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The circular polarization and asymmetry, about the incident neutron spin direction, of the photon 
released in the reaction n + p -+ d + )' at thermal neutron energies are consequences of parity viola­
tion in the n-p interaction. A formalism is developed which expresses the polarization and asymmetry 
in terms of the half-off-shell transition matrix, and calculations are performed for several models 
of the weak parity-nonconserving N-N interaction. The results indicate that the polarization is 
sensitive to the choice of both the strong N-N interaction and weak N-N interaction while the 
asymmetry is sensitive mainly to the latter. The observed polarization is of the same sign and rather 
larger than that calculated with the conventional weak N-N potential. Difficulties in the present 
method indicate that this discrepancy cannot be regarded as significant. 

1. Introduction 

Studies of the manifestations of one-meson-exchange parity-nonconserving (PNC) 
internucleon interactions in finite nuclei have been pursued in recent years with the 
hope of distinguishing between several proposed models of the weak interaction. 
These models have been reviewed by Henley (1969), McKellar (1970), Fischbach and 
Tadic (1973) and Gari (1973). However, since the weak N-N interaction is of short 
range, its effects are sensitive to the nature of the two-nucleon wavefunction at small 
separations (i.e. to nucleon correlations). Consequently the nuclear physics aspects 
of the problem have to be disentangled before any model of the weak interaction 
can yield results which offer a useful comparison with experiment. 

The most straightforward physical situation from the nuclear physics standpoint 
is the two-nucleon problem, in which the correlations are understood qualitatively 
and are described by the wavefunction, or equivalently by the off-shell behaviour 
of the transition matrix. Consequently the two-nucleon system offers the most 
promise of a complete theoretical treatment of PNC effects. Several such treatments 
have been attempted in the past by Blin-Stoyle and Feshbach (1961), Danilov (1965, 
1971), Tadic (1968) and Hadjimichael and Fischbach (1971), but there is little con­
sistency between their predictions. Moreover, all predictions of the circular polariza­
tion Py of the 2·23 MeV photon are at least an order of magnitude smaller than the 
recent experimental result of Lobashov et al. (1972), and all but one are of the opposite 
sign. These theoretical results for the conventional or Cabibbo (1963) model of the 
weak interaction in the factorization approximation are summarized in Table 1, 
together with the experimental result of Lobashov et al. 

* Preliminary reports of this work have been given at the International Conference on Nuclear 
Physics, Munich, 1973 (Lassey and McKellar 1973), at the Symposium on Correlations in Nuclei, 
Balatonfiired, Hungary, 1973 (McKellar 1974), and by Lassey and McKellar (1974). 
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A study of the low energy n-p system also has the advantage that the isospin 
structure of the weak interaction is revealed: only the AT = 0 (isoscalar) component 
contributes to the circular polarization, while only the AT = I (isovector) component 
contributes to the asymmetry of the angular distribution of the photon about the 
spin of the incident neutron (Danilov 1965). An experimental measurement of the 
latter has not been made, but there is reason to believe that it is feasible if the 
asymmetry is ~ 10- 6 or greater in magnitude (R. Wilson, personal communication). 

In the present work we calculate the circular polarization Py and the asymmetry 
(X for several weak-interaction models currently in vogue, and for a variety of strong 
interactions. The weak nucleon-nucleon interaction is computed in the nand p 
exchange model, the parity-violating NNn and NNp couplings being determined 
by current algebra and factorizations respectively. Each of these approximations 
has been questioned recently (McKellar and Pick 1972, 1973; Korner 1973), but 
we employ them because we are primarily concerned here with the nuclear physics 
of the problem, and the use of standard weak PNC potentials provides an immediate 
comparison of our results with the earlier ones. 

Table 1. Comparison of previous results for circular polarization 

The theoretical values are for the Cabibbo weak interaction 

Strong interaction 

Hulthen with hard core, for S-waves (Tadic 1968) 
Yale (Hadjimichael and Fischbach 1971) 
Livermore phase shifts and dispersion theory (Danilov 1971) 
Experimental result (Lobashov et al. 1972) 

PyX 107 

+2·2 
+0'031 
-0,18 

-(13'0±4'5) 

The strong interaction enters the present calculation through the half-off-shell 
transition matrices for n-p scattering. Two approximations are employed in the 
formalism: the first is that the M1 and El operators depend mainly upon the asymp­
totic nature of the incident and deuteron wavefunctions, and the second is that the 
D-state component of the deuteron can be neglected in calculating the electromagnetic 
matrix elements. With these approximations Danilov (1965) was able to express 
Py and (X in terms of the PNC n-p scattering amplitude. This method, which is 
employed here, was also used by Tadic (1968) and in Danilov's (1971) dispersion 
calculation but was not employed by Hadjimichael and Fischbach (1971). 

In Section 2 we review the weak-interaction models and PNC potentials used in 
the calculation, and in Section 3 we display the formalism of our method. The 
strong interactions are considered in Section 4. The final results are reported and 
discussed in Section 5, and some conclusions are drawn in Section 6. 

2. Weak-interaction Models 

The various models of the weak N-N interaction resulting from one pion and one 
vector meson exchange have been described in detail elsewhere (e.g. in the reviews 
cited in the first paragraph of the Introduction). The interaction appropriate to a 
T3 = 0 system is taken to be 

VPNC = VPNc(AT = 0) + VPNc(AT = 1), (1) 
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where 

VpNdAT = 1) = AV,,[P, r-1 exp( -.u" r)]_ • (a(l) +a(2»Ti"i) 

and 

+ Vp[p,r- 1 exp( -.upr)]+ .Uy'3 C'(a(1)'t'b1) -a(2)'t'b2» 

+!~C(a(1)'t'b2) -a(2)'t'b1»} , 

VpNc(AT = 0) = Vp[P, r-1 exp( -.up r)]+ • (a(1)-a(2»{Ti~) +-l-B't"bO 't"b2) +!y'3 ~D} 

+ Vp[P, r-1 exp( -.up r)]_ • (i a(l) x a(2» 

x {(l + .uv)(Tg) +-l-B't'b1) 't'b2» +!y'3 ~D} . 

Table 2. Model-dependent parameters of PNC weak N-N interaction 
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(2) 

(3) 

The model-dependent parameters of equations (2) and (3) are listed in terms of the Cabibbo angle 
8e, which is taken to be given by sin 8e = 0·21; sin28e has been neglected in comparison with unity 

Model A B C C' D 

1. Cabibbo (1963) -v'itan8e 0 0 0 0 
2A. Segre (1968), Ys invariant 0 0 0 0 4 

'3 
2B. Segre (1968), l's noninvariant -4 0 0 v'4 4 

- '3 '3 
3. Lee (1968) -v'}cot8e 1 0 -v'3 0 
4. d'Espagnat (1963) v'{cotOe 2 -v'~ -v'~ 2 

'3 
5. Oakes (1968) -v'8cosec28e -2 2v'3 2v'3 -6 
6. Brunet (1967) -jv'2tan8e 2 v'3 sin28e v'3 sin28e jsin48e 
7. Lee and Yang (1960) v'2 tan 8e 2 0 0 0 
8. Michel (1967) T"ov'2cot8e 2 v'~tan28e v'~tan28e 2 
9A. Tomozawa (1970) octet 0 1 0 0 1 
9B. Tomozawa (1970), nonet -itan8e 0 0 1 

In equations (2) and (3) the terms [p,J(r)]± denote p fer) ± f(r)p, in which p = -iV 
is the relative momentum operator; the superscripts (1) and (2) indicate the particle 
spinor or isospinor on which the operator acts; 

TIt) = ('t"~)'t'~) ±'t"~)#», 

with't'± = !('t'x±i't'y); and.uv is the isovector anomalous nucleon magnetic moment. 
The strengths V" and Vp are taken from Hadjimichae1 and Fischbach (1971) to have 
the numerical values 

V" = 8·54x 10-6 MeVfm2 , Vp = -1·993xlO-scos20c MeVfm2 • 

The SU(3) parameter ~ is taken to be (6y'3)-1 and the model-dependent parameters 
A, B, C, C' and D are set out in Table 2 in terms of the Cabibbo angle 0., which 
we take throughout to be given by sinO" = 0·21. As was emphasized in the 
Introduction, these standard values of the parameters are used to permit easier 
comparison with earlier calculations. It has been suggested that they do not follow 
unambiguously from the weak Hamiltonian, but we will not discuss non-standard 
choices here. 
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It is convenient to rewrite equation (1) by adopting the notation 

9 

V. -" ui[P -1 ( )] (±) PNC - L.. P' 0 , r exp - Ili r ±. VI , (4) 
i=1 

in which the summation spans the nine terms in equations (2) and (3), v~±) contains 
the appropriate hermitian or antihermitian spin-isospin operator and VJ contains 
the model-dependent strength factors. The terms i = 1,2,3 span the isovector 
contribution and i = 4, ... ,9 the isoscalar contribution. Matrix elements of v~±) 
can be written for the mth spherical component as 

(T',O;S',v'lvt=;?IT,O;S,v) = (-)SS(SlvmIS'v')w~±)(S,T), (5) 

where S = (2S+1)t and w~±)(S,T) depends upon S' and T' implicitly, by T' = T 
and S' = 1-S for the isoscalar components or T' = 1-T and S' = S for the 
isovector components, and has the property 

w~±)(S, T) = ± w~±)(S', T'). (6) 

The operator v~+) (v~-») is hermitian (antihermitian). 

3. Formalism 

(a) Danilov Formulation 

Danilov (1965) gave the scattering amplitude for low energy n-p scattering in 
the presence of PNC forces as 

/(k',k) = -atPt -asP. +hNC(k',k), 

where the contribution from PNC effects can be written as 

/PNdk',k) = -CalO'n+O'p)·(k'+k) 

+(O'n-O'p).{Atat(k'Pt+kP.) +A.as(k'Ps+kPt)}. 

(7a) 

(7b) 

In these equations as and at are the singlet and triplet scattering lengths, C characterizes 
the isovector weak interaction in the J = 1 state, and As, At are the isoscalar weak 
interactions in the J = 0, 1 states. The equations (7) are accurate up to terms linear 
in momentum. Danilov then wrote down the asymptotic forms of the capture wave­
function and of the 3S1> 3P1 and 1P1 components of the deuteron (by analytic con­
tinuation to negative energies). By presuming that only the long range part of the 
wavefunction was important in evaluating the El and Ml matrix elements, Danilov 
used the asymptotic wavefunctions to obtain the following analytic expressions for 
the photon circular polarization P"I and the asymmetry IX with respect to the incident 
neutron spin direction: 

- 4{(1 -tasP)AtIlN +!a.pAsIlN} = 0.6IAt 1lN -O.24A-.IlN, (8a) 
P"I - (p.p - Iln)(1 - as p) 

IX = _, 8CIlN ft, = 0·087CIlN' (8b) 
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Here p,p and P,n are the observed nucleon magnetic moments, M = cP,N/h is the nucleon 
mass and the deuteron binding energy is h2/32/M. An outline of the derivation of 
equations (8), with the emphasis on the approximations employed, is given in 
Appendix 1. 

We adopt here a procedure similar to that of Tadic (1968): the n-p scattering 
amplitude is calculated in the low energy limit and an identification of C and As, At 
is made from the Danilov (1965) expressions (7). Finally P y and IX are calculated 
trivially from equations (8). Details of the identification of C and As, At may be 
found in Appendix 2. 

(b) Calculation of Danilov Parameters 

By writing the components of the weak T-matrix (that is, T-matrix elements 
connecting states II, S, J) to states Il± I, S', J» in a Born approximation to first 
order in the PNC potential (but to all orders in the parity-conserving potential), and 
making the appropriate identification of the Danilov (1965) parameters C and As, At> 
we obtain (see Appendix 2) 

3 
- .JinM L VJw~±)(I,O) 

C - 4h2at i=1 

x {( -2/np,l)+t~±)(P,i) +X~:P(p,i) +U ll (P,i) +w~~)(p,;) + A~)(p,i)}' (9a) 

A nM f, i (±) 2S+1 .. ,. L.. Vo Wi (S,l-S) 
a2S+1 i=4 

x {( -2/np,f)+t~±)(P,i) +x~:t:.>s,s(p,;) +u1- S,S(P,i) +w~:t:'>S,S<P,i) + y~:t:.~,S(p,i)}' 
(9b) 

In these expressions we have employed the notation of equations (5) and (6); cp,;/h 
is the n or p meson mass as appropriate, and (2S + 1) = 1, 3 is an alternative label 
to s, t. Equations (9) are expressed in such a way as to separate the roles of S-wave 
and P-wave correlations and those of S-D coupling. The term ( - 2/np,D is the 'plane 
wave contribution', i.e. effects of uncorrelated waves, and the remaining contrib­
utions are defined by 

(±)( ) _ 2M (00 (I 2p2 )RS () d 
ts P, - nh2 Jo p2+p,2 ± 3(p2+p,2)2 os,os p p, (lOa) 

x~~;(p,) = ±~~(.J!<5s',s-.J2<5IS'-SI'1}'S'1 fooo ,,£_;~2 .. 2\2R~1,01(p)dp, (lOb) 

2M foo p us,S<p,) = -h2 -2--2 R~s' 1S'(P) dp, n 0 p +p, , 
(toc) 

(±)( ) I (M)2 (00 (00 (Qo(Z) Q1(Z») S () S (p) d d wS's p, = - it h2 Jo Jo -p- ± -q- R 1S',1S' q Ros,os P q, (lOd) 
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Y~'!=;(Jl) = - M~r (..j!Os,.s -..j20IS'-SI.1 )OS.1 

x foOO 5000 (Q~Z) ± Q~Z»)R~s,.1S,(q)Rkol(P) dpdq. (lOe) 

In these expressions, Z is an abbreviation for (p2 +q2 + Jl2)/2pq and QI(Z) is an irregular 
Legendre function. The functions R are defined in terms of the half-off-shell T-matrix 
elements T;'s'./sCP, k; k 2 ) by 

Rf,S'.IS(P) = lim {k- 1 T/S'./s(p, k; k2)}. (11) 
k-+O 

It is immaterial whether T is the incoming or outgoing solution because at zero 
energy the singularity in the kernel of the Lippmann-Schwinger equation disappears. 
The (±) index on the functions (10) corresponds to the commutator (antihermitian) 
or anticommutator (hermitian) nature of [p, r- 1 exp( - W)]±, the appropriate weak­
interaction term. 

As is evident from equations (10), the functions t, x and u describe the effects 
of S-wave, coupled 3SC 3D1 wave and P-wave correlations respectively while the 
functions wand y describe transitions from the 'defect' part of the capture wave­
function to the 'defect' part of the deuteron wavefunction. Separating their roles 
in this manner enables us to test in a systematic way the effect upon the polarization 
and asymmetry of 'switching on' the various correlations. We find that P waves 
do play an important role, so that their neglect by Tadic (1968) is a serious one. 

4. Strong Interaction 

The strong n-p interaction enters our formalism only through the half-off-shell 
transition matrix at zero energy, as defined by equation (11). It is well known that the 
transition matrix is most readily obtained from a given N-N potential if the latter 
is in separable form. Because of this fact there have been attempts to fit phenom­
enological rank-N separable potentials to phase shift data by Tabakin (1964), 
Mongan (1969a), Sirohi and Srivastava (1972, 1973) and others. More recently, 
attempts to expand a reliable local potential in terms of a rank-N separable potential 
have been made. These include the unitary pole approximation (UP A) (Levinger 
et al. 1969; Harms and Laroze 1971; Bhatt et al. 1972) and the unitary pole expansion 
(UPE) of Harms (1970). Both of these approximations rely upon a strongly resonant 
behaviour in the appropriate partial wave for their success. The UPE is an expansion 
based upon the UPA as the first term. The UPA and UPE have been studied in great 
detail recently by the above authors and by Harms and Newton (1970), Jackson and 
Lande (1972), Siebert et al. (1972), Afnan and Read (1973) and Srivastava and Sirohi 
(1973). We have employed the UPA to the soft-core potential of Reid (1968) for 
both the 1So and 3SC 3D1 channels. The 1So case appears to be very reliable in that 
the UPA results of either Harms and Laroze (1971) or Jackson and Lande (1972) 
produce very good agreement with the two-term UPE of Jackson and Lande (1972), 
but there is some doubt about the adequacy of a UPA to the Reid triplet potential 
(A. D. Jackson, personal communication). For example, the UPA used by Bhatt 
et al. (1972) and Siebert et al. (1972) produces values for the coupling constant, 
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tan 8 1, and 3D1 phase shift which are in poor agreement with those predicted directly 
by the Reid potential. Afnan and Read (1973; personal communication) are able to 
improve upon the latter and they also point out that Bhatt et al. and Siebert et al. 
define their coupling constant with the wrong sign, an observation supported by 
Peiper (1974). From the work of Jackson (personal communication) and Jackson 
and Lande (1974) it appears that, in contrast to the ISO case, the UPE to Reid's 
3SC 3D1 soft-core potential is only a slowly converging series, so that inaccuracy 
with a rank-lor rank-2 UPE is inevitable. The 3S1 potential of Malfliet and Tjon 
(1969), however, was found to lead to a rapidly converging UPE series by Jackson 
and Lande (1972, 1974), so that a UPA or two-term UPE appears to be useful. 
Unfortunately, no coupling to the 3D1 state is included in this potential. 

Because of the absence of resonant behaviour in P waves it is unlikely that a UPE 
would have rapid convergence in these partial waves. However, a direct solution of the 
Lippmann-Schwinger equation at zero energy (where the integral equation is of the 
Fredholm form) is quite feasible for those Reid P-wave potentials for which J:( 1. 
The same can also be said of the S-wave channels, but we have chosen instead to 
utilize the less cumbersome UPE. 

As a check upon the dependence of our results on the strong n-p interaction, 
we have also employed the phenomenological rank-2 separable interaction of Mongan 
(1969a) (his case II) and of Sirohi and Srivastava (1972, 1973). 

5. Results and Discussion 

(a) Method of Calculation 

As already noted, the strong interaction enters the calculation through the half­
off-shell transition matrix at zero energy, as defined by equation (11), and this is 
most easily calculated if the strong nucleon-nucleon potential is in separable form. 
Consequently, we have used local soft-core S-wave potentials, in the form of the 
UPA to the Reid (1968) potentials as given by Harms and Laroze (1971) and Bhatt 
et al. (1972) or the UPE to the Reid and Malfliet-Tjon (1969) potentials as given by 
Jackson and Lande (1972). In the former, the form factors are expanded in linear 
combinations of Yamaguchi form factors and the R(q) can thus be expressed analyti­
cally in terms of the expansion coefficients. Jackson and Lande quote their form 
factors numerically over a grid in momentum space. 

The Reid P-wave potentials can be converted into the transition matrix by directly 
solving the Lippmann-Schwinger equation at zero energy, dividing out a factor of 
k so that the solution is Ris,1S(q) directly. Obtaining the momentum space potential 
V(p,q) in analytical form represents the biggest hurdle to be overcome in solving the 
Lippmann-Schwinger equation. The solution is then obtained by writing the integral 
as a sum over the momentum grid 

qi = ytan{i-n(I+Xi)} , (12) 
where 

Wi = tnw;(y+q~fy) 

are the appropriate weights for integration. The XI and WI are the roots and weights 
appropriate to Gaussian integration of order N; with N = 80 and y = 3·0 fm-1, 
this grid is identical with that of Jackson and Lande (1972). We find that the solutions 
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Table 3. Calculated contributions to equations (9) for four strong interactions 
The listed values are the contributions from the terms (10) to the parameters C (with S' = S=J = 1; 
P=Pn), ,1.. (S=J=O,S'=l;p=pp) and A. (S=J=l,S'=O;/1=/1p) of equations (9), calculated 

using the strong interaction models R, RMT, M and SS described in the text 

Contributing ± Contributions (fm2) to: Contributions (fm2) to: 
term index C ,1.. A. C ,1.. A. 

(a) Model R (b) Model RMT 

-2/71:/12 -1·27 -0·0423 -0·0423 -1·27 -0·0423 -0·0423 

t~±)(/1) + -0·2064 0·0716 -0·1719 0·1129 
2·30 -0·3981 0·1043 2·35 -0·3797 0·1320 

x~~i(P) + 0·0360 
0·28 -0·0360 

us's(P) 0·16 0·0233 0·0295 0·16 0·0233 0·0295 

w~~i(P) + -0·0287 -0·0377 -0·0583 -0·0704 
-0·40 0·1341 -0·0655 - -0·44 0·1181 -0·0892 

Y~~i(/1) + -0·0296 
-0·07 0·0212 

Sum + -0·2542 0·0275 -0·2492 0·0297 
1·00 -0·2830 0·0112 0-80 -0·2806 0·0300 

(c) Model M (d) Model SS 

-2/71:/12 -1·27 -0·0423 -0·0423 -1·27 -0·0423 -0·0423 

4±)(P) + -0·3319 0·1567 -0·6593 0·2340 
2·44 -0·5622 0·1649 2·45 -0·6582 0·2032 

x~;:;(P) + -0·0035 0·0083 
0·05 0·0035 0·07 -0·0083 

us's(/1) 0·21 0·0786 0·0602 0·13 -0·0831 0·0084 

w~~i(P) + -1·5500 -0·1702 -1·2982 -0·0475 
-0·76 -0·0953 -0·2196 -0·45 -1·2994 -0·0413 

Y~~i(P) + 0·0109 -0·0018 
0·00 -0·0059 -0-01 0-0016 

+ -1-8456 0-0118 -2·0829 0-1591 
Sum 0-67 0·6212 -0-0392 0-92 -2-0830 0-1213 

of the Lippmann-Schwinger equation are indistinguishable for N = 40 and 80 (both 
with'}' = 3·0fm-1). 

We have also employed the rank-2 separable potentials of Mongan (1969a), 
case II, and Sirohi and Srivastava (1972, 1973), for which the transition matrix can 
be written down analytically. Both of these potentials have been derived phenom­
enologically as fits to the Livermore phase shifts of McGregor et al. (1969), similar 
to those used by Reid (1968) in fitting his local potentials. 

In all cases, the integrals in equations (10) have been performed numerically 
using the grid (12) with N = 80 and'}' = 3·0fm-1 ; results for N = 40 are indis­
tinguishable. The following numerical values were assumed: 

" = 0·708 fm -1 ,,= 3·88 fm- 1 
r'n 'rp , 

as = - 23 ·679 fm, 

h2 jM = 41·46MeVfm2 , } 

at = 5·397 fm. 
(13) 
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Table 4. Parameter values for different strong and weak interactions 
The tabulated results are the parameter values corresponding to (a) the 
Cabibbo weak interaction and the four strong interactions described in the 
text, and (b) the RMT strong interaction and the weak-interaction models as 

Strong 
interaction 

R 
RMT 

M 
SS 

Weak 
interaction 

1 
2A 
2B 
3 
4 
5 
6 
7 
8 
9A 
9B 

(b) Numerical Results 

designated in Table 2 

(a) Cabibbo model results 

Parameter (10- 7 units) 
CIiN A.IiN At liN P, 

-0·431 2·301 0·170 -0,448 
-0'347 2·277 0·709 -0·113 
-0·297 6·917 -1·247 -2,419 
-0'397 17·241 2·622 -2'533 

(b) RMT model results 

Parameter (10- 7 units) 
CIiN A.IiN At liN P, 

-0,347 2·277 0·709 -0,113 
0·0 2·363 0·709 -0·134 

-9,248 2·363 0·709 -0,134 
3·573 1·708 0·886 -0,131 
7'403 1·181 1·063 0·366 

-15'390 3·031 0·355 -0,510 
-0·224 1·139 1·063 0·376 

0·693 1·139 1·063 0·376 
4·512 1·267 1·063 0·345 
0·0 1·772 0·886 0·116 

-0,245 1·772 0·886 0·116 

ex 

-0,038 
-0,030 
-0,026 
-0,035 

ex 

-0,030 
0·0 

-0·806 
0·311 
0·645 

-1'342 
-0·020 

0·060 
0·393 
0·0 

-0,021 

645 

We have employed four sets of strong interactions, denoted by R, RMT, M and 
SS. The first of these employs the tabulations by Harms and Laroze (1971) and 
Bhatt et al. (1972) of the UPA to the Reid (1968) soft-core S-wave potentials, together 
with the local soft-core P-wave potentials of Reid. The 1So UPA transition matrix 
has been renormalized to the scattering length of (13); this is necessary because the 
Reid 1So potential is determined from p-p scattering data and consequently the UPA 
of Harms and Laroze predicts as = - 17· 18 fm. The RMT interaction incorporates 
the Jackson and Lande (1972) two-term UPE to the Reid 1So and Malfliet-Tjon 
(1969) uncoupled 3S1 interactions, together with the Reid local P-wave interactions. 
Both of the UPE's have been renormalized to the scattering lengths of (13). The M 
and SS potentials are the rank-2 separable potentials of Mongan (1969a), case II, 
and Sirohi and Srivastava (1972, 1973) respectively. 

The contributions listed in equations (9) to C and As, At are displayed in Tables 
3a-3d for the strong interactions R, RMT, M and SS respectively. The differences in 
the results due to the 1So potential, between Rand RMT, are entirely attributable to 
the improvement of a rank-2 approximation over the rank-l approximation to 
Reid's (1968) potential. The most marked differences between the results are notice­
able in the P-wave contributions (u and w) to As, This largely reflects the differences 
in the 3po and 1P1 potentials off the energy shell. In particular the numerical value 
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Fig. 1. Zero-energy half-off-shell transition matrices as defined by equation 
(11) for S waves: 
(a) R8o,oo(q) for the 1So wave, using the two-term UPE to the Reid (1968) 

soft-core potential as given by Jackson and Lande (1972) (the UPA of Jackson 
and Lande or Harms and Laroze (1971) is indistinguishable on this scale) 
and the potentials of Mongan (1969a), case II, and Sirohi and Srivastava 
(1972); 

(b) R{l1,01(q) for the 3S1 wave, using the two-term UPE to the Malfliet and Tjon 
(1969) potential as given by Jackson and Lande (1972), the UPA to the Reid 
(1968) soft-core potential as given by Bhatt et al. (1972) and the potentials of 
Mongan (1969a) and Sirohi and Srivastava (1973). 

Fig. 2 (opposite). Zero-energy half-off-shell transition matrices as defined by 
equation (11) for P waves, using the potentials of Reid (1968), Mongan (1969a) 
and Sirohi and Srivastava (1973): 

(a) R~O.10(q) for the 1P1 wave; 
(b) R~1.11(q) for the 3PO wave; 
(c) Rkl1(q) for the 3P1 wave. 
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of WlO(J.tp) is very different in the M and SS potentials from that in the Rand RMT 
potentials, and in the former cases it dominates As' This term arises from the weak 
interaction between 1So and 3po and, since we are near the 'singlet deuteron' anti­
bound resonance energy, the importance of the interaction between the 1So and 3PO 

states is enhanced, a point also noted by Blin-Stoyle and Feshbach (1961). We shall 
further consider this in the following subsection. 

Table 4a records values of C, As, At, Py and ex corresponding to each of the strong 
interactions, and appropriate to the Cabibbo (1963) weak-interaction model, while 
Table 4b lists these parameters for each of the weak-interaction models represented 
in Table 2, using RMT as a representative strong interaction. 

(c) Discussion 

From Table 3 it is evident that both the circular polarization Py and asymmetry ex 
involve a delicate cancellation of contributions which renders them sensitive to the 
choice of the strong interaction describing the short-range correlations. Hence a 
discussion of the merits of the four strong interaction models is in order. 

All of the interactions chosen have been designed to fit the recent Livermore 
phase-shift data and consequently have very similar on-shell behaviour. The differences 
in their predictions in this work therefore reflect their different off-shell behaviours. 
The off-shell behaviour is illustrated in Figs 1 and 2 where the zero-energy half-off­
shell transition matrices of equation (11), which we hereinafter refer to as the half-shell 
functions,* are displayed. It is immediately apparent that the Mongan (1969a) 
half-shell function decays to zero with increasing momentum much more slowly than 
for the other potentials, as was also noted by Mongan (1969b). This feature can be 
expected to have its largest influence on those results (As, At,Py) which depend upon 
the short-range p-meson exchange weak force, for which the form factor dies off 
more slowly with increasing momentum. 

As expected, the interactions Rand RMT lead to similar results, particularly for 
As where the only difference is due to the different separable representations of the 
Reid 1So potential. The nonzero 3SC 3D1 coupling in R accounts for most of the 
numerical discrepancies in C and At. However, since the UPA of Bhatt et al. (1972) 
to the Reid 3SC 3D1 potential gives a poor representation of the coupling constant, 
the effects of the coupled transition matrix elements in R should not be taken too 
seriously. We note that both SS and M provide effects due to 3SC 3D1 coupling which 
are very much smaller, and generally negligible. (However, Peiper (1974) has recently 
questioned the accuracy of the coupled interaction of both the Mongan and Sirohi­
Srivastava potentials.) Moreover, since we have neglected the D-state of the deuteron -
in computing Py and ex from the scattering amplitude, there is some consistency in 
also neglecting the contributions x(J.t) and y(J.t) to C and At. 

A comparison of the values in Table 3 makes it clear that P-state effects play an 
important role in determining As, At and C (through u(J.t) and w(J.t)) and it is their role 
which depends most sensitively upon the potential. An inspection of Fig. 2 confirms 
that there are wide variations in the off-shell behaviour of the P-wave potentials. 
Of these, the least important is the 3P1 potential (Fig. 2c) because the longer range 

• For S waves, R(q) is to within a factor the half-shell function as used by Kowalski (1965) and 
Noyes (1965a). For P waves of zero energy the Kowalski-Noyes half-shell function is not defined 
because of the vanishing denominator; if the appropriate power of k is removed before putting 
k = 0 then R(q) is again the half-shell function to within a factor. 
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one-pion-exchange (OPE) weak force is sensitive to only "" 1 fm -1 off the energy 
shell. The off-shell behaviour for both the 3PO and 1P1 potentials shows considerable 
sensitivity to the choice of potential, and the importance of these is shown by the 
values of W1-S,SVtp ), in particular, in Table 3. Since the capture state energy is very 
close to the energy of the 'antibound' J = 0 resonance of the deuteron (this is reflected 
in the large magnitude of as), the 3PO potential plays an important role and must not 
be neglected. In fact its consequences are quite capable of dominating A" as they do 
in the M and SS potentials. The 1 P 1 potential has a strong but less spectacular 
influence on At. 

Table 5. Effective-range coefficients for low energy P waves 

PotentialA Coefficient IPI 3PO 3Pl 

Livermore phase shifts f (fm- 3) -0·53 0·35 -0·52 
g (fm- I ) -8·9 2·1 -5·5 

Reid soft core f (fm- 3) -0·661 0·365 -0·652 
Mongan, case II f (fm- 3) +1·13 0·714 -2·64 
Sirohi-Srivastava f (fm- 3) -2·72 0·147 -2·00 

A References are McGregor et al. (1969), Reid (1968), Mongan (1969a) and Sirohi 
and Srivastava (1973) respectively. 

It is instructive to understand why the half-shell functions for P waves differ so 
markedly when they are supposed to be constrained to fit the same phase shifts. 
Consider the 'effective-range' expansion for P waves 

k 3 cot(j(k) =/+gk2+ .... (14) 

At small energies and momenta, the on-shell T-matrices therefore behave like 

T<+)(k,k;k2) = -(2h2jnM)k2(j+gk2+ ... _ik3)-1 

and our half-shell functions have the behaviour 

R(q) = -(2h2jnM)qU- 1 +O(q)} , (15) 

where the second term in the series (15) does not depend only upon / and g. Thus, 
the slope of the linear relationship between R(q) and q is the only constraint imposed 
by the on-shell data upon the low momentum behaviour of R(q). Just how stringent 
this constraint is depends upon the extent to which the leading term in the expansion 
(14) dominates the expansion at small k (k < 1 fm -1). An analysis of the Livermore 
phase shifts (McGregor et al. 1969) indicates that/fails to dominate the series, even 
for Elab = 1 MeV (k "" 0·1 fm- 1), but that a cutoff at the quadratic term provides 
a reasonable description of all P-wave phase shifts up to at least Elab = 3 MeV. The 
values of/and g resulting from this analysis are displayed in Table 5. The values 
of f which are predicted by the P-wave potentials of Reid (1968), Mongan (1969a) 
and Sirohi and Srivastava (1973) are also contained in this table. It is immediately 
clear that a fit to P-wave phase shifts over an energy range < 102 MeV does not 
necessarily provide an accurate fit to f This fact reflects the unimportance of f 
in the expansion (14), which in turn is responsible for the failure of a phase-shift 
fit to significantly constrain the off-shell behaviour. This feature is to be contrasted 
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with the S-wave behaviour in which the scattering length dominates the low energy 
phase shifts (up to '" 10 MeV), which is why phenomenological S-wave potentials 
are required to reproduce the scattering lengths very closely. This point has been 
noted by Srivastava (1973), who demonstrated that S-wave phase-shift data up to 
momentum p primarily determines the off-shell behaviour of T(q,p;p2) and 
T(p,q;p2) for q < p. While this explains why our half-shell functions for S-waves 
are largely potential-independent, we wish to emphasize that Srivastava's argument 
does not hold for P waves.* 

Despite the strong influence of the potential upon both As and At> much of this 
influence is not carried through to Py , as can be seen from Table 4a. In fact the 
contributions of As and At to P y (equation (8a)) largely cancel one another to leave 
a value of P y which is not appreciably different from zero. This feature makes a more 
careful calculation of Py essential; in particular the Danilov formulae (8) must be 
improved upon. A discussion of some of the approximations in the Danilov formalism 
is given in Appendix 1. 

From Table 4b it is clear that the asymmetry rx exhibits much more sensitivity to 
the choice of the weak-interaction model than does P y (in fact the latter probably 
depends more upon the choice of the strong interaction). The sensitivity of rx is 
partly because of the extreme sensitivity of the PNC, NNn amplitude to the choice 
of the weak-interaction Hamiltonian, but also because the p meson term (present 
in all the isovector interactions except for the Cabibbo (1963), Segre (1968) Y 5-invariant, 
Lee-Yang (1960) and Tomazawa (1970) models) makes an important contribution, 
supplementing the OPE contribution. 

In comparing our results with those of other investigators (Table 1), we can make 
the following observations. Our results for As and At agree closely with those of 
Tadic (1968) provided we neglect all P-wave contributions (as Tadic did); our values 
for C in the absence of P-wave correlations are comparable with TadiC's, but of 
opposite sign. (TadiC's OPE weak potential also has the opposite sign to ours.) 
Our results appear to be irreconcilable with those of Hadjimichael and Fischbach 
(1971), who used the same PNC potential for those models that we have in common, 
but whose results for Py are two orders of magnitude smaller than ours. To within 
an order of magnitude, the Hadjimichael-Fischbach result for Py is independent of 
neutron energy, so that their small result is unlikely to result from a delicate cancella­
tion of contributions. Our values for C and As, At in the Cabibbo model also agree 
closely with Danilov's (1971) dispersion theory result. Since this approach differs 
significantly from that adopted here, we feel that it is the Danilov formulae (8) them­
selves which represent the most serious approximation. 

6. Conclusions 

As has been pointed out in recent reviews of this subject, previous calculations 
have encountered considerable difficulty in reconciling the measurement by Lobashov 
et al. (1972) of the photon circular polarization in n + p --+ d + y with the observation 
by Hattig et al. (1970) of the parity-forbidden rx decay 160(r; 8 ·88 MeV) --+ 12C+rx. 
Both of these observables depend only on the isoscalar PNC potential, yet calculations 

* Note added in proof: Srivastava (1974) has recently extended his study of off-shell behaviour to 
include P waves, and has come to a similar conclusion about the constraints imposed by the on-shell 
behaviour. 
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using the standard potential obtained from the factorization approximation to the 
p exchange potential with the Cabibbo weak-interaction Hamiltonian were able to 
obtain agreement with the decay width for the above at: decay, ra, of Hattig et al. 
but not with the Py of Lobashov et al. The calculations of ra were made by Gari 
and Kiimmel (1969) and Henley et al. (1969). The present results for P., alter this 
picture, and suggest that much more work is required before one can assert that 
reasonable agreement cannot be obtained between both r« and P., using the same 
PNC potential. This is because the cancellations observed in the present calculation 
show that the Danilov (1965) method of calculating Py must be improved before 
definitive conclusions can be drawn. The possibility of reconciling P., and r« is 
heartening since any order of magnitude alteration in the potential strength needed 
to achieve agreement between the earlier calculation and experiment for Py would 
have destroyed the agreement for ra. Table 4a shows that our calculations give a 
value forP., in the range -O·113xlO- 7 to -2·53xlO- 7 , and we can summarize 
the present experimental and theoretical situation as follows. 

r. (eV) 

P, 

Experiment 

(1.0±0.2)x 10-10 

(Hiittig et al. 1910) 

-(1·3±0·45)x 10- 6 

(Lobashov et al. 1912) 

Cabibbo theory calculation 

2x 10-10 [Gari and Kiimmel1969J 
Henley et al. 1969 

-(O·13±O·I)x 10- 6 (Present work) 

The isovector PNC potential contains much more information about the weak­
interaction Hamiltonian, so that a measurement of at: would in principle contribute 
greatly to our knowledge of this interaction. For example, it is in this term that one 
would expect to see the effects of the neutral currents introduced in the Weinberg 
(1967) model of the weak interaction (Salam 1969). 

We conclude by re-emphasizing the approximations that have gone into our 
calculation: the use of the standard prescription for generating a PNC potential 
from the weak Hamiltonian, the treatment of the 21t exchange contribution to the 
PNC entirely in terms of p exchange, the neglect of possible effects of exchange 
currents (Gari and Huffman 1971; McKellar 1972; Henley 1973), and the computa­
tion of the electromagnetic transition amplitudes from the asymptotic parts of S 
and P wavefunctions following the Danilov (1965) method. We hope to relax some 
of these approximations in future work, and envisage that an abandonment of the 
Danilov prescription for calculating El and MI matrix elements could have a profound 
influence upon Py, but probably not upon at:. 
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Appendix 1. Danilov Prescription 

The main steps in the derivation of the Danilov (1965) formulae (8) are outlined 
here, with emphasis on where the important approximations enter. Assuming a 
scattering amplitude of the form (7), the incident wavefunctions rPJM(r) for J = 0,1 
states have the asymptotic forms (with arbitrary normalization) 

rPoo(r) '" (1- r-las) IY gg(Y) + 2ir- 2 As as IY ~~(;), (Ala) 

rPIM(r) '" (l-r-lat)lYa~(Y)-2ir-2at{J-tAtlYi~(r) -JtCIY~~(r)}, (Alb) 

in terms of the properly normalized eigenfunctions of total angular momentum 

IYff(r) = L < lSmv I J M) ytCi) X: . (A2) 
vm 

The asymptotic Sand P components of the deuteron are obtained by analytic con­
tinuation of the scattered wavefunction to negative energy -h2/J2/M, as 

rPd,M(r) '" N[IYar(Y) +2ir-1(I+pr){JtAtIY~~(r) -v'tCIY~r(;)}]r-1exp(-pr). 
(A3) 

The normalization constant N plays no role in the evaluation of Py and 0(. 

The circular polarization P y and asymmetry 0( about the spin direction of the 
incident neutron result from interference between the 'irregular' El transitions 
(between Sand P states) and the 'regular' Ml transition. Danilov estimates the 
matrix elements by presuming that the asymptotic wavefunctions (AI) and (A3) 
adequately represent the wavefunctions at all distances (the zero-range approxima­
tion). In this case the Ml matrix element describing capture from the 1So state to 
the 3S1 deuteron state is 

.A = La) (1-r- 1as)r- 1exp(-pr)r2 dr =p-2_p-1as . (A4) 

Similar results for the El matrix elements lead to the P y and 0( expressions (8). The 
approximations of this procedure are then apparent. One depends upon the accuracy 
of results such as (A4) and similar expressions for the El matrix elements, as well as 
the neglect of the deuteron (and capture) D states. Neglect of the deuteron D state 
is responsible for the neglect of the El transitions 3PO,1 --+ 3D1. 

It was shown by Bethe and Longmire (1950), Austern and Rost (1959) and Noyes 
(1965b) that the result (A4) underestimates the Ml transition strength and that this 
effect alone would increase both Py and 0( by '" 27 %. This value excludes corrections 
to the normalization constant N, which is No = (2P)~ for 'zero-range' wavefunctions 
and Ng = pt No(1-pro)-t (where Ps is the deuteron S-state probability and ro the 
triplet scattering length) for more accurate deuteron 3S1 wavefunctions (Bethe and 
Longmire). However, some compensation for this increase might be expected from 
finite-range effects in the EI matrix elements. Nevertheless, an overall enhancement 
of P y and 0( does seem probable from such considerations. 

In addition to finite-range effects (i.e. effects due to the presumption that the 
asymptotic wavefunctions adequately represent the wavefunctions at all nucleon 
separations), the most serious approximation of the Danilov formulation is the 
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neglect of the deuteron D-state component. (The capture state D-state component 
is very small since its asymptotic component falls off linearly with energy). Because 
our value of P y is not appreciably different from zero, due to the cancellation of terms 
in As and At, the role of El transitions to the deuteron D state may be appreciable. 
Preliminary estimations of this effect indicate. that P y may be enhanced in magnitude 
and remain negative. 

Appendix 2. Derivation of Danilov Parameters 

We outline here the derivation of equations (9). The transition matrix has a 
partial-wave decomposition 

(k', S'v' 1 T(s) 1 k, Sv) 

= L T/S',IS(k',k;s) L Y,':"(k')y,m*(k)(I'S'm'v'IJM)(ISmvIJM) (AS) 
l'U m'mM 

(with no restriction that 1/-1'1 be even) and is related to the scattering amplitude by 

(S'v'lf(k',k) 1 Sv) = -(2n2M/1i2)(k', S'v'l T(k2) Ik, Sv) (A6) 

for 1 k 1 = 1 k' 1 = k. In the low energy limit, retaining only terms linear in momentum 
in the expansion (AS) and comparing the result (A6) with the Danilov expressions 
(7) and (S), we make the identifications 

atC = -(nM/4h2)J!RAt,u(0), 

a2S+1A2S+1 = -(nM/4h2)(_)SS~S"1S(0), 

(A7a) 

(A7b) 

in which S = (2S+ 1)t, S' = I-S, and RgS',lS(k) is defined as in equation (11). 
This identification is assisted by writing the Danilov scattering amplitude as 

(S'v'lf(k',k) 1 Sv) 

= 2k(tn)t( - )SS L (Shtm 1 S'v')[C.JtatP1'*(k') + Yi*(k)}c5s',S,l 
m 

-{A'2S+1 a2S+1 Yi'*(k') +A2S'+1 a2S'+1 Yi*(k)}c5IS'-SI,l]' (AS) 

in which there is only one term in the sum, corresponding to m = v' - v. 
The PNC T-matrix elements of equations (A7) are evaluated to first order in the 

PNC interaction by writing 

(k'i T~~~(s) 1 k) = ("'~:-)(s) 1 VPNC 1 "'~+)(s», (A9) 
where 

1 "'~±)(s» = [1 + G(±)(s) Ts\~">ngCs)] 1 k), 

in terms of the Green's function G(±)(s) = (s+ V2 ± ie)-l. A partial-wave decomposi­
tion of equation CA9) at zero energy leads to the result 

Rfs',osCk) = Ffs',osCk) - ~ folX> Ffs',osCq) Tfs',lS.(q, k; 0) dq, (AIO) 
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where 

F~s'.oS<q) = vfs'.os(q,O) - ~ ~ (IoOO VfS'.LS(q, p) Tfs.os(p, 0; 0) dP) , 

in which the summation is over L = 0,2 for S = 1 or L = 0 for S = O. The partial­
wave components vis' .LS(q,P) of the weak potential are defined analogously to equation 
(A5), and in terms of the notation of equations (4) and (5) are given by 

~~S'.IS<q,P) = Bf's'.IS L VJ w~±)(S, T){P-1Qz{Zi) ±P-1Ql,(Zi)} ' (All) 
I 

where 
Zi = (p2 +q2 + p.f)/2pq 

and the B's are purely geometrical factors, given by 

Bf.S'.IS = n- 1SS' (- t'-s+J+z[(lIOO 11'0>{~; ~l (AI2) 

The isospin quantum number Tis 0 or 1 such that (l + S + T) is odd. A substitution 
of equation (AW) into equations (A 7) leads to the contributions (9) to C and As, At. 
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