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Abstract

The isoscalar levels with J* = 0% of the 12C nucleus have been investigated by finite-group theoretical
methods using an a-particle model. An estimate has been made of the restoring force parameter
in the potential between two « particles from symmetry.

The a-particle model is particularly suitable for description of the low energy
levels of nuclei which are composed of a whole number of « particles, e.g. 12C, 1°0
etc. Iachello and Arima (1975) have described the entire collective spectra of vibrational
nuclei in terms of a few interacting elemeniary excitation modes, while Bergholtz
(1975) has used the a-particle model of Block and Brink to study the importance
of vibrations and polarizations of clusters in the low lying states of !2C and '°O.
In this note, we discuss a (finite) group theoretical approach to the calculation of the
vibrational frequencies of transitions between the energy levels of 12C.

Let us consider the '>C nucleus to be composed of three elementary « particles,
each of mass m placed at the vertices of an equilateral triangle. We will now investigate
the different normal modes of vibration of this triangle. Representing the con-
figuration of the system by a six-dimensional state vector p, we have the kinetic
and potential energies of the system given by

T=%nl;pi2’ V=%K,Zj: Viipipjs
where K is the constant restitutive force. The equation of motion is
mp; = —dV/)op; = —K%: Viip;-
For vibration in a normal mode we have
Y Vyp;=¢ep;  with &= mw?K,
J

w being the classical angular frequency of vibration. The normal modes are known
to be the eigenvectors of the matrix ¥, the eigenvalues giving the frequencies. For
our symmetry group we have the six elements 7, R, R?, P, PR and PR?, where [ is
the identity matrix, R rotates the triangle by 120° in a positive sense and P reflects it
about a vertical line through the centre. These elements bring about linear trans-
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formations of the p; when they act on the triangle. Thus if R operates on the system
we have p’ = D(R)p, where the matrix D(R) is

0 B P13
DR = |p 0 0O with B = [NZ l].
0 g 0. ’
Similarly
[0 y 0]
—1 0
DP)y=1|y 0 O with y = .
0 1
[0 0

Since the symmetry group of the equilateral triangle can be decomposed into three
classes of equivalent elements and the number of representations equals the number

of classes, we have ;
D=D'@D*@®2D?,

the characters of the corresponding classes being given by y = 6, 0 and 0 respectively.
Therefore, in a coordinate system in which V is diagonalized, we get

& D!
£, D?
V = €31 } D3 .

€32 } D?
2V

Following standard procedure, we then obtain
TeDU)V =6, TeDR)V = 3, TeD(P)V = 3.
Hence the eigenvalues obey the equations ‘

81 +82 +2(831 +332) = 6 s

g1 +e,—(e31 +€32) = 3,

g1—& = 3.

Thus ¢, = 3, &, = 0 and ¢, +¢&5, = 3. To calculate &3, and &3, explicitly, we note
that there must be three degrees of freedom having a zero eigenvalue, two translational
and one rotational. Therefore we have ¢;; = 0 and &5, = 3. It follows that the zero
eigenvalues ¢, and &5, correspond to translations and rotations of the system as a whole.
The eigenvectors describing the true vibrational modes are orthogonal to these and
to each other. This orthogonality dictates that in a vibrational mode the centre of
mass is stationary and the angular momentum is zero.

As an alternative geometry to the equilateral triangle, we can assume a reduced
symmetry in which there is a linear clustering of the three o particles in *>C. In this
case it is easy to calculate that the two nonzero frequencies become equal to (BK/m)*.



Let us consider now an interpretation of the eigenvalues obtained for the two
geometries investigated. The ground state of *?C and the two excited states at 7-65
and 10-3 MeV have zero isospins and angular momenta, while the level at 17-77 MeV
has J® = 0* but an isospin of 1, and it is of interest to see whether the three lowest
isoscalar 0* levels can be reproduced in our models. For the triangular symmetry,
the nonzero eigenvalue ¢ = 3 may be made to correspond to the frequency of
vibrational transition or the relative spacing between the ground state and the excited
state at 10-3 MeV, that is, #(3K/m)* = 10-3 MeV or K ~ 0-02 fm 3. The remaining
frequency (3K/2m)* predicts a 0* state at 10-3/,/2 = 7-28 MeV, which is close to
the experimental level at 7-65 MeV. Since K is the restitutive force constant in the
harmonic oscillator potential between any two « particles each of mass m, it seems
reasonable to assume the same value for K for both the triangular and linear con-
figurations. Therefore the two degenerate frequencies (3K/m)? in the linear geometry
may be associated with a vibrational transition or an energy gap between the ground
state and the level at 10-3 MeV. That s, although we have two very different geometries
that give the correct energy for the 10-3 MeV state, the linear model fails to reproduce
the 0" state at 7-28 MeV. On the other hand, the equilateral triangle model seems to
reproduce fairly well the low lying 0* isoscalar levels in *2C.

In summary, using an a-particle model of the !2C nucleus we have derived the
relative values of the nonzero frequencies of vibrational transitions through pure
group theoretical considerations of the geometrical symmetry. With a frequency
scaling factor of (K/m)?, determined by the dynamics of the system, we have been
able to predict satisfactorily the restitutive force constant in a harmonic oscillator
potential between two o particles.
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