noble metals (Gupta 1966b, 1968; 
Gupta and Sharma 1967) and transition metals (Pal 1971; Pal and Gupta 1966a, 
1966b). In fact, the Sharma-Joshi model has been found to be of quite general 
application and also of practical utility because of its simplicity and straightforward 
physical interpretation. 

As the phonon dispersion relations in vanadium have not yet been studied on the 
basis of any of the existing central force-constant models (de Launay 1953; Bhatia 
1955; Krebs 1965; Cheveau 1968), it was thought of interest to employ the simple 
model of Sharma and Joshi (1963) in the calculation of these dispersion curves. 
The fact that the various existing theoretical models fail to adequately account 
for the frequency distribution function of vanadium also indicated the need for further 
consideration of the lattice vibrational spectrum. The results of calculations of the 
phonon dispersion relations, the frequency distribution function and the specific heat 
of vanadium on the basis of the Sharma-Joshi model are presented below. 

Theory 

The secular equation determining the angular frequencies m of the normal modes of 
vibration of a cubic metal can be written as (Sharma and Joshi 1963) 

I D(q)-mm2II = 0, (1) 

where m is the mass of the atom and I is a 3 x 3 unit matrix. The elements of the 
dynamical matrix D(q) for a body-centred cubic crystal are given by 

where 

Dii(q) = 8OC1(1 - C1 C2 C3 ) +4OC2 sf +4qf a3 Ke G2(qr) , 

D;/q) = 8OC1 S; Sj Ck +4qjqj a3 Ke G2(qr) , 

S; = sin(q;a) , Cj = cos(q;a) , G(x) = 3(sinx -x cos x)/x3 , 

(2a) 

(2b) 

2a is the lattice parameter of the cubic cell, r is the radius of the Wigner-Seitz sphere, 
qj is the ith cartesian component of the phonon wave vector q, Ke is the bulk modulus 
of the electron gas, and OC1 and OC2 are the central force constants for the nearest and 
next-nearest neighbours. The parameters OC1' OC2 and Ke can be parameterized in terms 
of the three independent elastic constants of a cubic metal as 

OC1 = aC44 , OC2 = a(cu -C12) , Ke = C12 -C44 • (3) 
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Numerical Computations and Discussion 

The force constants appearing in the secular equation have been estimated from 
the data for the room temperature elastic constants given by Alers (1960). The 
numerical values of these constants and the other parameters of vanadium used in 
the present calculations were: 

Elastic constants (1011 dyncm- 2 ) Lattice parameter 2a 
Cll C12 C44 (A) 

22·795 11·870 4·255 3·028 
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Fig. 1. Phonon dispersion relations for the longitudinal (L) and transverse (T) modes along the 
indicated three major symmetry directions in vanadium. The present theoretically calculated curves 
are compared with the experimental points obtained by Colella and Batterman (1970) from thermal 
diffuse scattering of X-rays. 

Dispersion Curves 

The theoretically calculated frequency versus wave vector dispersion relations along 
the major symmetry directions of vanadium together with the X-ray thermal diffuse 
scattering data of Colella and Batterman (1970) are plotted in Fig. 1. It can be seen 
that the theoretical curves are in poor agreement with the experimental data except 
for low values of the reduced wave vector, and the discrepancy between the results 
increases with increasing wave vector. The theoretical curves do not show any sign 
of the somewhat intriguing overlapping and crossing over of the experimental 
longitudinal and transverse modes along all the symmetry directions. Although the 
technique of thermal diffuse scattering of X-rays for the study of lattice vibrations 
is not as sophisticated and accurate as neutron spectrometry, the results of Colella 
and Batterman in the low frequency region seem to be quite reliable, since the thermal 
scattering is high here and the extra contributions are a small fraction of the total 
measured intensity. However, much reliance cannot be put on their measurements 
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Figs 2a and 2b. Compar:ison of theoretical and experimental results for the frequency spectrum of 
vanadium. 
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for large values of the wave vector. The fact that the calculated phonon dispersion 
curves for vanadium do not satisfy the symmetry requirements of a cubic lattice at 
certain points manifests the inherent drawback of the Sharma-Joshi model which 
results from the averaging of the electronic contribution over the Wigner-Seitz sphere. 

Lattice Frequency Spectrum 

The frequency distribution has been computed by the numerical sampling of 
frequencies (Blackman 1937, 1955) over a discrete subdivision in the wave vector 
space. The reciprocal space was divided into miniature cells with axes one-fortieth 
of the length of the reciprocal lattice cell and the vibration frequencies were calculated 
from the roots of the secular determinant for 1661 wave vectors in the irreducible 
portion of the first Brillouin zone. Each point was weighted according to the number 
of points symmetrically equivalent to it; the importance of giving correct weights to 
points has been emphasized by Sayre and Beaver (1950) and Dayal and Sharan (1960). 
The total number of points in the whole zone was thus 403 = 64000, and the total 
number of frequencies 192000. In order to calculate the frequency distribution 
function G( w), counts of the number of frequencies falling in intervals of 0·05 X 1013 
rad s -1 were used to construct a frequency histogram. 

As noted in the Introduction, there have been many experimental investigations 
of the frequency distribution of vanadium by incoherent inelastic neutron spectro­
metry. Recently Colella and Batterman (1970) have also measured the frequency 
spectrum by employing the technique of thermal diffuse scattering of X-rays. Of the 
several theoretical attempts to calculate the spectrum, Singh and Bowers (1959) 
used the hypothetical elastic constants deduced from low temperature specific heat 
data (these hypothetical constants deviate considerably from the experimentally 
measured values) and calculated the frequency distribution function on the basis of 
the noncentral three force-constants model. The calculation of Alers (1960) based on 
the central two force-constants model of Montroll and Peaslee (1944) does not agree 
with experiment and is open to the criticism that the model used represents an 
extreme over-simplification and only allows a description of the general features of 
the observed distribution. This same model was employed by Clark (1960), who 
arrived at a conclusion similar to Alers. Sharan (1962) computed the frequency 
spectrum on the basis of the lattice dynamical model of de Launay (1953) but he also 
failed to obtain satisfactory agreement with experiment. Further calculations were 
made by Hendricks et al. (1963), who employed a noncentral three force-constants 
model, and by Clark et at. (1964) from a noncentral four force-constants model. 

An overall comparison of the various theoretical and experimental frequency 
spectra of vanadium as shown in Figs 2a and 2b reveals some interesting features. 
The theoretical curves differ from the experimental ones with regard to the location 
and intensity of the two peaks, the theoretical maxima being widely spread and sharp 
with less intensity at the higher frequency, while the experimental maxima tend to 
be flat and more intense at the higher frequency. The neutron scattering experiments 
of Turberfield and Egelstaff (1962) and Page (1967) also show that the spectrum has a 
tail at high frequencies (Fig. 2b), which is not expected theoretically. All the theoretical 
and experimental studies show a two-peak characteristic function, although the 
measurements of Page (1967) indicate an additional intermediate peak that is not dis­
cernible in any other experimental results. Page claims to have discovered this small 
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central peak because of much better resolution in his experimental technique. A 
further small low energy peak (at about w = 1·25 X 1013 rads- 1) has been observed 
experimentally by Pelah et al. (1963) and Page (1967). Peretti et al. (1962) put forward 
theoretical arguments for the possible existence of low energy peaks in the frequency 
spectrum associated with the Kohn effect. 

It can be seen from Figs 2a and 2b that the present calculated frequency spectrum 
of vanadium does not show, as expected, any evidence of the high energy tail observed 
by Page (1967) and Turberfield and Egelstaff (1962), nor does it exhibit any sign of 
the small central peak found only by Page (1967). However, the calculation does 
agree closely with the theoretical result of Hendricks et al. (1963). The computed 
frequency histogram of vanadium corroborates the earlier finding by the author (Pal 
1972) regarding the relative location and magnitude of the two peaks in the lattice 
vibrational spectra of monatomic cubic metals. 
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Fig. 3. Comparison of the present theoretical curve with the results derived from the 
experimental data of Clusius et al. (1960) for the variation of the Debye temperature e 
with temperature. 

Lattice Specific Heat 

The contribution of lattice vibrations to the thermodynamic properties depends 
solely upon the frequency distribution function G(w), and having obtained this 
function one can easily calculate the lattice specific heat at constant volume Cy from 
the relation 

Cy = kB L(J)n1ax {x2ex/(eX -l)2}G(w) dw, 

where x = Iiw/kB T and the other symbols have the usual meaning. Using the derived 
frequency spectrum, the lattice specific heat per gram atom has been computed by 
the numerical integration of this expression. The values of the specific heats at different 
temperatures have been compared with the calorimetric data by computing the 
equivalent Debye characteristic temperatures e, and the results are shown in Fig. 3. 
The experimental specific heat data for vanadium have been taken from the measure­
ments of Clusius et al. (1960) and corrected for the electronic contribution, as 
indicated by those authors. It can be seen from the figure that, although the theoretical 
e versus T curve qualitatively agrees with the experimental data, the computed e 
values are uniformly lower than experiment throughout the temperature range studied. 
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Conclusions 

The discrepancies between the theoretical results and the experimental data can be 
ascribed to the approximate calculation of the electron-lattice interaction and to the 
assumption of the short-range nature of the interionic interactions. Analyses of the 
experimental phonon dispersion curves of the transition metals indicate that the 
interatomic forces in these metals are of a fairly long-range nature. It may be noted 
that the transition elements are characterized by incomplete d-shells (Mott 1962, 
1964) which are expected to playa significant role in the lattice dynamics of these 
metals. The pronounced asphericity of the charge density and the finite overlap of 
4s electrons would lead one to expect large changes for the transition metals. However, 
it emerges from the present study that although the simple model of Sharma and 
Joshi (1963), which considers central interaction between the nearest and next-nearest 
neighbours only, does not provide detailed agreement with experiment it nevertheless 
gives a general description of the lattice vibrations in vanadium. 
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