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Abstract 

The ratio of volume increment to energy for the introduction of a simple dislocation to a crystal is 
used in the Clausius-Clapeyron equation to determine the pressure dependence of the equilibrium 
phase boundary between a perfect crystal and a completely dislocated crystal. It yields the Lindemann 
melting formula, which is thermodynamically valid for materials with central atomic forces in which 
melting involves no gross changes in coordination. It is concluded that melting is properly described 
as the free proliferation of dislocations and that melting point is the temperature at which the free 
energies of dislocations vanish. 

Introduction 

The concept of crystal dislocations was originally developed to explain the fact 
that the shear strengths of solids are much lower than the theoretical strengths of 
ideal crystal lattices. Their existence is now extensively documented (see e.g. mono
graphs by Cottrell 1953 and Friedel 1964) and is directly evident from electron 
micrographs. Since the normal mechanism for inelastic shear deformation of crystals 
is dislocation motion (glide) and the melting of a material means the complete 
disappearance of its shear strength (a 'shear catastrophe' in the words of Levy 1968), 
it is natural to suppose that the melting process is a spontaneous multiplication of 
dislocations. This means that in the liquid state a material is saturated with dislocation 
cores, which are continuously forming, disappearing and reforming in different 
microscopic arrangements. Their mobility is responsible for the fluidity of the material. 
In a liquid the atomic spacing is irregular, as is consistent with the atomic spacing 
in dislocation cores. 

The basic idea of the dislocation theory of melting was mentioned by Mott (1952), 
but the essential idea for the present discussion arose from our study of a paper by 
Kuhlmann-Wilsdorf (1965), who suggested that melting point was the temperature 
at which the free energy of a dislocation vanished. However, she did not succeed in 
obtaining a simple or convenient melting law, such as that presented here. The 
idea of vanishing free energy neatly explains the sharpness of the melting points of 
simple materials, such as the elements. A sharp melting point T M could not result 
from the proliferation of point defects, whose energies are not very many times kTM , 

whereas dislocations, being extended linear defects, have energies which are many 
times kT M and would have negligible Boltzmann probability of independent thermal 
excitation below the temperature of free energy balance. 
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The criterion of zero free energy is here applied simply by appealing to the 
Clausius-Clapeyron equation for the dependence of melting point T M on pressure P: 

(1) 

where L1 V and L are the volume change and latent heat of melting. This is a direct 
consequence of the assertion that at the melting point (at any pressure) the Gibbs 
free energies of the solid and liquid states must be equal. Thus we can apply the free 
energy condition to the dislocation theory of melting by calculating the ratio of the 
volume increment which a dislocation causes to its energy. This ratio gives the 
pressure dependence of the critical temperature for vanishing dislocation free energy 
by equation (1), and we identify this as the pressure dependence of the melting point. 
The result is the simple and familiar Lindemann melting law which we have shown 
in the previous paper to have a sound thermodynamic basis (Stacey and Irvine 
1977; present issue pp. 631---40). 

2a 3a 4a 

Fig. 1. Atomic potential function. Asymmetry of the potential well that binds 
neighbouring atoms is responsible for anharmonic effects, including the volume increase 
on melting of 'normal' materials. 

Linear Dislocation Model 

Consider two linear chains of atoms which are held together by a general 
anharmonic force law, with arbitrary atomic potelltial energy E(r) between neighbours 
at spacing r (Fig. 1). The two chains are locked together at their ends, but we suppose 
at this stage of the argument that there are no cross-linkages to be considered. In 
the equilibrium state the two chains each have equal numbers n of lattice spacings 
re and we treat the externally applied pressure Po as balancing the atomic force over 
an area r;. Thus we have 

(2) 
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Now we introduce what we shall call a 'linear edge dislocation' by withdrawing 
one atom from one of the chains and reconnecting the chain so that it now has n - 1 
lattice spacings, as in Fig. 2. This chain contracts, compressing the other one but, 
if pressure along the chain is maintained constant, the lattice spacing r1 of the com
pressed chain differs from the equilibrium spacing re by less than does the lattice 
spacing rz of the shortened chain and the result is an increase in the volume per atom. 
This volume increment is one of the parameters we need to calculate for use in equation 
(1). However, it is easier to avoid error by increasing the pressure to maintain constant 
volume per atom and relating the necessary pressure increment to the volume change 
which would have occurred at constant pressure, in terms of the bulk modulus of 
the material. 

..... _-------nrl--------.... 

..... -------(n-1)r2-------..... 

Fig. 2. Elementary model of an edge dislocation. Two linear atomic chains, 
locked together at their ends, have unequal numbers of atoms. The upper chain 
is in compression and the lower one is in extension. But extensions are greater 
than compressions, by virtue of the asymmetric atomic potential function E (r), 
thus causing an increase in the average volume per atom. 

A constant average atomic volume gives 

nr1 = (n -1)r2 = t(2n-l)re, 
so that 

(3) 

(4) 

The necessary pressure increment, taken as the average longitudinal force per unit 
area over both chains together, is 

(5) 

We consider the condition n ~ I, so that r 1 - r e and 1'2 - r e are small compared with 
re' and then use Taylor expansions for E'(r1) and E'(r2) about re to E"'(re), giving 

I1P = -tr;Z{(r1-re)E"(re)+t(r1-re)2E"'(re)+ ... 

+ (rz - re)E "(re) +1(r2 - re)2 E , "(re) + ... } . (6) 

Substituting for r1 -re and rz-re by equations (4), representing I1P as a power 
series in n- 1 and truncating the expansion at the term in n- 2 we are left with 

(7) 

The volume change per atom (V = r:) corresponding to this pressure increment is 

2r; E"(re) +r~ E"'(re) 

24n 2K 
(8) 
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where K is the bulk modulus. Note that the factor 3 with K arises because we are 
considering compression of the chains along one axis whereas the definition of K 
refers to the volume change resulting from compression along all three axes. Also 
the negative sign appearing in the definition K = - V dPjd V is here reversed because 
the !l. V in equation (8) is the volume increment which results from release of the 
pressure increment !l.P. 

The energy increment per atom resulting from the introduction of the dislocation is 

(9) 

Using a Taylor expansion to E"'(r.), substituting for r1 -r. and r2 -r., expressing 
the result as a power series in n- 1 and terminating the expansion at n- 2, as for !l.P, 
we find that the energy increment reduces to a single term: 

!l.E = 2n ~ 1 ((r1 - r.)E'(r.) +-!-(r1 - r.)2 E"(r.) +i-(r1 - r.)3 E'II(r.) + .. .) 

+ 2:-='\ ((r2 - r.)E'(r.)+!Cr2 - re)2E"(r.)+ i-(r2 - r.)3 E"'(r.) + ... ) 

= tn- 2r; E"(r.). 

Combining equations (8) and (10), we have 

!l. V 1 ( EII'(r.») 
!l.E = - 3K 2 +r. E"(r.) . 

(10) 

(11) 

Now we wish to relate E"(r.) and E"'(r.) to the bulk properties of the material. 
Inverting equations for P, K and dKjdP == K' given by Stacey (1977, p. 175), we have 

E" = r.(3K-2P) , E"' = -9KK' +9K-2P, (12) 
so that 

_ =_ 3 3 =_ 9_.1. !l.V 1 (K' _2 +.1.P/K) 1 (K' -1 +.1.P/K ) 
!l.E K 1 -iP/K K 1 -iP/K 3· 

(13) 

The second version of equation (13) has been written in a form which facilitates 
comparison with the thermodynamic Griineisen parameter y. For a three-dimensional 
lattice with central atomic forces the Vashchenko-Zubarev relationship applies 
(Irvine and Stacey 1975), namely 

_ 1 3 9 ( K' _2 +1. P/K ) 
Yvz - "2 1 -tP/K ' (14) 

but the thermal expansion of a linear chain is represented by the Dugdale-MacDonald 
expression (Irvine and Stacey 1975) 

( K' -1 +.1.P/K) 
YDM = t 1 -i ~ K . (15) 

For comparison with the linear-chain problem considered here, YOM is appropriate. 
Thus 

(16) 
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Generalization to Three Dimensions 

The foregoing calculation simply gives the ratio of change of volume to energy 
due to balanced extensions and compressions of atomic bonds in one dimension. 
The introduction of extensions and compressions of cross linkages in perpendicular 
directions, to make real crystal dislocations, yields volume and energy changes which 
at first sight would appear to be in the same ratio but on closer examination are 
seen to have a subtle but important difference. The forces between atoms due to 
displacements in three mutually perpendicular directions are independent in the 
harmonic approximation but not when anharmonicity is allowed for. As pointed out 
by Irvine and Stacey (1975), this is the reason for the difference between the Dugdale
MacDonald and Vashchenko-Zubarev formulations of I' (equations 15 and 14). 
The error in I'DM is that it assumes mutual independence of the bond forces in per
pendicular directions when atoms are displaced by thermal agitation and therefore 
that the expansion coefficient can be calculated from bond forces in a single direction. 
The mutual dependence is allowed for in I'vz. Similarly in generalizing the linear 
dislocation to dislocations in a three-dimensional analysis we must replace I'DM by 
I'vz. But I'vz is identified as the thermodynamic Gruneisen ratio for materials with 
purely central atomic forces (Irvine and Stacey 1975) so that we can drop the sub
script and write quite generally 

(17) 

Now we identify the spontaneous generation of dislocations with melting, so that 
the ratio given by equation (17) can be used in equation (1): 

(18) 

This is the familiar Lindemann melting law. 

Discussion 

We previously concluded that equation (18) applies to the melting of materials 
with central atomic forces in which the atomic coordinations are similar in the solid 
and liquid phases (Stacey and Irvine 1977). Although this appears to be a very 
restrictive condition, there are many materials which follow Lindemann's law quite 
closely (Vaidya and Gopal 1967), particularly those with close-packed crystal 
structures. Further we can see now more clearly why others do not. 

A significance of the dislocation approach presented here is that it offers the 
prospect of a more general melting theory which may be applied to materials with 
rigid molecular bonds or to those which undergo gross coordination changes on 
melting. The original derivation of Lindemann's law in terms of atomic vibration 
amplitudes is empirical and unsatisfying, so that it is important for it to have a sound 
thermodynamic basis. Accepting that this is so, agreement of the thermodynamic 
and dislocation approaches gives very strong justification for an interpretation of 
melting in terms of the proliferation of dislocations, and so provides a sound micro
scopic picture of the melting process. We can therefore hope to interpret in terms of 
dislocations the melting of theoretically more difficult or complicated materials which 
will not yield to a thermodynamic approach. It may also be useful to recognize 
the directness of the connection between dislocation mobility and fluid viscosity. 
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