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Abstract 

Qualitative evaluation of the influence of dissipation on plasma stability follows from a generalized 
energy principle. 

Ideal hydromagnetic energy principles have been exploited to define stability 
criteria in complicated geometry (e.g. toroidal) since the classical publication by 
Bernstein et al. (1958), in well-established analytical tradition for ideal conservative 
dynamical systems. However, it is possible to include dissipation (Furth et al. 1963; 
Barston 1970; Tasso 1977), and in this note the formalism for a compressible magneto­
plasma with viscosity and resistivity is outlined. 

The plasma has volume V bounded by surface S, and perturbation of any magneto­
hydrostatic equilibrium is presumed to be governed by the linearized system 

aPi/at + V' • (Po Vt) = 0, (I a) 

Po Ovi/ot + V'P1 + V' • t = fl01 {(V' X B1) x Bo + (V' x Bo) x B1} + P1g, (I b) 

oB1/ot = V' X (V1 X Bo) - V' x {110(V' x B1) +111(V' x Bo)}, (I c) 

OP1/0t + V1• V'Po + YPo V' • V1 = 0, (ld) 

ol1dot +V1' V'110 = 0, (Ie) 

where t is the nonhydrostatic stress tensor (Hosking and Marinoff 1973) and zero 
and unit subscripts denote equilibrium and perturbation quantities respectively. 
Also here, 11 is the resistivity, which is assumed to be convective, flo is the permeability, 
g denotes gravity, and the other notation is as used by Bernstein et al. (1958). 

Let us introduce Lagrangian displacement and magnetic vectors defined by 

o~/ot = V1 (ro, t), oR/at = B1(rO,t), 

and observe that no distinction between Lagrangian and Eulerian variables need 
be made for small displacements. Integration of equations (la), (ld) and (le) with 
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respect to time, followed by elimination of Pl' Pl and 111 from equation (lb) and the 
integral of (lc), eventually yields the reduced system 

P~ +K~ +H; = 0, - - -
where the six-vector; now introduced is given by 

~ = [~:J = [~] , 
and the coefficient matrices are 

P = [p.o 0] 
o 0' 

_ [Lo 0] K- , 
o L2 

H = [L1 L3 +L4 
-L2 L 3 

with the implicit linear operators 

Lo ~ == V' • t(~) , 

Ll k == J10 1 {Bo x (V' x R) +R x (V' x Bon, 

L2 R == V' x (110 V' x R) , 

L 3 ; == V' x {(; x Bo) + (V' x Bo);. V'110}, 

L 4 ; == 9 V' • (Po;) - V'(YPo V' .; +;. V'Po). 

(2) 

-L1 L 2] 

2 ' L2 

Equation (2) is a generalized form of equation for a dissipative system, with the 
viscosity and resistivity represented by the coefficient matrix K, and the resistivity 
also rendering the otherwise ideal hydro magnetic coefficient matrix H nondiagonal. 
The perturbation forcing function could also be included on the right-hand side of 
equation (2) (cf. Barston 1970), but it plays no part in the subsequent analysis. If 
resistivity is omitted we may return to the familiar formalism (Bernstein et al. 1958), 
perhaps modified to allow for viscosity. 

We define an inner product over the solution space by 

(~~) = Iv;i .111 dT + Iv;~ ·112 dT, 

where the asterisk denotes a complex conjugate and the integration is over the plasma 
volume V, with the vector elements satisfying appropriate conditions on the boundary 
S. We may suppose that S is a perfectly conducting rigid surface, for which ;1 (= ;) 
vanishes everywhere, and ;2 (= R) vanishes on all parts of S at infinity while ;2. n 
vanishes on the remainder of S (n denoting a unit normal on S). 

Provided the matrix operator H is self-adjoint, the inner product of ~ with equation 
(2) gives -

H(~,P~)+(~,H~)}· = -(~,K~), (3) 

so that if the right-hand side is not positive the condition 

(;,H;) ~ 0 (4) 
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is necessary and sufficient for stability (Tasso 1977). For a magnetoplasma, parallel 
viscosity is normally dominant (Hosking and Marinoff 1973) so that 

(~,K~) = Iv ;!.LO;l d't" + Iv ;~.L2;2 d't" 

= IvJiIlI(bb-tl):V;12d't" + Iv170IVXRI2d't" 

~ 0, 

where b = Boll Bo I, I is the unit dyadic and Jill is the parallel viscous coefficient. 
Indeed, magnetoviscosity is generally stabilizing if H is self-adjoint, since it can be 
shown that the matrix K is positive definite for the closed form of the nonhydrostatic 
stress derived by Liley (1972; see also Hosking and Marinoff 1973). With respect to the 
stability criterion (4), one may observe that resistive tearing and magnetic interchange 
instabilities are driven by terms in the linear operator L l , rippling by a term in L3 
and gravitational interchange by a term in L 4 , while plasma compressibility is 
apparently also generally stabilizing. 

In the derivation of equation (3) and the criterion (4) it was essential that H be 
self-adjoint but no reference to normal modes was made, and it is possible to obtain 
estimates of growth rates by variational methods. On the other hand, for detailed 
knowledge of any perturbation spectrum it is common to invoke normal mode 
analysis from the outset. 
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