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Abstract 

It is pointed out that existing field equations for particles of higher spin are unsuitable' for the 
formulation of field theories with interaction. ' A generalization of the Dirac and Kemmer matrices 
is discussed in terms of finite-dimensional representations of the de, Sitter group. ' It is shown how to 
formu}ate a general field theory in such a way as to exhibit a corresponding dynamical symmetry. 
The resulting field equation resembles Bhabha's, but is self-consistent in its applications to inter­
acting particles and has a different type of mass spectrum. In the Appendix, it is shown that'within 
any'irreducible representation of the Poincare group there are finite-dimensional representations of 
the'Lorentz group'labelled (s, ± s). 

1. Introduction 

The theory of particles with spin values greater than 1 has a long and interesting 
history. At a time when the physical applications had not yet been discovered 
experimentally, Dirac (1936) was the first to attempt a generalization of his relativistic 
theory of the electron. Although, this seemed adequate for particles without inter­
action, Fierz and Pauli (1939) found that Dirac's theory led to a contradiction for 
particles with spin greater than 1 in interaction with an electromagnetic field. They 
proposed a modified theory which was self-consistent even for interacting particles, 
insofar as it could be derived by 'a variational procedure 'from an action; but it 
required a set of awkward supplementary conditions, and subsequent experience 
has revealed problems with quantization and renormalization which are sti11largely 
unresolved. Rarita and Schwinger (1941) showed how to reformulate the theory 
of Pierz and Pauli, for all particles of half-integral spin, in a way which did not 
require their cumbersome spinQr notation. 

Lubanski (1942) and Bhabha (1945) ,attempted a different generalization of Diraq's 
theory of partiCles of spin t, and Kemmer's (1939) theory of particles of spin 0 and 1. 
This predicted in general a set of particles with different masses and spins, but was 
physically unsatisfactory since some of these particles proved to have negative 
probabilities or energies. Although Bhabha was later (1952) able to dispose of this 
particular difficulty there are others associated with the interactions of the particles; 
also, it is now clear that the predicted spectrum of masses and spins is different from 
that appearing in nature (see Trippe etal. 1976). 

More recent theories have usually been based on the fundamental work of Wigner 
and Bargmann (Wigner 1939; Bargmann and Wigner 1948) on representations of the 
Poincare group (inhomogeneous Lorentz group). The generators j;'JI'P' of the 
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Poincare group include the angular momentum j = U23,j31,j12)' the energy pO and 
the momentum p = (pl ,p2 ,p3) (in units with Planck's constant h = 27th = 27t and 
the velocity of light c = 1; pA = gAP PP' where gOO = 1 and gl1 = g22 = g33 = -1). 
They satisfy the commutation relations 

The mass and spin are eigenvalues of operators Jl. and (J' defined by 

(la) 

(1 b) 

(lc) 

(2) 

The nice idea that all particles in nature are associated with specific irreducible 
representations of the Poincare group was developed in detail by Shirokov (1958), 
among others. We shall argue here, however, that this particular view of the elementary 
particles is inadequate, and that the ultimate symmetry group of physics must be 
one of higher symmetry than the Poincare group. The latter is not, of course, a new 
suggestion. From different points of view, Pauli and Solomon (1932), Fronsdahl 
(1965), Tanikawa (1965), B6hm (1966) and Chakrabarti et al. (1968) have all stressed 
the importance of the de Sitter group SO(4,1) for the representation of elementary 
particles. (The present application of the de Sitter group has of course nothing to do 
with cosmology.) But till now there has been no special relativistic field theory of 
particles of arbitrary spin incorporating this symmetry. 

To appreciate both the merit and the inadequacy of a field theory based on 
Poincare invariance, let us consider a quantized field variable 4J(x, ro) with any 
number of components, depending on the coordinates XA and also a set of parameters 
roll' specifying the orientation and velocity of the observer. Under changes of the 
xA and roP', 4J(x, ro) is subject to a unitary transformation: 

4J(x +bx, ro +bro) = U(bx, bro) 4J(x, ro) U*(bx, bro), (3) 

where, for smallbxA and broP', 

(4) 

Here P A and Jp , are universal generators of the Poincare group, satisfying relations 
like (1) above. If we definepA andjp, as linear operators on 4J(x,ro), given by 

PA4J(X,ro) = [4J(x,ro), PA], (5) 

we can regard 4J(x, ro) as carrying a representation of the Poincare group. 
However, existing field theories cannot be formulated completely in this way. 

In the theory of particles of spin 1-, a fundamental role is played by Dirac's operator 
)lA P A and the pseudo scalar )Is, neither of which is in the enveloping algebra generated 
by JAP and PO' It is true that the extension required in this instance is quite simple, 
and can be achieved by introducing a pair of operators )10 and )Is which are related 
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to parity. But this in fact implies the extension of a finite dimensional representation 
of the Lorentz group SO(3, 1) to a corresponding representation of the de Sitter 
group SO(4, 1). The same thing is found in field theories of particles with higher spin, 
and there the required extensions are no longer simply related to parity. Thus, the 
theory of Fierz and Pauli (1939), as formulated by Rarita and Schwinger (1941), 
for particles of spin t, requires a 16-component field variable, while that of Bhabha 
(1945) requires a 20-component field variable; dimensionally and structurally, both 
correspond to representations of the de Sitter group. 

The necessity for extending the Poincare group can be established as follows. 
As shown in the Appendix to this paper, it is possible within any irreducible represen­
tation of the Poincare group to resolve jAil into two parts, 

(6) 

associated with the orbital and the spin angular momentum respectively. However, 
the spin component SAil . then belongs to a particular kind of finite-dimensional 
representation of the Lorentz group, labelled (s, ± s) in terms of highest weights. 
All other kinds of finite-dimensional representations are absent, and it is not possible 
to construct a complete set of states in a unitary representation of the Poincare 
group without them. The de Sitter group is the smallest group with irreducible 
representations containing all required representations of the Lorentz group. On 
the other hand, it seems reasonable to require of a field theory that it should include 
irreducible representations of the Poincare group. From this point of view, the 
theories of Fierz and Pauli (1939) and Rarita and Schwinger (1941) are defective. 
It is well known that their theories of particles of spin t, for instance, are 16-dimen­
sional and contain only finite-dimensional representations of the Lorentz group 
labelled G, ± t) and (t, ± t), the latter excluded by a supplementary condition; 
but an irreducible representation of the Poincare group corresponding to spin t 
contains finite-dimensional representation of the Lorentz group, labelled (t, t) or 
G·, -t)· Some but not all of the representations in the theory of Bhabha (1945) 
are excluded for a similar reason. 

There are besides other reasons for claiming that an elementary particle cannot 
always be represented with an unextended finite-dimensional irreducible representation 
of the Poincare group. A particle in interaction with other particles has no determinate 
mass, and must therefore be thought of in terms of at least a superposition of such 
representations. The field theory which we develop below is novel in that it does not 
associate a definite mass with a particle and has the advantage that it is possible to 
deal with interactions in a consistent way. This method of formulation could provide 
another way of looking at the still formidable problems presented by the theory of 
interacting particles. 

2. Finite-dimensional Representations of the de Sitter Group 

As Bhabha (1945) has shown, field theories for particles of arbitrary spin can be 
formulated in terms of a set of linear operators IX .. , IXIlV satisfying the commutation 
relations 

(7) 
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In the physical interpretation, the spin angular momentum tensor (as defined, for 
instance, in the Appendix) is given by 

(8) 

it follows from equations (7) that the components satisfy commutation relations 
similar to those of j;'JL in equations (1) and are therefore generators of the Lorentz 
group in some representation. If we define sand s', within a suitable extension of the 
enveloping algebra, by 

(9) 

we may label irreducible representations in terms of eigenvalues of the invariants s 
and s' thus: (s, s'). The eigenvalues of sand s' are highest weights in an irreducible 
representation; in such a representation, s is half a non-negative integer, and 
s -I s' 1 is a non-negative integer. 

The Ct;. and CtJLv together can be regarded as generators of the de Sitter group. 
If we write 

g44 = -1, 

and agree that I, m; n, r, ... shall take the five values 0,1,2,3,4, it follows that 

which are the commutation relations of SO(4, 1). If S1 and s~ are defined by 

(10) 

(11) 

(12a) 

(12b) 

(12c) 

then S1 and s~ have eigenvalues which can be used to label irreducible representations 
thus: (S1' sD. As they ate again highest weights in a finite-dimensional representation, 
S1 and s~ are half non-negative integers and $1 - s~ is a non-negative integer. Within 
such an irreducible representation, there are all different representations of the 
Lorentz group labelled (s, s'), where S1 ~ s ~ s~ and s~ ~ 1 s' I. It follows that, if 
we wish an irreducible representation of the de Sitter group to contain a representation 
of the Lorentz group labelled (s, ± s), we must choose S1 == s~ = s, and this we shall do. 
We thus exclude, for reasons already stated in the Introduction, the theories of Fierz 
and Pauli (1939) and Rarita and Schwinger (1941) for particles of higher spin. 
However, we do include Dirac's (1936) theory of particles of spin t, where the Dirac 
matrices are given by h = 2Ct;., and Kemmer's (1939) theory of particles of spin 1, 
where the Kemmer matrices ary the same as our CtA-

An irreducible representation of the de Sitter group labelled (s,s) has dimension 
i(2s+1)(2s+2)(2s+3). It is known from Bhabha's (1945) investigations (see also 
Hari'Sh-Chandra 1947) that the spin within one of the included irreducible represen­
tations of the Lorentz group, labelled (s, s'), takes every value (f such that s - (f and 
(f -'-I s' 1 are non-negative integers. The component of the representation of the 
de Sitter group corresponding to the spin (f is therefore (2(f + I )2-dimensional. Since 
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we intend to make use of the component with (1 :;= S only, there would appear to 
be a considerable redundancy in the number of field components, at least for large s. 
This redundancy is, however, hard to avoid in field theories of particles with inter­
action. To cite a familiar example, the electromagnetic field components in the 
10-dimensional Kemmer (1939) representation are the field tensor FAJl (= E, B) and 
the four-vector potential A., where the latter includes one unwanted component 
of spin 0.· This latter component is sometimes eliminated by means of a supplementary 
condition (the Lorentz. condition), but the difficulties in formulating quantum 
electrodynamics without at least considering all four components of A. are well 
known. 

We wish now to examine the structure of the (2s + 1)2 -dimensional representation, 
corresponding to spin s, within an irreducible representation of the de Sitter group 
labelled (s, s). For this purpose we shall need to make use of the identity 

(13) 

This can be proved by the method used by Bracken and Green (1971) to establish 
characteristic identities satisfied by matrices of generators like a!. Normally a 
four-vector operator like aA can be resolved into four components changing each 
of the labels (s, s') of irreducible representations of the Lorentz group by + 1 or - 1. 
However, because the label s cannot be changed within a representation of the 
de Sitter group labelled (s,s), only two of the usual four comp-onents, namely 
a! aJl - (1 ± s')aA, are different from zero. The reduced identity (13) must therefore hold. 

Now there are three scalar operators, d·. P = aA P A' a. w = aA w A and s', which 
can be constructed with the help of the aA and which commute with all generators 
of the Poincare group. They satisfy the commutation relations 

[a.p, s'] = a. w/(s+ 1), 

[a.w,a.p] = -s'(s+1)1l2 , 

[s', a.w] = -a.p(s+l), 

(14a) 

(14b) 

(l4c) 

the first two (14a, b) on account of the definitions only, and (14c) because of the 
identity (13). From these relations it follows that s', a. p/ Il and -i a. wlll(s + 1) 
are generators of a representation of SO(3), and in view of the known eigenvalues 
of s', it must be a (2s+1)-dimensional representation. The operators wA also suffice 
to determine a (2s + 1 )-dimensional representation of SO(3); thus, we have identified 
the structure of the (2s+ 1)2-dimensional component of the finite-dimensional 
representation of the de Sitter group corresponding to spin s as that of SO(3) x SO(3). 
In Dirac's theory, s' = tys, a.p = tyApA and a.w = t(S+l)lPAYS all play an 
important role, and it is to be expected that they should playa corresponding role in 
theories of particles with higher spin. 

3. Field Theory for Arbitrary Spin 

Because of the fundamental role of finite-dimensional representations of the 
de Sitter group in field theories of particles with spin, it is natural to seek corre­
sponding dynamical representations. In Section 4 we shall define a set of generators 
jim, including j4A = - j).4, extending the dynamical generators JAJl of the Lorentz 
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group. But we shall first formulate the field theory in a general way so as to provide 
suitable vector spaces to carry representations of both the 1X'm and the jim' 

The traditional formulation of relativistic field theories (Pauli 1941) is in terms 
of a field variable l/J and its derivatives l/J,). with respect to the coordinates xA. The 
field variable may have any number of components, which without loss of generality 
may be assumed to be hermitian (real, in the un quantized theory). Thus a non­
hermitian field l/Ja +il/Jb is replaced by its two hermitian components (l/Ja' l/Jb)' However, 
we shall then need to introduce linear operators C and i, such that 

As Bhabha (1945) has shown, there is always an element 11 of the spin algebra such 
that 112 = 1 and l1IX). = IX).l1. We can choose a matrix representation of the IX). in 
which the transpose of IX). is -IX)., and so 11 will be antisymmetric for half-odd-integral 
spin and symmetric for integral spin. Then we may define a conjugate q; of l/J in 
the usual way by q; = (Cl/J)l1. Lagrangian field theory does not display any obvious 
symmetry of the de Sitter group when formulated solely in terms of l/J and l/J ,)., and 
we therefore introduce a set of conjugate variables ",', defined by 

",4 = q;, (15) 

where L is the Lagrangian density. If we write 

R = i"').l/J,). -L, (16) 
we have 

dR = i( d",).l/J ,). + d",4l/J ,4), (17) 

where, for the sake of uniformity, we have written 

l/J,4 = ii3L/i3q;. (18) 

This purely notational device does not, of course, carry the implication that l/J ,4 is 
a derivative with respect to a new 'coordinate' X4; if there were such a coordinate in 
the present formalism, it would be given the value zero. The identity (17) shows, 
however, that R can always be regarded as a function of", I, instead of the Lagrangian 
variables l/J and l/J,)., and that the l/J,I are then given by 

(19) 

The field equations in this notation take the form 

(20) 

As an example of the application of this formalism, suppose that the Lagrangian 
density is 

(21) 

as in Bhabha's (1945) generalization of Dirac's equation. Then, in terms of the 
conjugate variables, 

(22) 
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with 

where the Xl are Lagrangian parameters, required because of the identical relations 

(23) 

between the conjugate variables. 
It is evident that any field theory can be shaped in this way, in terms of a set of 

five conjugate variables 1/1, and a set of five derived variables cP,l. This formalism 
is indeed similar to the Hamiltonian formalism of ordinary mechanics. It will be 
assumed here that each of the components of 1/1, carries an irreducible finite­
dimensional representation of the de Sitter group of the type discussed in Section 2. 
In advance of a complete definition of the generators jim' we may define a set of 
linear operators 11'm (written here, for convenience, after the row vector 1/1, = 
(1/10,1/11,1/12,1/13,1/14»' by means of 

(24) 

It is easy to verify that they satisfy the commutation relations, analogous to (11), 
of SO(4, 1). 

If the representation of the de Sitter group with generators l1mn' as defined by 
equation (24), is not already irreducible, 1/1, can be resolved into at most three com­
ponents, each of which carries an irreducible representation. This can be seen by 
noting that, as a consequence of equation (24), 

(25) 

where rt: cx~ has the eigenvalues 4s(s + 2) in this representation. The only possible 
eigenvalues of 11~11~ are 4s(s+2), fot a representation labelled (s,s); 4(s+I)(s+2), 
for a representation labelled (s+l,s); and 4s(s+I), for a representation labelled 
(s,s-I). Consequently, the irreducible representations must be of the following types: 

(a) that labelled (s, s), with an eigenvector 1/1, satisfying 

(26a) 

(b) that labelled (s + 1, s), with an eigenvector satisfying 

(26b) 

(c) that labelled (s,s-l), with an eigenvector satisfying 

(26c) 

The matrix ex whose elements are exi therefore satisfies the cubic identity 

(ex-2)(ex+s)(ex-s-2) = 0, (27) 

a degenerate form of the characteristic identity for .s0(4,1), which in general is of 
the fifth degree (Bracken and Green 1971; Green 1971). The simpler identity is 
satisfied in representations labelled (s, s) because there are no representations labelled 
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(s-I,s) or (s,s+ I). We shall now consider each of the three types of representations 
in turn. 

For type (a), the form of the eigenvector is easily identified, since it can be verified, 
directly from the definition of 61 in equation (12c), that 

(28) 

Thus, ljJl has the form ljJ 61. Dirac's theory of particles of spin! makes use of this 
representation: for s =!, 61 = !i(s+l)(YAYs,Ys), whence ljJA = ljJ4y"'. In the special 
representations labelled (s,s) adopted here for the aim, there is a partial generalization 
for arbitrary spin. It follows from the identity (27) that any anti symmetric tensor 
which can be constructed from aim m.ust be proportional to aim itself,jn particular that 

(29) 

the factor (S+I)2 results from the fact that -i64 /(s+l) = Sf, where Sf is defined by 
equations (9) and has the half-integral eigenvalues - s, - s + 1, ... , s. Thus, 6 AI(s + 1) 
and aAIl are generators of a de Sitter group similar to that generated by aA and aAW 

However, as there is in general no simple linear relatiun between the components 
of ljJl' it does not seem possible to construct a proper generalization of Dirac's theory 
on this basis. 

We shall see in Section 4 that the dynamical representation is of type (b). It 
will be evident that ljJ I cannot belong to this type of representation, except when 
s = 0, and for this reason we do not consider it further in this context. 

In spin representations of type (c), ljJA must satisfy an identity 

(30) 
with 

like (13). Then it follows from equation (26c) that ljJA and ljJ4 are related by 

(31) 

This representation is not available for spin !, but is consistent with Kemmer's 
(1939) theory of particles of spin I: for s = 1, equation (31) reduces to ljJ" = ljJ4 aA 

when ljJ" all all = 2ljJA and ljJ4 all all = 3ljJ4. However, again there is no simple analogue 
for particles of higher spin. 

It follows that for s > 1 a synthesis of representations of types (a) and (c) must 
be used to secure a generalization of Dirac's theory of spin! and Kemmer's theory 
of spin 1. In such representations, the characteristic identity (27) shows that ljJ I 
has the form 

(32) 

If we choose e" = 0, this yields ljJ" = ljJ4 aJ."js, consistent with both the theories of 
Dirac and Kemmer, though not with the Lagrangian density of equation (22) except 
when s ':'" I. In Section 5 below we shall, however, construct a Lagrangian density 
compatible with equation (32). 
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4. Dynamical Generators of the de Sitter Group 

As we have already noted, the idea that the de Sitter group, rather than the 
Poincare group, should be regarded as the fundamental group of physics, is an old 
one. It originated in cosmology, but the fundamental length there, the radius of the 
universe, is too big to be of immediate use in particle physics. However, several 
authors including Chakrabarti et al. (1968) have noticed thatif 

(33) 

where {t is defined in equations (2), then g;. and j;.p. satisfy the same commutation 
relations as ilX;. and ilX;.p., shown in equations (7). The operator g;./{t maybe interpreted 
as the position vector of a particle without spin in the barycentric frame, though its 
components commute with one another only in a non-relativistic approximation. 
But there are difficulties in extending the Lorentz group with generators j;.p. to a 
de Sitter' group with generators g;. and j;.w The most serious of these is that, if g~1) 
and g~2) are generators for two different particles, the generators for the composite 
system cannot be assumed to be g;. = gil) +g~2), even if the particles are ~ot in 
interaction.* We therefore propose what appears to be a more satisfactory solution 
to the problem. 

In a field theory, the generators of the Lorentz group can be expressed in terms of 
the coordinates X;. thus: 

(34) 

where p;. = i a/ax;.. In a similar way, w.e shall write 

(35) 
where. 

(36) 

is the mass. Since the mass is not an invariant of the de Sitter group, it cannot be 
replaced by a numerical eigenvalue in general. In specific circumstances, it is possible 
to interpret P4 as a rational square root of p;'P;. within the present extension of the 
Poincare algebra. Thus, if <P is an eigenvector of IX. P corresponding to the 'eigenvalue' 
S{t, we can write 

(37) 

but this can obviously be accepted as a definition of j4v only within a restricted 
domain. In practice, the definition (37) will in fact be used in connection with 
irreducible representations of a particular type. Within all such representations, the 
commutation relations 

are satisfied for all five values 0, 1,2,3,4 of the subscripts. 

(38a) 

(38b) 

* The authpr is much indebted to Dr A. J. Bracken for discussions and correspondence on this point. 
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To determine the irreducible representations of the jIm thus defined, we calculate 
the invariant 

(39) 

where x.p = x;' p ... In an irreducible representation, this must reduce to a quadratic 
function of two labelling invariants of the type shown by equations (12). Therefore, 
if </J belongs to such a representation, we must have 

(40) 

where sp is some invariant. If we multiply this equation by p;. and divide by p4, 
we have also 

(41) 

showing that pR </J is an eigenvector of the matrix of generators Ct.~, and sp the 
corresponding eigenvalue. From the characteristic identity (27), we see that the only 
possible values of sp are 2, -s and (s+2). The value sp = 2 can be excluded, because 
the components of pR commute with one another, and the value sp = s+2 is excluded 
by equation (41), because Ct..p cannot have the 'eigenvalue' (s+2)1!. Hence 

(42) 

if </J belongs to this type of irreducible representation of the dynamical de Sitter group. 
For I = 4, equation (42) yields 

Ct..p </J = Sl!</J, (43) 

a generalization of Dirac's equation for spin t. We can also show that equation 
(43) implies (42), as follows. Let us resolve </J into eigenvectors </J(m) of Ct. • p, such that 

Ct..p</J(m) = sm</J(m), (44) 

where m is now a number. Then, if 

(45) 

it is readily verified that 

(46) 

But, as we have already seen, the eigenvalues of Ct.. P are bounded by ± sm, so Ct._;. </J 
must vanish. It follows from this that equation (42) must be satisfied by any com­
ponent </J(m) of </J, and hence by </J itself, provided that </J satisfies equation (43). It 
also follows that any solution of (43) corresponds to the maximum eigenvalue s 
of the spin 0". For 

Ct.+J.Ct._;.</J(m) = [tCt.!oc; -0"(0"+1) -s(s+3)]</J(m) 

= [s(s+ 1)-0"(0" + 1)]</J(m) , (47) 

and, as we have already seen, the left-hand side of this equation must vanish. 
The above argument shows that a generalized form of Dirac's equation for spin s 

results from the requirement that the field variable </J should carry an irreducible 
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representation of the de Sitter group with dynamical generators given by equations (34) 
and (35). The resulting equation (43) is similar to that of Lubanski (1942) and 
Bhabha (1945), but is restricted to a particular kind of finite-dimensional rep­
resentation of the ri', and instead of predicting a discrete spectrum of masses, replaces 
the mass m with a mass-operator Jl with an arbitrary spectrum. The equation is 
therefore potentially applicable to particles in interaction as well as free particles. 
We note that the definition (37) of j4v is admissible, provided that <P is a solution of 
equation (43). 

From equations (39) and (40) it follows that 

a= -(x.p+is), (48) 

so the dynamical representation is labelled (ia, s), where a can be interpreted as an 
action associated with the particle, and s of course as the spin. From equation (42) 
it also follows that 

(49) 

This result exhibits the fundamental relationship between the Poincare and de Sitter 
groups, and the role of the energy-momentum vector as an eigenvector of the matrix 
of generators of the de Sitter group. This way of defining the generators of a non-semi­
simple Lie group within the enveloping algebra of a semi-simple Lie algebra can be 
generalized .. The author (Green 1976) has shown recently, inter alia, that as a con­
sequence of the characteristic identity satisfied by the generators of SO(n) , and 
corresponding pseudo-orthogonal groups, one can always define within the enveloping 
algebra an (n-l)-dimensional vector (in this instance,p .. ) whose components commute 
with one another. From this point of view, there is no reason to think ofthe Poincare 
group as more fundamental than the associated de Sitter group. 

5. Self-consistent Field Theory 

We consider next how the field equation (43) may be incorporated in a field 
theory of the general type formulated in Section 3. It is natural to require that 

(50) 

for I = 4 as well as the other four values of the subscript, with <P ,4 defined as in 
equation (18). According to the relation (43), the field equation then reduces to 

(51) 

This is similar to the equation resulting from the Lagrangian density (22), apart 
from the factor s on the right side. However, it should be noticed that there are in 
general difficulties in formulating a self-consistent theory of interacting particles 
of higher spin, of the same type as found by Fierz and Pauli (1939) in connection 
with Dirac's theory. In terms of the preceding discussion, the problem is that the 
five-vector <P ,I derived from the Lagrangian density might not belong to the same 
representation of the de Sitter group as PI <P; then a contradiction could be deduced 
from equation (50). This difficulty can be met by adopting the field equation (51), 
in conjunction with the other components of (42), which can be regarded as 
supplementary conditions. 
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We therefore adopt the Lagrangian density 

(52) 
with 

Pt = [atamn -(s+4)at +2(s+2)c5t]j2(s+1)(s+2), 

where the Xn are Lagrangian parameters which,as usual, turri out to have a physical 
interpretation. Variation with respect to the conjugate variables ljIl yields 

iCP,1 = PtXn' (53) 

but, because of the characteristic identity (27), it follows that not only the field 
equation (51), but all five components of 

rxtCP,n = -SCP,1 (54) 

are satisfied. Also, equation (53) reduces to an identity, provided 

Xn=iCP,n; (55) 

this . solution is unique in the representation of type (b) selected by the idempotent 
matrix Pt. 

The conjugate variables ljIl satisfy the equation 

ljI1pt = 0, (56) 

obtained by variation of the Lagrangian with respect to Xn- It follows, again by 
virtue of the characteristic identity, that ljIl must have the proposed form (32). With 
the help of the field equation (20), we have 

(57) 

which is the conjugate of equation (51). 
The above equations are all obviously self-consistent and in agreement with the 

requirements of the two previous sections. The precise form of CP,4 is determined 
by the usual requirements of gauge invariance; thus, with electromagnetic interactions 
only, 

(58) 

where m is the 'bare' mass; but the principle of gauge invariance has been extended 
to all other types of inte~actions (see Taylor 1976). There is also no difficulty in the 
quantization of the field theory by the usual methods. For particles satisfying Bose 
s~atistics the equal-time commutation relations are 

[cp(x), Ccp(x')] = e c5(x- x'), (59) 

where Ccp(x') = ljI4(X') 1J and e is the idempotent of the representation of type (b) 
to whichcp(x) belongs. For particles satisfying Fermi statistics, the commutator is 
replaced by the anticommutator. 

To summarize, we have developed a field theory of particles of arbitrary spin 
which can be regarded as a generalization of the theories of Dirac (1936) for spin t 
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and Kemmer (1939) for spin 1. It differs from the theories of·Fierz and Pauli (1939) 
and Rarita and Schwinger (1941) in that it allows irreducible representations of 
the Poincare group. It differs from the theory of Bhabha (1945) in substituting a 
possibly continuous mass spectrum for the discrete spectrum of that theory, and 
permits the introduction of gauge-invariant interactions in a self-consistent way. 

References 

Jiwgmann, V., and Wigner, E. P. (1948). Proc. Nat. Acad. Sci. 34, 211. 
Bhabha, H. J. (1945). Rev. Mod. Phys. 17, 200. 
Bhabha, H. J. (1952). Ph.i/os. Mag. 43, 33. 
Bohm, A. (1966).· Phys. Rev. 145, 1212. 
Bracken, A. J., and Green, H. S. (1971). J. Mat". Phys; 12~ 2099. 
Chakrabarti, A., Levy-Nahas, M., and Seneor, R. (1968). J. Math. Phys. 9, 1275. 
Dirac, P. A. M. (1936). Proc. R. Soc. London A 155, 477. 
Fierz, M., and Pauli, W. (1939). Proc. R. Soc. London A 173, 211. 
Fronsdahl,C. (1965). Rev. Mod. Phys. 37, 221. 
Green, H. S.(1971). J. Math. Phys. 12,2106. 
Gr~n: H. S. (1976). Spectral resolution of the identities for matrices of elements of a Lie. algebra. 

J. Aust. Math. Soc. B 19 (in press). 
Harish-Chandra (1947). Phys. Rev. 71, 7933. 
Kemmer. N. (1939). Proc. R. Soc. London A 173, 91. 
Lorentz, M., and Rondu, P. (1974). J. Math. Phys. 15, 70. 
Lubanski, J. K. (1942). Physica 9, 310, 325. 
Pauli, W. (1941). Rev. Mod. Phys. 13, 203. 
Pauli, W., and Solomon, J. (1932). J. Physique 3, 452, ~82. 
Rarita, W., and Schwinger, J. (1941). Phys. Rev. 60, 61. 
Shirokov,.r. M. (1958). Sov. Phys. JETP 6, 664, 919, 929. 
Tanika~a, Y. (1965). Prog. Theor. Phys. (extra number), 609. . . . 
Taylor, J. C. (1976). 'Gauge Theories of Weak Interactio.ns' (Cambridge Univ. Press). 
Trippe, J. C., eta/. (1976). Rev. Mod. Phys. 48(2), 51. . 
Wigner, E.P. (1939). Ann. Math. 40, 149. . 

Appendix 

Here we wish to show that there are two representations of the spin angular 
momentum S llL' and two corresponding representations for the orbital angular 
momentum Ill" within an irreducible representation of the Poincare group. The spin 
representations are labelled (s, ± s) and are therefore mirror images. The problem 
of defining SlJJ and Ill' in terms of jlJJ and Pv was discussed recently by Lorentz and 
Rondu (1974), but by a method depending on the introduction of an arbitrary time­
like four-vector, which does not, of course, lead to a unique result. 

As elsewhere in the text of this paper, we assume that {t, as defined in equations (2) 
of Section I, is not singular - photons and neutrinos would require a separate 
discussion. The spin vector is then defined by Sl = w;./{t; as a nontrivial consequence 
of the commutation relations (1) it satisfies 

(AI) 

like any other four-vector. We introduce the pseudoscalar 1', having the value + 1 
or - 1, and verify that if 

(A2) 
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then SA,. satisfies commutation relations like jA,. in equations (1), as required of the 
spin angular momentum tensor. It obviously commutes with PV. As an appropriate 
generalization of equation (33), let us write 

(A3) 

Then g~ commutes with s,.v, and yields 

(A4) 

It is a straightforward matter to check that I;.,., defined in this way, also satisfies 
commutation rules like jA,. in equations (1), and 

(A5) 

as required of the orbital angular momentum. It will be noticed that, although we 
have not found it necessary to introduce coordinates x;' to define I;.,., all the above 
relations are verified if 

(A6) 

Since, with the above definitions, 

(A7) 

it is evident from equations (8) and (9) that, for y = -1 and + 1, s;.,. belongs to 
representations labelled (s,s) and (s, -s) respectively. We have thus shown that any 
irreducible representation of the Poincare group contains finite-dimensional rep­
resentations of the Lorentz group labelled (s, is) within the enveloping algebra. 
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