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Abstract 

The problem of establishing the Rayleigh-Jeans law for equilibrium electromagnetic radiation in a 
cavity is studied without making the customary simplifying assumptions. By using a Hamiltonian 
formalism analogous to that introduced by Fermi for quantum electrodynamics the analysis is 
simplified, general expressions for absorption and emission are obtained, and the correspondence 
with the quantum mechanical treatment is established. The model considered consists of a cavity 
which contains classical charged particles which move in an arbitrary potential while interacting 
with electromagnetic radiation. The work covers much the same ground as the fundamental but 
neglected work of McLaren, though the methods used are simpler and more direct. The applications 
are to those parts of radio astronomy where the wavelengths are sufficiently large to allow a classical 
description. In particular, Twiss's analysis of stimulated emission at radio wavelengths is incorporated 
in the analysis. 

1. Introduction 

The character of electromagnetic radiation in thermal equilibrium with matter 
may be determined in two ways. The first and simplest is to focus attention on the 
equilibrium state and pay no attention to whether, or in what manner, equilibrium 
occurs. The second method, which is more complicated but, correspondingly, is 
more informative, examines the processes of absorption and emission and establishes 
the conditions for eqUilibrium by balancing the two. The second method is clearly 
the more fundamental. In addition it has the advantage of giving a description of 
the non-equilibrium situation. 

In both the quantum and the classical case the description of radiation by the 
first method is trivial. The electromagnetic energy in a cavity can be written as the 
energy of a set of independent simple harmonic oscillators. The classical equipartition 
theorem then gives the Rayleigh-Jeans law, while quantum statistics gives the Planck 
law. . 

In the literature the application of the second method is simplified by using thermo­
dynamic arguments to establish that radiation in thermal equilibrium is independent 
of the matter with which it interacts. Indeed, if the investigation is theoretical, the 
matter need not even exist provided the equations of motion describing the matter are 
consistent with the laws of mechanics, classical or quantum, according to the 
approximation. The work of Planck (1912) and of Born (lectures reprinted 1969) 
assume that the matter is a collection of simple harmonic oscillators, each of which 
is linear and so massive that Doppler shifts may be ignored. Lorentz (1915) takes 
as his model a thin metal plate. A typical quantum calculation is that of Einstein 
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(1917) who established the Planck law by considering the emission and absorption of 
a hypothetical two-level quantum system. 

None of the foregoing investigations can claim to be fundamental, for the thermo­
dynamic laws should be a result of, not a tool for, the investigation of the equilibrium 
between matter and radiation. The first comprehensive attempt to place the classical 
model on a more fundamental basis was made by McLaren (1911, 1912) in two 
important, but neglected papers. McLaren discussed the general problem of the 
Hamiltonian description of the electron and its field, and showed that the Rayleigh­
Jeans law resulted from the balance of emission and absorption. Much later Le Roux 
(1960), unaware of McLaren's work, considered the same problem, but allowed for 
relativistic motion. Le Roux also established the Rayleigh-Jeans law, but showed in 
addition that the Planck law could be obtained from the purely classical calculation 
provided the derivative of the particle distribution function with respect to energy 
was replaced by a difference expression in a plausible, if ad hoc, way. 

Although the classical description is only approximate, it is a useful approximation 
in those areas where the quantum numbers are large. Thus, in radio astronomy the 
classical description is useful and considerations of the classical emission and absorp­
tion processes are relevant. For this reason, and also we believe because of its intrinsic 
interest we attempt, in this paper, to simplify and clarify the analysis of the problem. 
The plan is to follow Fermi (1932) and consider the particles and the radiation in a 
large cavity. The radiation field can then be represented as a superposition of standing 
waves satisfying periodic boundary conditions. The Hamiltonian of the system is 
easily constructed and, working to first order in the field-particle interaction, the 
emission and absorption can be found. By taking the limit as the volume goes to 
infinity, the interaction between particles and radiation in free space can be studied. 

Because the formulation is similar to that used in quantum electrodynamics the 
method has the advantage that, at each stage, the classical expressions can be easily 
related to their quantum equivalents. In particular, the operator perturbation method 
employed has a simple analogue in quantum theory and the absorption and emission 
rates can be related to the Einstein coefficients for stimulated and spontaneous emis­
sion. The method used by Le Roux (1960) makes use of a special perturbation 
technique which does not easily allow suggestive comparisons with quantum theory 
and fails to clarify the nature of the approximations which result in Planck's law. 

In order to make statistical arguments it is convenient to first consider a single 
electron in the radiation field and then average over phase space. Since the present 
analysis is concerned solely with the character of the radiation field, we take the 
distribution of the particles to be known. The equilibrium radiation field is then 
found when the particle distribution is governed by the Maxwell-Boltzmann 
distribution. 

2. Radiation Field 

While adopting Fermi's method in principle it is preferable here to use Bethe's 
(1964) formulation. Thus for a cavity of volume V, the vector potential A(r, t) is 
written 

A(r, t) = If I {qU(t)Uk;.(r) + q!;.(t)u!;.(r)}, (1) 
k '<=1,2 
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where the asterisk denotes a complex conjugate; 

uu(r) = (4nc2/V)tEuexp(ik.r), 

EU being a unit polarization vector; the prime on the summation over k indicates 
that it is only over one hemisphere of k space; and Ek;..k = 0 since V.A = 0 for 
each mode, and the normalization is given by 

f uk,;",uk;.dV = 0, f uk';.,.ut;.dV = 4nc2bkk,bu '. (2) 

The two values of A allow for the two independent polarization directions perpen­
dicular to k. 

Using the foregoing results it is easy to verify that the electric field E and magnetic 
field B become 

E = _c- 1 aA/at = _c- 1 L' L {Ih;.(t) Uk;' +c.c.}, 
k ;. 

B = \7xA = L' L {iqk;.(t)k x Uk}. +c.c.}, 
k ;. 

(3a) 

(3b) 

where c.c. denotes the complex conjugate of the other expression in the brackets. The 
electromagnetic field energy Wem is given by 

w. "'''{''* k22 *} em = t... t... qk}. qk;' + c qk;' qk}. . 
k ;. 

The canonical momenta are then given by 

/a ' .* aWem qk;' = Pu = qu, aWem/aqt;. = pt;. = qu· 

Therefore the free field Hamiltonian H is 

H = L'L {Pk;.pt;. +k2c2qk;.qt;.}· 
k ;. 

3. Particle and Radiation 

(4) 

(5) 

(6) 

The Lagrangian of a charged particle with charge u in an electromagnetic field 
described by a vector potential A' and a scalar potential U (which may include a 
non-electromagnetic part) is (see e.g. Jackson 1962) 

L = -mc2(1 _V2/C 2)t +(u/c)v.A' -uU. (7) 
Here 

A' = Ao+A, (8) 

where A is the contribution from the radiation and Ao is due to a static background 
magnetic field. Following the normal rules, the canonical momentum is found to be 

P = mv(1 _V2/C2)-t +(u/c)A' (9) 
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and the Hamiltonian is 

Wp = uU+ {m2c4 + C2(P -UA'/C)2}t. 

If the motion is nonrelativistic (the relativistic case is considered in Section 7) 

Wp ~ uU+mc2+(p -uA'/c)2/2m, 

and, furthermore, if the radiation is a weak perturbation 

Wp = uU+mc2+p~/2m -(u/mc)po.A, 
where 

Po= P -uAo/c. 

(10) 

The constant term me2 in Wp has no effect on the dynamics and can be left out. The 
final nonrelativistic Hamiltonian for a single particle in a cavity radiation field is then 

H = pU2m +uU + L'L {PkAPZA + k 2e2qkAqZA} 
k A 

-(u/me)po· (~' ~ {qkAUkA +qZAUZA}). (11) 

It is easy to show that H gives the correct nonrelativistic equation of motion for the 
particle. It is not, however, evident that the interaction term correctly describes the 
electromagnetic field in the presence of a charged particle. Confirmation that H is 
the correct Hamiltonian is given in the next section. Finally we remark that Uu in 
the interaction term is to be evaluated at the particle. 

4. Emission of Radiation 

The equations for the radiation field are 

fJH/fJpu = likA' fJH/fJqu = - Pu 

and their complex conjugates. Thus 

ijtA+k2c2qtA = {u/me)po·uu, 

iju+k2c2qu = (u/me)pO·ukA. 

(12a) 

(12b) 

These last two equations describe the pumping of energy into the radiation field by 
the nonuniform motion of the particle. Defining 

fu(t) = (u/mc)po·uu = (u/e)v.uu 

= u(4n/V)t Eu' vexp(ik. r), (13) 

where r(t) is the position vector of the particle, it is easily shown that if there is no 
radiation at tillie to the solution of equation (12b) is 

qkA = -(ke)-l it f:;.(e)sin{kc(e-t)} de 
to 

(14) 
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with 

4u = rt !k~g)cos{ke(e-t)} de. 
jto 

719 

Taking the complex conjugate of equation (14) gives the solution of (12a). The rate 
of change of electromagnetic energy becomes 

dw"m/dt = l:'l: {4t;.!l;.(t) +4k;'!k;.(t)}. (15) 
k ;. 

If we now average over many particles distributed in phase space according to the 
distribution function p, equation (15) gives the average emission rate tff, for a specific 
k,A, as 

Iff = r .. f p (!ki(t) {fuwcos{ke(e-t)} de +c.c.) dv,., (16) 

where d Vn is an element of volume in phase space. 
The foregoing expressions may be checked by comparing the results obtained 

when V --+ 00 with the known results for a particle of charge u radiating in free space. 
In Appendix 2 the electrical field deduced from equations (3a) and (14) is shown to 
be correct. Here the total energy radiated by a particle at rest in the infinite past and 
at rest in the infinite future (t = ± 00) will be calculated. 

The total energy radiated is 

WT = fa) (dWdem) dt = l:' l: fa) {4t;'!ki(t) + 4k;'!k;.(t)} dt 
-a) t k ;. -00 

which, with the foregoing expressions for qu andju, becomes 

( U )2 4ne2 fOO ft wT = me --v~'~ -00 _OO{PO(t)'£k;'} {J1o(e)·£u} 

x cos{ke(e - t)} cos(k. Ar) de dt, 

where Ar = r(e)-r(t) and to = - 00. The sum over polarization can be simplified by 
recalling that there are two independent polarization vectors perpendicular to k and 
perpendicular to each other. Apart from this last constraint they are distributed 
uniformly in the plane perpendicular to k. From Appendix 1 we find 

AV( ~ {Po(t). £k;.}{PO(e). £u}) = Po(t) x Ii .po(e) x Ii, (17) 

where k = k/k. Finally, writing the cosines in complex exponential form and con­
verting the e integration to the range (- 00, 00) by using the symmetry, we find 

( U )2 271:e2 
[ I fOO ~ 12 WT = me --v~' -00 po(t)xkexp{ -ik.r(t) +iket} dt 

+ I f:oo po(t)xkexp{ik.r(t) +iket} dtrJ· (18) 
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When V is large the sum over k can be written as an integral. Recalling that the number 
of modes for a given polarization with k in the range k to k + dk and in the element 
of solid angle dQ is 

Vk2 dk dQ/8n3 , (19) 

we find 

ilWT u2k2 [I fOO A 12 ilkilQ = 4m2n2 _oopoXkexp{-ik.r+ikct}dt 

+ 1 I:oo Po x kexp{ik.r +ikct} df], (20) 

where, if an integration over Q is later performed, it is only over a hemisphere. 
Indeed if the lower term in the square brackets is omitted the integration can be 
taken over a sphere. If a conversion to frequency eo = kc is made and J(eo) is 
defined by 

ilWTILlk ilQ = c M(eo)/ileoilQ, 

the result (20) is equivalent to that given by Jackson (1962), provided it is recalled 
that in his formula the solid angle ranges over a sphere. We can therefore take 
equation (11) as the correct Hamiltonian, for it describes both the motion of the 
particle and the radiation field correctly. 

Finally, for later reference it is convenient to establish the relationship between 
the classical emission (15) and its quantum equivalent. If the particle motion is 
periodic, with period T = 2n/eoo, the average rate of radiation of energy is 

(J'V> = T- 1 I: Wem dt. 

Performing manipulations analogous to those already performed to get Wn we find, 
on replacing the summation by an integration with k = eol c, that 

~~> = T:2C3 too eo2( 1 I: (u/m)p(t)xkexp( -ik.r +ieot) dt 12 

+(k ~ -k)) deo, 

where (k -+ - k) means the addition of a term similar to the preceding one with k 
replaced by - k. If there is a continuous distribution of charge and therefore current 
density J(r, t) this last expression generalizes to 

<~~> = r:2c3 Iooo eo2( 1 IIoT J(r, t) xkexp( -ik.r +ieot) dtdr r 
+(k -+ -k)) deo. 



Equilibrium Electromagnetic Radiation 721 

If J(r, t) = j(r)exp( -iwo t), the integral over frequency is dominated by the con­
tribution near w = wo, and we find 

<~~)~ T:2C3 (I fj(r)xiiexP(-ikor)drI2 +(k~ -k)) 

x (J)2 f'" sin2 {t(w-wo)T} d( - ) 
o ( )2 W Wo 

-00 W-Wo 

= 2:!3(lfj(r)xiiexP(-ikor)drr +(k~ -k)). 

This result provides one method of establishing the quantum transition probability 
Awo for spontaneous emission (Bethe 1964, p. 142). We find 

Awo = (kWO)-l (AW/AQ) , 

or alternatively with k confined within AQ 

Awo = (kwoAQ)-l r ~ (p';.(t) f~ jk;.(~)cos{kc(~-t)} d~ +c.c.). 

50 Absorption of Energy 

The absorption of electromagnetic energy per unit time is given by u E 0 v. 
However, the only part of v which contributes to the net absorption is that part bv 
which is produced by E. Then the absorption rate d is u E 0 bv. For the unperturbed 
motion Po = mv while, after the motion is perturbed, 

Po+bpo = m(v+bv)+uA/c, 
so that 

bpo = mbv +uA/c. 

The absorption rate is therefore 

d = u E 0 {m- 1 bpo -(u/mc)A}. (21) 

However, the term involving Eo A does not contribute to the average absorption 
rate since E is proportional to aA/at and the two are uncorrelated, i.e. the long-time 
average of A 0 (aA/at) tends to zero. Therefore d may be taken as 

d = (u/m)Eobpo = -(u/mc)bPoo I' I {qu(t)uu +c.c.} 
k A 

= - I' I {qu(t) bjkA + qt;.(t) bjki} , (22) 
k A 

and, for a particular k and A, 

d = qdt)b!u +qtit)b!k~. (23) 

In the absence of the interaction term - (u fmc )po 0 A in the Hamiltonian, the 
motion of the particle is unperturbed. This interaction term results in a perturbation 
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to the motion and therefore causes the absorption of radiation. The perturbation is 
easily determined using an operator method (Kilmister and Reeves 1966), the essential 
details of which are the following. 

The rate of change of any function of the coordinates q and canonical momenta 
p is given by 

dF (OH of oH OF) 
dt = L op oq - oq op , (24) 

which in Poisson bracket notation is 

dFfdt = [H,F] , (25) 

for which there is an exact quantum equivalent (Dirac 1958, p. 112). By using 
equation (24) all the derivatives of F can be found. If the initial values are known 
then Taylor's expansion can be used to find F at some later time t. It is convenient 
to introduce an operator .0 defined by 

dFfdt = .oF, . (26) 

so that Taylor's expansion becomes 

Flp, q) = exp(t.oo) Fto(p, q). (27) 

Here subscripts denote the time, and in .00 the derivatives are with respect to the 
initial (t = to) values of p and q. For two systems with the same generalized coordinates 
and momenta and the same initial values, but with slightly different Hamiltonians 
Hand H', we find, assuming to=O, that 

F,(p',q') = exp(t.o'o)Fto(p,q) = exp(t.o'o)exp(-t.oo)Ft(p,q). 

. The operator 
S = exp(t.o'o) exp( - tao) (28) 

converts the unperturbed motion derived from H to the perturbed motion derived 
from H'. By forming dfdt of equation (28) we find 

S = 1 + it exp(s.o'o)(.o'o- .oo)exp( -s.oo) ds. 
to 

(29) 

The reader familiar with quantum mechanics will recognize this expression as similar 
to the perturbation expression for the time evolution operator in quantum mechanics. 
The perturbation to F may then be written 

[)F = Ft(p',q') -Ft(p, q) 

~ it exp(s.oo)(.o'o - .(0) exp( - s.oo) ds • Ft(p, q) . 
to . 

(30) 

For the problem considered here 

.0'0-.00 = L (O(H' -H) ~ _ o(H' -H)~) 
oPo oqo oqo oPo 

(31) 
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and 
H'-H = -L'L(qkJ.fu+q;J.f~). (32) 

k J. 

It is convenient to deal with the contribution from a given k and A. separately. We 
shall also use the fact that terms with different values of k and A. are uncorrelated, so 
that to determine lJ fu we need only consider the terms in H' - H which have the 
same k and A. as lJ fkJ.' From equation (30) 

lJfkJ. = (t exp(sQo)(Q~-Qo)exp( -SQO)fkit) ds 
lto 

and, since exp( - sQo) produces a time shift of - s, 

lJfkJ. = (t exp(sQo)(Q~ - Qo) fkit - s) ds 
Jto 

= (t exp(sQo) [H' -H,!u(t-s)] ds. 
Jto 

Retaining now only those terms in H - H' which have the same k, A. as in fu, we find 

lJfu = - (t [qu(s) fu(s) +q:iS)fk~(S), fkit)] ds, 
Jto 

(33) 

where in the last two equations the Poisson bracket notation has been used. Since 
fkJ. only contains the coordinates and momentum of the particle, the derivatives with 
respect to p, q of the field in the Poisson bracket vanish. Therefore 

lJfu = - (t [Jkis),fu(t)] qkis) ds - (t [Jki(s),fu(t) ]qZis) ds. (34) 
J~ J~ 

The contribution to the absorption from lJ fu is iJu(t) lJ fu, and this can now be 
simplified in the following way. First note that since the field hardly changes in the 
absorption process we can take qu(t) as being given by its value in the absence of 
matter. Thus 

qu(t) = aexp( -iwt+ilX) +bexp( + iwt+ if1) , (35) 

where, since in the standing wave representation waves of equal amplitude move in 
opposite directions, 

aa* = bb*. 

The phase constants IX and f1 may be taken as random since ultimately we sum over a 
large number of particles. Taking the average over phase we find 

Av{iJuCt)q:is)} = -2aa*kcsin{kc(t-s)} , AV{iJuCt)qu(s)} = O. 

Therefore 

AV(iJkJ.lJfu) = +2aa*kc (t [Jki(s),fki t )] sin{kc(t-s)} ds. 
Jto 
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The total absorption for the given k and .Ie is then 

+2aa*kc it {[Jk'i(S),JU(t)] + [Jk,,(s),Jk'i(t)]}sin{kc(t-s)} ds. (36) 
to 

The contribution to the energy in the electromagnetic field from the mode with the 
given k and .Ie is found by substituting equation (35) into the relation (4). It is 

Wu = 2(kc)2aa*. 

Therefore, for a fixed k and .Ie, the absorption rate .s;I is given by 

w: it .s;I = + kU ([fk'i(S),Jk,,(t)] + [Jk,,(s),Jk'i(t)]}sin{kc(t-s)} ds. (37) 
c to 

If the cavity contains a large number of similar independent particles which are 
distributed in phase space according to some distribution p, the average absorption 
is found by multiplying equation (37) by p and integrating over phase space. 
Liouville's theorem tells us that the phase space can be specified either by using the 
current values of p, q for the particles or by using the initial values Po, qo. For the 
present case, since the Poisson brackets in (37) imply differentiation with respect to 
Po, qo, we choose to use a volume element d V of phase space defined by the initial 
values. Furthermore we can integrate by parts if p vanishes at the end points of the 
integration. Therefore 

J ... J P[Jk'i(S),Jk.,(t)] dVn = - J ... J [P,Jk,,(t)] fk'i(S) dVn , (38) 

where, if each particle has n degrees of freedom, 

d Vn == dqo1 dqo2 ... dqon dPo1 ... dPon . 

If we now assume that p is a function of the particle energy Wp alone, then 

[P,Jk,,(t)] = dp dA. 
dWp (ft. (39) 

The condition for equilibrium between emission and absorption is not necessarily 
the strong condition that at each instant there should be equality of emission and 
absorption. It is entirely sufficient to use the weaker condition, that the time average 
of the emission and absorption of a single particle should balance. Since we have 

:t Vu(t) f>k'i(S)Sin{kC(t-S)} dS) 

= dfklt) it fk~(s)sin{kc(t-s)} ds +kcfk,,(t) it A'icos{kc(t-s)} ds, 
t ~ ~ 

and recalling that it +8 

0- 1 t (dGfdt) dt ~ 0, 
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if () is sufficiently large and G is bounded, we find 

<df~;t) i>ki(s)Sin{kc(t-S)} dS) = -kC(jkit) i>k*ACOS{kC(t-S)} ds), (40) 

where the angular brackets denote time averages. The average of equation (37) 
over phase space and over time can now be found using the relations (38), (39) and 
(40). Thus the average absorption rate .!II is, for a fixed k, A, 

Av(.rII) = - Wu f .. · f dd:p (jkit) i>ki(s)cOS{kC(t-S)} dS) +c.c.) dv,.. (41) 

From equation (16) the time average of tff is 

Av(Cff) = f .. · f p( (jkA(t) i: Ai(s)cos{kc(t-s)} dS) +c.c.) dv,.. (42) 

We now consider various applications of equations (41) and (42). 

6. Applications 

(a) Classical Equilibrium 

This is the simplest case to consider. If the particles are distributed according to 
the canonical distribution 

p oc exp( - Wp/ KT) , (43) 

where K is Boltzmann's constant and T the temperature, we find on equating 
equations (41) and (42) that 

WkA = KT, (44) 

which shows that each mode has the same energy. Recalling that the number of 
modes with k in the range k to k+dk is, on taking account of the two polarization 
directions, 

Vk2 dk/n2 , (45) 

the energy density per unit wave number is 

KTk2/n2 , (46) 

the usual Rayleigh-Jeans law. This last result shows that, if similar charged particles 
have the canonical distribution, the condition that they are in equilibrium with 
electromagnetic radiation in a cavity is that the energy distribution of the radiation 
is given by the Rayleigh-Jeans law. This result is indepl!ndent of the character of 
other conservative time-independent fields with which the particles interact. 

(b) Relation to Quantum Mechanics 

If the particle moti9n is periodic with period 2n/wo the analysis of Section 4 
shows, for a given volume element of phase space, after summing over k, A, recognizing 
that the major contribution comes from ko ,.., wo/c and introducing the spontaneous 
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emission coefficient Awo' that the absorption rate d is given by 

d = - Wko(dp/dWp)(hwoAmo) , (47) 

where ko = wo/c, and the emission rate rff is 

rff = p(hwo Awo). (48) 

In terms of the radiation intensity per unit frequency l(wo), defined by c times the 
product of the energy density per mode by the number of modes in dw, that is, 

l(wo) = C(Wko/V)(Vw~/n2c3) = Wko wUc2n2, (49) 

the absorption rate becomes 

d = -1(wo)(c2n2/w~)(dp/dWp)(hwoAwo). (50) 

Therefore at equilibrium we find 

-1(wo)(c2n2/w~)dp/dWp = p. (51) 

The quantum equivalent of equation (51) was derived by Einstein (see Bethe 1964, 
p. 144), by balancing absorption and emission between two levels J, n and introducing 
a coefficient of stimulated emission Bro. Einstein found that 

l(wo)cBwop(Ef ) +Aroop(Ef ) = Broocp(En)l(wo), (52) 
where 

Ef = En+hwo· 
Equation (52) may be written 

-l(wo) c Broohwo{p(En+hwo)- p(En)}/hwo = Aroop(Ef ). (53) 

If, as an approximation, we write 

{p(En+hwo)-p(En)}/hwo = dp/dEn, (54) 

equation (53) becomes 

-1(wo)(cBroohwo)dp/dEn = Aroop· 

Comparing this with equation (51) we deduce that 

Aroo = Broohw~/cn2, (55) 

which is the usual quantum relation between the coefficients of stimulated and 
spontaneous emission. This procedure can be reversed. In equation (51) replace 
dp/d Wp using the relation (54) and set 

Then (51) becomes 
peE) oc exp( - E/ KT) . 

hwUn2c2 
l(wo) = exp(hwo/KT) -1' (56) 
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which is Planck's law. This result was also found by Le Roux (1960) who did not, 
however, draw all the connecting links with the quantum equations. 

(c) Quasiclassical Stimulated Emission 

Twiss (1958) showed that, for the typical frequencies used in radio. astronomy, 
stimulated emission might be important. His procedure was to take the quantum 
equations and convert them to a quasiclassical form. Here we recover his results 
using equations (41) and (42). 

If the motion is ergodic we can expect that the time average in equation (41) is 
the same for all particles with the same constants of the motion. In many cases the 
only relevant constant will be the energy Wp. Even if the motion is not ergodic, one 
can expect that the time average will depend only on the constants of the motion. 
Assuming then that the energy is the only relevant constant of the motion we set 

<tu(t) l>ki(S)cos{kC(t-S)} dS) +c.c. = F(Wp). 

The absorption at k is then 

- Wk.t f (dp/dWp)F(Wp) dVn • (57) 

If the volume of phase space between Wp and Wp+dWp is Q(Wp)dWp then the 
expression (57) becomes 

- Wk.t f (dp/dWp)F(Wp) Q(Wp) dWp. (58) 

The number of particles n with energy between Wp and Wp + d Wp is given by 

n = pQ(Wp), 

so that (58) may be written 

- Wk.t f d~p (~) FQ dWp. 

This last expression for the absorption is equivalent to the basic equation of Twiss's 
(1958) paper. Note that here the quantum statistical weights are replaced, as expected, 
by Q, the usual classical statistical weighting. 

The analysis given here can easily be extended to deal with more general problems 
involving either other constants of the motion or a frequency-dependent refractive 
index for the cavity. 

7. Relativistic Case 

If the particle Hamiltonian (10) is expanded assuming the particle motion is 
relativistic and the radiation field is a weak perturbation, we find 

H = (J'U +(m2c4+c2p~)t+ II I (Pk.tpt.t + k2c2quqt.t) 
k .t 

- (J'c Po. A (m2c4 + C2p~) -t , (59) 
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where A is given by equation (1). In the unperturbed case 

(m2c4+c2p~)t = mc2(1-v2Ic2)-t, 
since 

Po = mV(1-v2Ic2)-t. 

The interaction term therefore becomes 

-(ulc) v. A, 

J.J.Monaghan 

which is identical with the interaction term in the non-relativistic calculation. The 
expression (20) for the emission is unaltered if we simply replace Po by mv. The 
absorption is also unaltered, for the absorption rate is still uE. ov and the interaction 
term causing the perturbation in v has the form - u v • AI c. In short equations (23) 
and (37) remain true withfu being given by 

fu = (ulc)v. Uu· 

The Rayleigh-Jeans law and the Planck law (granted the ansatz 54) therefore remain 
true in the relativistic case. 
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Appendix 1 

We require the average of~.l. (a. Ek.l.)(b. Eu). We use polar coordinates with k as 
the polar axis and recall that Ekl and Ekl are perpendicular to k and to each other. 
The various angles are: 

Polar angle 
Azimuthal angle 

a 

()a 

cPa 

b 

()b 

cPb 

Ekl 

!n 
cP 

Ek2 

!n 
cP+!n 
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Therefore 

I f21< ab f27< . . 
-2 L (EkA·a)(Ek)..b) dq, = 2- {smOacos(q,-q,a)}{smObcos(q,-q,b)} dq, 
n 0 ).=1,2 n 0 

+ ;! 502
1< {sinOasin(q,-¢a)~{sinObsin(¢-¢b)} d¢ 

= ab{ sinOa sin ObCOS(¢a- ¢b)} 

= (a xk). (b xk). 

Appendix 2 

From equations (3a) and (14) of Sections 2 and 4 we have 

E(x,t) = -c- 1(4nc 2/v)tl: (EkAeXP(ik.x) ft fkicos{kc(~-t)} d~ 
kA - 00 

+ Ek).exp( -ik.x) foo fk).cos{kcG-t)} d~), (AI) 

with x being the position vector of the point where E is measured at time t. Taking r 
as the position vector of the particle at time ~, we can also write fkA in the form 

fd~) = u(4nfV)t v. Ek). exp{ik. rG)} . (A2) 

Substituting equation (A2) into (AI) and setting R = x-r, we find 

E = -(8nu/V) L Ek). ft v(~). Ek). cos(k. R)cos{kc(~ - t)} d~ . 
kA - 00 

It is convenient to examine E. E, where E is any unit vector. Forming E. E and 
averaging over polarizations as in Appendix 1 we obtain 

E.E = -(8nu/V) ~ (Exk). foo (vxk)cos(k.R)cos{kc(~-t)} d~. (A3) 

The summation over k can be transformed into an integral using the expression (19) 
for the number of modes. Accordingly, for large V, 

E.E = - :2 foo ff k 2 dkdQ (Exk).(vxk)cos(k.R)cos{kcG-t)} d~, (A4) 

or 

E.E = - :2 foo ff k 2 dkdQ (E.V - (E.kk~v.k))cOS(k.R)COS{kC(~-t)} d~. (AS) 
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On recalling that the integration over Q includes only a hemisphere, we find 

II k2 dkdQ E. vcos(k .R)cos{kc(~-t)} = (E. v)n2R- 1 c5'(R+ c(e- t)), (A6) 

where the prime denotes a derivative with respect to the function's argument and a 
delta function has been omitted from the right-hand side of (A6) since e < t. Also 

II dkdQ (E.k)(v.k)cos(k.R)cos{kc(e-t)} 

= -B/Vj 8x~;xJII cos(k .R)cos{kc(e-t)} dkdQ). (A7) 

If n = RII R I we can write the last expression as 

= -(n.E)(v.n) 8~2 (II cos(k .R)cos{kc(e- t)} dkdQ) 

82 (2n (00 sin(kR) ) 
= -(n.E)(v.n) OR2 Ii Jo k cos{kc(e-t)} dk . (A8) 

Since we are only interested in the radiation field it is legitimate to assume R.k ~ 1. 
Therefore when evaluating iPl8R2 we only retain terms which vary as R-1• We find 
that the result (A8) is approximately 

= (n. E)(n. v)n2 R-1 c5'(R+c(e- t». (A9) 

Substituting the expressions (A6) and (A9) into (AS) shows that 

E.E = -(1 foo R- 1 E.(nx(nxv))c5'(R+c(e- t )) de 

which, according to the rules for integrating delta functions, becomes 

E.E = !!.. [~(nx(nxv»)] c2 de kR .E, 
(AIO) 

where the quantities in the square brackets are to, be evaluated at the retarded time 
e = t-Rlc, and 

k ='1+ c- 1 dR/de. 

The result (AlO) is equivalent to the Heaviside-Feynman form of the radiation field 
discussed by Feynman (1964) and derived by Monaghan (1968). 
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