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Abstract 

A theoretical account is given of temperature modulation experiments on a ferromagnet sample in 
which the resulting voltage induced in a pick-up coil is monitored by phase-sensitive detection. 
Calculations are made of the effects of magnetic relaxation and of the thermal skin depth on the 
signal amplitude and phase. The relaxation calculations are shown to be consistent with recent 
experimental data for gadolinium., 

Introduction 

Recently we (Chaplin et aZ. 1973) reported the application of a new technique 
involving temperature modulation and phase-sensitive detection to determine the 
temperature derivatives of the DC magnetization M and AC susceptibility X of the 
ferromagnetic metal gadolinium near its Curie temperature. The differential 
susceptibility curves always exhibited ,a satellite peak corresponding to an inflection 
in the X(T) curve a few degrees below the Curie point and, in a further study of the 
AC susceptibility and coercive field using conventional techniques (Sydney et aZ. 1974), 
it was shown that this satellite peak was associated with domain nucleation. A fuller 
description of the experimental results for gadolinium is being published elsewhere 
(Sydney et af. 1976). Below the Curie point, non-equilibrium effects associated with 
relaxation of domain properties are important. In the present paper we outline a 
general theory of temperature modulation experiments including the effects of 
magnetic relaxation and of the thermal skin depth. 

To introduce the bases of the experiments we first neglect the effects of relaxation 
and of the skin depths, i.e. it is assumed that at any time every point in the sample is 
at the same temperature T and experiences the same applied field. The oscillatory 
term in the temperature is then given by the solution of 

mCdT/dt +bT = Pcos(rot) , (1) 

where m and C are the mass and specific heat respectively of the sample and b is the 
Newton's law of cooling constant for the sample in its environment. The oscillatory 
heat input Pcos(rot) is provided by an electrical heater wound over the sample. If a 
sinusoidal heater voltage is used without DC offset then ro is at the second harmonic 
of the voltage, whereas by employing a DC offset a power term at the frequency of 
the voltage waveform is introduced. The solution of equation (1) leads in the steady 
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state to a temperature modulation 

(2) 

where T is the mean temperature. The modulation amplitude is 

(3) 

and there is a thermal phase lag given by 

¢T = -arctan(wmCfb). (4) 

The rise f>T in the mean temperature above ambient is given by 

f>T = F/b, 

where F is the average heater power and, from this, values for b may be obtained by 
plotting the mean steady-state temperature versus F. 

In the DC experiments an applied DC magnetic field H is used to create a sample 
magnetization M (T). The temperature modulation produces a small oscillation in 
M, and the resulting voltage induced in a pick-up coil is monitored by phase-sensitive 
detection. We treat this in terms of the oscillation in the susceptibility X = M/H, 
which is defined here for any field H. By means of a Taylor expansion, the time 
dependence of X(t) may be expressed to first order as 

(5) 

where Xl is the temperature derivative. The signal (the voltage induced in the pick-up 
coil) is given by 

v = -~VdM/dt, 

where V is the sample volume and ~ is determined by the number of turns, the coil 
dimensions and the sample filling factor. Hence we have 

(6) 

When, as is usual, b ~ wmC, this becomes (from equation 3) 

(7) 

and the signal amplitude is independent of the modulation frequency. Generally only 
very small modulation amplitudes (~mK) are used, so that the expansion (5) is valid. 
If larger values are used, so that the signal leads to modulation-broadened curves, 
instead Xl(T) of equation (5) should be replaced by a Fourier integral (Wilson 1963). 

In the AC experiments the temperature modulated sample is used as the core of 
an AC transformer operating at a carrier frequency We ~ w. If the amplitude of 
magnetic field produced by the primary coil is Ho, the sample magnetization becomes 

(8) 
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and the Taylor expansion leads to 

(9) 

Neglecting the contribution 110 dH/dt, which is not modulated, the secondary voltage 
is given by 

-~VdM/dt = ~VHowex(T)sin(wet) 

+ ~VHo AT X1(T){we COS(Wt+(/Jr) sin(we t) +w sin(wt+ CPT) COS(We t)}, 

for which the amplitude-modulation signal after detection is, for We ~ W, 

(10) 

or, assuming that b ~ wme, 

(11) 

A comparison between equations (7) and (11) shows the main advantage of the AC 
technique-a signal enhancement of order we/w. 

By measuring the modulation amplitude AT as a function of T, for example, by 
detection of the oscillatory e.m.f. from a thermocouple, the contribution of the specific 
heat to the signal amplitude may be allowed for and the derivative X1(T) obtained. 
Before carrying out the experiments on gadolinium we had expected simultaneously 
to obtain accurate data for the specific heat anomaly near the Curie temperature from 
measurements of the phase lag CPT. However, in our application of modulation and 
conventional techniques to study the AC and DC susceptibility in the region of the 
Curie point, it was observed that relaxation effects dominated the observed signal 
phase, producing a phase lead. These effects are treated in the next section. 

Equations (7) and (11) for v give the signals for DC and AC experiments in which 
phase-sensitive detection at the modulation frequency is used. In general, detection at 
the nth harmonic of the modulation frequency yields the nth derivative of X(T) because 
of the expansion (Russell and Torchia 1962) 

co 

x(T) = x(T) + I A;'(21 - n/n!)x(n)(T) cos(n(wt+ CPT» , (12) 
n=l 

where X(n) represents the nth derivative. Another method of determining the tem­
perature modulation amplitude is as follows: If experiments are performed by 
detecting at both the first and second harmonics, the amplitude of the second-harmonic 
signal versus T will be equal to tA T multiplied by the derivative of the corresponding 
first-harmonic curve. 

Relaxation Effects 

Here we treat the effects of magnetic relaxation on the signals. It is still assumed 
that there are a uniform temperature and an applied field at all points in the sample 
at any given time. The treatment of relaxation effects on both the DC and AC 
experiments is identical, involving only the time dependence of the susceptibility. 
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Simple Relaxation 

For 'simple relaxation' it is assumed that, as the temperature is modulated, X is 
always relaxing exponentially towards its equilibrium value Xe(T) with a relaxation 
time T, so that we have 

dX/dt = -{XCt)-XeCT)}/-r. (13) 

Such simple behaviour would not be expected for a ferromagnet below the Curie 
temperature, but a comparison of the observed behaviour with that expected for simple 
relaxation will still be worth while. Simple relaxation would be expected in tempera­
ture modulation experiments on low temperature nuclear magnetizations. 

By substituting a Taylor expansion of XeCT) .into equation (13) it follows that 

00 

xCt) = XeCf) + L L1~C21-n/n!)ctnx~n)Cf)cos(nCrot+(Pr)-<Pn), (14) 
n=l 

where <Pn = arctan(nroT) and ctn = Cl +n2ro2T2)-t. Comparing this result with 
equation (12), we see that the relaxation will result in a reduction of the nth-harmonic 
signal amplitude by the factor ctn and in an additional phase lag <PH" 

Relaxation of Domain Properties 

In applying temperature modulation techniques to study a ferromagnetic material 
near the Curie temperature Te , applied fields which are small in comparison with the 
exchange fields will generally be used so that the intrinsic magnetic ordering is then 
observed. Above Te exchange-enhanced paramagnetism with a field-independent 
susceptibility is then expected, while below Te the response to the applied field will be 
determined by the intrinsic magnetization o{T) and by the domain properties. We 
treat here the case where the response of a to the temperature modulation is fast 
enough for it to be always in thermal equilibrium, but with relaxation effects arising 
from the domain properties. 

We write, for the equilibrium susceptibility, 

XeCH, T) = GeCH, T) XN(H, T), (15) 

where XN is the susceptibility which would be observed if there were no domains 
present. Hence Ge represents the effects of the domains upon the thermal equilibrium 
susceptibility. Writing XN(H, T) = aCT)/ H it follows that the equilibrium magnetiza­
tion is 

MeCH, T) = aCT) Ge(H, T). (16) 

When the applied field is large enough to magnetically saturate the sample, i.e. there 
are no domains present, equation (16) shows that Ge = 1. When, on the other hand, 
H is sufficiently small for the linear reversible domain-wall displacement to dominate 
the susceptibility, then Me will be proportional to H and we may write, by equation 
(16): GeCH, T) = geCT)H, where geCT) represents the temperature dependence of the 
domain wall mobility. Then, defining in the same wayan instantaneous g, it follows 
that in a temperature modulation experiment the time dependence of X is given by 
X(t) = g(t) aCT). 
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We assume that, when the temperature is changing, g undergoes exponential 
relaxation with a time constant T, that is, we have 

dg/dt = - {g(t)-ge(T)}/T 

and hence, as for X in the preceding subsection, we obtain 

00 

get) = ge(T) + L Li~(21-nln!)g~n)(T)O(ncos(n(rot+cPT)-cPn)' (17) 
n=l 

Assuming that (J is always in thermal equilibrium, we have 

00 

(J(t) = (J(T) + L Li~(21-nln!)(J(n)(T)cos(n(rot+cPT))' (18) 
n=l 

For nth-harmonic detection we consider only the terms in the product g(t) (J(t) which 
have frequency nro. For first-harmonic detection this leads to 

(19) 

where the values of (J, g and their temperature derivatives all correspond to the 
equilibrium functions for the mean temperature T. For slow modulation (roT -4 0) 
we have X1(t) -4 LiTx!(T) cos(rot+ cPT), which as expected is the same as is given by 
equation (5) for the case of no relaxation effects. For fast modulation (roT -4 CX)) 
we have 

(20) 

and here also there is no phase shift caused by the relaxation, with g remaining equal 
at all times to ge(T) and with the signal being produced solely by the oscillation in (J. 
Equation (19) may also be written as 

where the phase shift cPr due to the relaxation is given by 

(22) 

It is instructive to examine the effects of this relaxation at temperatures where X! = O. 
Here, in the absence of any relaxation effects (roT = 0), the first-harmonic signal should 
be zero. Zero values of X! will occur when the contributions from the temperature 
dependences of (J and g cancel, i.e. when g(J' = - (Jg'. Relaxation of get) will 
introduce an imbalance, and the pair of equations (21) and (22) shows that the signal 
amplitude will then be nonzero with a phase shift given by 

tan(cPr) = l/roT. 

For slow modulation (roT ~ 1) small signal amplitudes with a large phase lead will 
result. For fast modulation (roT ~ 1) there will be large, almost in-phase (cPr ~ 0), 
signals. 

Fig. 1 shows experimental curves for gadolinium which give the temperature 
dependence of (a) the initial field-independent AC susceptibility and (b) the signal 
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amplitude and (c) phase of the AC first-harmonic modulation signal. These curves 
were obtained for a monotonically increasing tel!1perature; near the Curie temperature 
there is considera1?le temperature hysteresis in the domain nucleation (Sydney et al. 
1974). The form of the modulation curves is well explained in terms of the relaxation 
of domain properties. The decrease in susceptibility as the temperature is lowered 
from 291·9 to 290·0 K has been ascribed to the onset of domain nucleation (Sydney 
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Fig. 1. Temperature dependences of 
(a) the low-field AC susceptibility x(T) 
and (b) the amplitude A and (c) phase 
</> of the low AC field temperature 
modulation signal for a warming 
experiment on polycrystalline 
gadolinium, with an AC field 
frequency of 100 Hz, an r.m.s. AC 
field strength of 10Am-', a 
modulation frequency of 2 Hz and a 
modulation amplitude of 6 mK. 

et al. 1974). For T ~292'5 K, the sample is paramagnetic without any domains 
present. In this region the modulation amplitude varies as the derivative X1(T) with 
a constant phase angle in a manner characteristic of fast relaxation. At 291·9 K, 
where the derivative X1(T) = 0, there is a large modulation signal but only a small 
phase lead over that in the paramagnetic region. This is characteristic of extremely 
slow relaxation so that the signal is produced almost solely by the modulation of u. 
At 290·0 K the derivative X1(T) is again zero but here there is a small signal amplitude 
and a large phase lead corresponding to relatively fast relaxation. We conclude that 
the domain properties responsible for these effects relax very slowly at the Curie 
point where nucleation is commencing, with much faster relaxation at lower tem­
peratures. Full details of the modulation and susceptibility measurements for 
gadolinium are being published elsewhere (Sydney et al. 1976). 

For second-harmonic detection, collection of terms in g(t) u(t) with frequency 2w 
leads to 

xit) = !LI}{1X2 ug" cos(2(Wt+4>T)-4>2) 

+21X1 g'u' cos(2(wt+ (Pr)-4>l) +gu" cos(2(wt+ (Pr))}. (23) 
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For slow modulation (an ~ 0) we have 

xit) ~ iLl} X~2)(T)cos(2(wt+ tPT) 

in agreement with equation (12). For fast modulation (w. ~ (0) we have 

xit) ~ i-Ll}g(T) u"(T) cos(2(Wt+tPT)) . 

Note that, as the mean temperature is varied, a phase reversal of the second-harmonic 
signal is expected near the Curie point in the limits of both slow and fast modulation. 

Effects of Thermal Skin Depth 

We consider here the effects of the thermal skin depth J upon the signal amplitude 
and phase for both DC and AC experiments. The role of the electromagnetic skin 
depth can be eliminated in AC experiments by choosing an AC frequency We 

sufficiently low so that this skin depth is large compared with the sample dimensions. 
The effect of the thermal skin depth will be to produce a variation of the temperature­
modulation amplitude and phase with position in the sample. The signal for a DC 
experiment is then given by 

v = -~HX'(T)d<T- T)/dt (24) 

and for an AC experiment by 

(25) 
where 

<T-T) = J(T-T)dV. (26) 

As was seen in the Introduction, the effect of the time derivative in equation (24) is to 
introduce an additional factor of wand a phase shift of tn so that we now consider 
only the average modulation term < T - '1'). The treatment of the Introduction applies 
to the case where J is much greater than the sample radius. 

Before treating the more general case of cylindrical symmetry we first consider the 
plane wave solution which should apply whenever J is much smaller than the sample 
radius. The equation for planar geometry is 

oT K o2T 

at = pC ox2 ' 
(27) 

where x is the distance from the surface, and K and p are the thermal conductivity 
and density respectively. Using phasor notation, the steady state oscillatory term in 
T may be written as 

where 
T(x, t) = 0 exp(iwt-(i + l)kx), 

k = (pwCj2K)t = l/J. 

(28) 

(29) 

The phasor 0 gives the amplitude and phase of the oscillation and is determined by 
the boundary condition 

P' cos(wt) = b' T(O, T) - K(oTlox)x=o, (30) 
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which relates the heater power to the heat lost to the surroundings and the heat 
entering unit surface area of the sample. Here P I and b' are normalized so that 
P' = PIA and b' = bfA, where A is the surface area. By substituting the phasor (28) 
into equation (30) we obtain the steady state solution 

T = T+ATexp( -kx) cos(wt-kx+ cPT) , (31) 

where the surface modulation amplitude and phase are given by 

(32) 
and 

cPT = arctan(kK/(b' +kK)). (33) 

The average modulation is given by 

< T - T) = A LX) (T - T) dx, 

leading to 
<T-T) = (Ab/~2)ATCOS(wt+cPT--l-n). (34) 

The main differences between this and the result (2) for the case of a large skin depth 
are the effective volume factor (Ab/~2), the difference between equations (4) and (33) 
for cPT> and the additional phase lag of -l-n resulting from the integration over the 
thermal wave. The dependence of phase upon the specific heat is now such that, as 
pwCK/b,2 ---+ 0 and 00, the total phase (cPT- -l-n) ---+ - -l-n and - tn respectively, 
compared with the case of a large skin depth where the phase cPT ---+ 0 and - tn as 
wmCjb ---+ 0 and 00 respectively. 

For the more general case of cylindrical symmetry, with a cylindrical or toroidal 
sample, the differential equation is then 

aT K a2T 1 aT 
- = --+--, 
at pC ar2 r ar 

(35) 

where T is the temperature at a radial distance r from the centre of the cylinder of 
radius R. The steady state oscillatory term in Tmay be written as (e.g. Arparci 1966): 

T(r, t) = 9 exp(iwt )Io( ~(2i)kr)/Io( ~(2i) kR) , (36) 

where the I j are modified Bessel functions. The phasor 9 is determined from the 
boundary condition 

P' exp(iwt) = b' T(R, t) + K(aT/ar)r~R (37) 

leading to 

On writing 

we have 

and 
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with the R j and M j being calculated for y = J2kR. The phase is given by 

cP = -arctan(Y/X), 

with a surface oscillation phase CPT = cP +arctan(Mo/Ro). 
The average modulation is then 

<T-T) = L foR (T-T)2nrdr, 

where L is the sample length. Hence 

403 

where cp' is the additional phase shift associated with the integration and is given by 

cp' = arctan«M1-R1)/(M1 +R1») -arctan(Mo/Ro). 

In the limit y -+ 0 (that is, () ~ R) the expression (39) for < T - T) becomes identical 
to (2) in both amplitude and phase. For y -+ 00 (that is, () ~ R) it becomes identical 
to the plane wave solution (31), as is also expected. 
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