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Abstract 
The methods developed by Orbach and coworkers for calculating spin-lattice relaxation rates have 
been generalized to enable calculation of the effects of vibronic admixture between low-lying 
electronic states on observables, such as the Mossbauer quadrupole splitting, associated with 
magnetic ions in crystals. Emphasis is placed on the need to take proper account of the symmetry 
properties of the phonons until a late stage in the calculation. Application is made to the temperature 
dependence of the 57Fe quadrupole splitting in FeC03 , and it is concluded that, in general, vibronic 
coupling effects must be considered before static splitting parameters are extracted from experimental 
data relating to the temperature-dependent populations of electronic levels. The superposition 
model of the crystal field is employed to estimate the vibronic coupling parameters. 

1. Introduction 

In this paper the effects of vibronic coupling on the temperature dependence of 
the electronic observables associated with a magnetic ion in a molecule or crystal 
will be considered. A formalism enabling at least semiquantitative calculation of 
these effects will be developed as a generalization of the work of Orbach and 
coworkers (Orbach 1961; Blume and Orbach 1962; Orbach and Stapleton 1972), 
and this will be applied to the quadrupole interaction at 57Fe nuclei in FeC03 • 

Mossbauer effect measurements of this interaction have been reported by Ok (1969), 
Price et al. (1973), Nagy et al. (1975) and Spiering et al. (1976). 

This particular effect of the orbit-lattice interaction has not received a great deal 
of attention in the past, possibly because of a paucity of reliable information on the 
strength of the interaction, but some investigations have been made, particularly in 
relation to EPR experiments because of their high sensitivity. For example, Walsh 
et al. (1965)considered the temperature dependence introduced into spin-hamiltonian 
parameters by vibronic effects, and their work has provided the basis for the explana­
tion of several subsequent EPR investigations (e.g. Serway 1971; Holuj et al. 1972). 
Later, Simanek and Orbach (1966) calculated the effect of vibronic admixture of 
excited electronic configurations on the magnetic hyperfine coupling constants of 
S-state ions. Pilbrow and Spaeth (1967a, 1967b) found evidence ofvibronic admixture 
within the lowest term of the ground configuration of Cu2 + ions in NH4Cl, and it is 
this sort of admixture that will be considered here. More recently, Shrivastava 
(1975) has reviewed orbit-lattice interaction effects in EPR spectra. Some NQR 
measurements (see e.g. Das and Hahn 1958; Armstrong et al. 1970) have also involved 
consideration of these effects but, in general, calculations have been done only for 
rather specific cases of localized molecular rotational and torsional oscillations. 
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Only very rarely have Mossbauer spectroscopists taken any account of the 
admixture effects produced by the orbit-lattice interaction on their spectra. Lang 
(1970) and subsequently Cianchi et al. (1976) interpreted the strong temperature 
dependence of the 57Fe quadrupole splitting in oxyhaemoglobin in terms of rotations 
of an oxygen molecule, and Gibb et al. (1972) looked at the possibility that vibronic 
admixture within the cubic 5E ground states of the tetrahedrally coordinated 57Fe2+ 
ions in tetragonally distorted sites in (NMe4)zFeCI4 was a contributing factor to 
the almost linear dependence of the quadrupole splitting on temperature. This latter 
work will be seen to be a specific case of the more general formalism to be described 
here. 

On the other hand there has been a great deal of published Mossbauer work in 
which crystal field parameters, and in some cases their temperature variations, have 
been extracted from quadrupole splitting data without, apparently, any consideration 
being given to the possible role of vibronic admixture. It will be shown that such 
considerations can be important, at least in some cases, and consequently that these 
effects should only be ignored in the presence of evidence that they are negligible. 

The example that will be considered in some detail here, namely the temperature 
dependence of the 57Fe quadrupole splitting in FeC03 , has two main points of interest. 
Firstly, above the Neel temperature (,...., 38 K) the quadrupole splitting decreases almost 
linearly with temperature up to over 500 K (Price et al. 1973; Nagy et al. 1975) and 
cannot be reconciled with a temperature-independent crystal field model nor with 
any reasonable temperature dependence of the crystal field (Price et al. 1973, and 
results to be published). Secondly, when the temperature approaches the Neel 
temperature from below there is a sharp increase in the quadrupole splitting of 
,....,0·07 mms- 1 (Ok 1969) that has been speculatively attributed to the effects of 
magnetostriction on the static crystal field (Nagy et al. 1975; Spiering et al. 1976). 
As a result of this work it is believed that the effects of vibronic admixture within 
the ground term of Fe2 + will make at least some contribution to, and possibly even 
be primarily responsible for, both of these features of interest. 

In this work the orbit-lattice interaction is treated as a perturbation on Born­
Oppenheimer product states, the electronic parts of which are derived from the static 
crystal field interaction. This approach is probably not strictly valid in many systems 
because of the magnitude of the orbit-lattice coupling. In principle this coupling 
should be included in a perturbation calculation at an earlier stage than some of the 
smaller crystal field terms and the spin-orbit (and spin-spin) coupling, so that 
Jahn-Teller effects are taken into account. However, such a procedure appears to 
be unnecessary at least in some cases, although for reasons that are not clear: it will 
be argued that the present approach is valid for FeC03 • In any case, qualitative 
conclusions of the importance of accounting for vibronic effects will be unaltered. 

In the next section the general framework for the calculations will be outlined. 
It is based largely on the work of Orbach (1961) on spin-lattice relaxation. In 
subsequent sections the quadrupole interactions in FeC03 will be discussed. 

2. Formalism for Calculation of Vibronic Admixtures 

(a) Orbit-Lattice Interaction 
The orbit-lattice hamiltonian has been discussed by a number of authors, including 

the recent detailed reviews of Orbach and Stapleton (1972) and Shrivastava (1975), 
so it will be considered only very briefly here. 
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If, for the sake of simplicity; a 'quasi-molecular' cluster of a central magnetic 
ion and its ligands is considered, then the potential acting on an electron in the 
system can be expanded in powers of the normal coordinates Qk of the cluster: 

:¥e =:¥e0 + I. (8:¥e°j8Qk)Qk +tI.(82:¥e°;8Qk8QI)QkQI+ ... , (1) 
k k,l 

where :¥eo is the static part that depends on the mean positions of the nuclei. The 
remainder of :¥e is a dynamic part, called the orbit-lattice interaction :¥e OL> that 
depends on the displacements of the nuclei from their mean positions. Consideration 
here will only be given to the lowest order effects of this interaction on the value of 
an electronic observable, and consequently only the teI1l1 in equation (1) that is 
linear in the normal coordinates is required. 

Equivalently, distortions of the cluster may be describedin terms of components 
of the lattice strain tensor 1>, and Orbach (1961) wrote the (linear) orbit-lattice 
interaction in the form 

-o/LJ _" mm 
dr- OL - L.. Vn en , (2) 

n,m 

which is the scalar product of tensor operators v and I> whose components v;:' and 
e;:' transform under rotation as tesseral harmonics. The matrix elements of equation 
(2) are strictly equivalent to those of the linear term in equation (1) only when the 
cluster has octahedral symmetry. For noncubic complexes an arbitrary distortion 
contains other terms (e.g. Curtis et al. 1969), even for static distortions (e.g. Ivanenko 
and Malkin 1970). However, for crystals in which both anions and cations are in 
sites of inversion symmetry, the form (2) is obtained lor :¥e OL in the limit of long 
wavelength acoustic phonons (or externally applied stress). 

Since the strain is a symmetric cartesian· tensor of rank 2, there are only six 
harmonic components given by n = 0,2 and m = -n, ... ,n. Consequently, for an 
ion in a site of Oh symmetry, only the strains produced by even-parity modes 
contribute to matrix elements of the linear term in the orbit-lattice interaction and 
only electronic states with the same parity are mixed by it. 

Levy's (1970) analysis of the adiabatic aspects of spin-lattice relaxation indicates 
that rotational modes are important but, for simplicity, they will be ignored here. 
In any case his work indicates that their importance arises principally from the 
relative motion of an applied field, which is fixed relative to laboratory axes, and the 
modulated crystalline potential. In this paper the effect of an applied field on the 
orbit-lattice interaction is not being considered. ... . 

The operators v;:' in equation (2) act only on the electronic coordinates and may 
be written in terms of tesseral (or spherical) harmonics. The general form of v;:' is 

v;:' =,I. b1m,(n, m)Zi' , (3) 
l,m' 

where the Zi' are tesseral harmonics and the b,m,(n;m) are coupling,coefficients. 
The summation over m' is from -I to I, and for 3d ions only 1 = 2,4 need be 
considered. The number· of independent coupling parameters can, be limited by 
consideration of the symmetry properties of the cluster (or of the point symmetry 
of the magnetic ion in the lattice). The orbit-lattice hamiltonian (2) can then be 
re-expressed in the form 

:¥eOL = I. I. blr)B1(r,p)e(r,p) , (4) 
r,p I 
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where the e(r,p) are those linear combinations of components of the strain tensor 
that transform as the pth subvector of the representation r of the relevant point 
group and the BI(r,p) are appropriately transforming linear combinations of the 
tesseral harmonics Zi. The bl(r) are the coupling coefficients, which will be estimated 
here using the superposition model of the crystal field (Newman 1971, 1978). A 
brief summary of this procedure is given in subsection (d) below, but first the strain 
operator and its matrix elements are discussed. 

(b) Strain Operator 

It will become apparent that the symmetry properties of the lattice strain operator 
are important and must be taken into account throughout the initial stages of the 
calculation of vibronic admixture, in contrast to the common practice in calculating 
spin-lattice relaxation rates (Orbach 1961; Scott and Jeffries 1962) of using an average 
strain from the outset. For this reason the operator and its matrix elements will 
be described in some detail. 

Standard texts (e.g. Kittel 1956, 1963) show that a cartesian component of the 
strain induced by long wavelength acoustic phonons of frequency w(k, s) at an ion 
of mass M situated at the origin may be written as 

e/lV = iI {hj2Mw(k,s)}t(ak,s-aL)R(k,s,{t,v), (5) 
k,s 

where 
R(k,s,{t, v) = Hk/le.(k,s) +kveik,s)} , 

with e(k, s) a unit vector in the direction of the polarization s of the phonon of wave 
vector k, and at. and ak,s are creation and annihilation operators for such a phonon. 
When these cartesian components are regrouped to transform under rotation in a 
particular way it is only the form of the factor R that is modified (Orbach and 
Tachiki 1967; Orbach and Stapleton 1972). Thus components of the strain operator 
that transform as spherical tensor components as in equation (2) may be written as 

e': = iI {hj2Mw(k,s)}t(ak,s-ak,s)R(k,s,n,m), (6) 
k,s 

with the R factor appropriately defined. For a particular set of k, s values the 
R(k, s, n, m) transform under rotation like the tesseral harmonic functions Z,: and 
can therefore form a basis for a (2n+ 1) dimensional representation of the full 
rotation group. They are clearly orthogonal: 

I R*(k, s, n, m) R(k,s, n', m') ex bnn , bmm , , 

1 
with the summation over the directions of k only. 

(7) 

The component of E that transforms as the pth subvector of the irreducible 
representation r of the point group of the central ion can similarly be written 

e(r,p) = iI {hj2Mw(k,s)}t(ak,s-aL)R(k,s,r,p) (8) 
k,s 

and, for a particular set of k, s, the R functions form a basis for the representation 
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r. The orthogonality relation for the R functions that is equivalent to (7) can be 
derived from the orthogonality theorem of group representations (e.g. Tinkham 
1964). If A, (y = 1, ... , h) are the symmetry elements of the point group, then 

h Ii 

I {A,R(k,s,r,p)}* A,R(k,s,T',p') = (h/li)~rF'~pp' I IR(k,s,r,p) 12 , (9) 
,=1 p=l 

where Ii is the dimensionality of r. Hence, if k, are a set of k vectors that are related 
by symmetry elements of the point group, then 

Ii 

I R*(k, s, r, p) R(k, s, T', pi) = (h/l;)~rF' ~pp' I 1 R(k, s, r, p) 12 . (10) 
ky p=l 

Baker (1971) previously drew attention to the orthogonality of these R functions, 
but his paper appears to contain an error (in the derivation of his equation 21) that 
would be overcome by use of the above relation. However, his qualitative 
conclusions are unaffected. 

From equation (8) it can be seen that the only nonzero matrix elements of 
f,(r,p) are 

<N(k,s)+IIf,(r,p)IN(k,s) = -i[h{N(k,s)+1}/2Mro(k,s)]tR(k,s,r,p), (lla) 

<N(k, s)-llf,(r,p) 1 N(k, s) ,=. i[h N(k, s)/2M roCk, s)]t R(k,s, r,p) , (llb) 

where N(k,s) is the number ofphonons with wave vector k and polarization index s. 

(c) Calculation of Vibronic Admixture Effects 

The basis states for the calculation will be taken to be Born-Oppenheimer 
products of the form 

<p?~ = t/li I n NaCk,s) 
k,s 

(12) 

where t/I i is a solution, corresponding to the eigenvalue E i , of the Schrodinger 
equation for an electron on the central ion with all nuclei fixed at their mean 
positions. (Possible difficulties inherent in this approach have been mentioned in 
the Introduction and will be discussed in more detail below. For the moment it 
will be assumed to be valid.) The NaCk,s) are the occupation numbers of the phonon 
states of wave vector k and polarization index s; the index tI. relates the particular 
set of occupation numbers to the product state <p?~. The energy of this state is 

E?~ = Ei+ I {NaCk,s)+t}hro(k,s). (13) 
k,s 

Perturbed states are calculated by the usual first-order method, i.e. 

<Pi~ = Ai~{<P?~ + I' « <pJp 1 £ OL 1 <P~) <pq )} 
. p E~ _EO jp ~ 
j, I~ jp 

(14) 

where A i~ is the normalization constant and the summation is over all pairs of indices 
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E?" = Ei+ L {NaCk,s)+t}hro(k,s). (13) 
k,s 

Perturbed states are calculated by the usual first-order method, i.e. 

(14) 

where Ai" is the normalization constant and the summation is over all pairs of indices 
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(j, P) that differ from the pair (i, ex). The matrix elements of :Yf OL that appear in 
equation (14) can be written as a sum of products of electronic and phonon matrix 
elements from equations (4) and (12) as 

(epJp I :Yf OL I ep~) = I I btCT) (I/Ij I Blr, p) II/Ii) 
T,p I 

x < il Np(k, s) I B(r, p) I I! Nik, s). (15) 

Equation (14) shows that the perturbed wavefunctions epia are linear combinations 
of Born-Oppenheimer products and consequently that the Born-Oppenheimer 
approximation is no longer valid. The values of observables, and in particular 
those that depend only on the electronic coordinates, can now be calculated from 
these wavefunctions. Specific reference will be made below to the electric field 
gradient produced by the central ion at its nucleus (to be referred to as the e.f.g., 
and denoted by the cartesian tensor operator V), but the method is equally applicable 
to other measurable quantities such as g values and magnetic susceptibility. 

Since the typical sampling time for a Mossbauer effect measurement, the nuclear 
excited state lifetime, is much longer than a typical phonon vibrational period, the 
time average of the e.f.g. produced by the perturbed states epia is required. This 
means that the expectation value of the e.f.g. operator V for the perturbed states 
must be calculated (e.g. Kramers 1957). Since V acts only on the electronic part of 
a Born-Oppenheimer product, and since :Yf ou through the matrix elements of the 
strain operator (11), must change the set of phonon occupation numbers of a state 
on which it operates, products of the form (epJp I :Yf OL I ep~)( ep~ I V I epJp) must be 
zero. Consequently, the expectation value of V contains no terms that are first order 
in :Yf ou and to lowest order in :Yf OL it is given by 

(epia I V I epia) = IAia 12( (ep?a I V I ep?a) 

'\' (ep~ I :Yf OL I epJ,p') (epJ-p, I VI epJp) (epJp I :Yf OL I ep~») (16) 
+ L... (0 0)* (0 0 ) . j,p Eia-Ej,p' Eia-Ejp 

r,p' 

It will be seen that, since V is an electronic operator, the only nonzero contributions 
to the second term in equation (16) arise when pI = p. 

Now the second term in equation (16), which shall be called (~V)ia' can be written 
using equations (4) and (12) as 

(~V)ia = I (I/IrIVIl/lj) I I (I/Iil bl (T)BI (r,p) I I/Ir)(l/Ij I bl'(r')BI'(r',pl) I 1/1) 
jr Tp II' 

T'p' 

x (f <lJ N ,Ck, ,) I ,cr, p) IlJ ~~Ck: ')?< P_ N';k' +Cr', p') IlJ N.Ck, '») . 
(Eia Ej'f3) (Eia Ejp) (17) 

Expansion of the term inside the braces (which involves the phonon states only and 
which will be denoted ejj'), using the matrix elements (11) of the strain operator 
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and equation (13), gives 

cjj' = t. eM !(k, s))R*(k, s, r, p) R(k, s, r', pi) 

( N a(k,s)+1 

+ {Ei- Ej' +hw(k, s)}* {Ei- Ej+hw(k, s)} 
(18) 

The importance of properly accounting for the symmetry properties of the strain 
operator up to this point in the calculation now becomes clear. The phonon 
frequencies w(k, s) and the population factors NaCk, s) will be invariant for k vectors 
that are related by symmetry elements of the space group of the crystal. Furthermore, 
at least for the simple, or symmorphic, space groups, the point group is a subgroup 
of the space group, so that these quantities will be independent of k for k vectors 
that are related by symmetry elements of the point group, i.e. for k vectors that 
belong to a set ky as introduced above. Therefore, using the orthogonality relation 
(10), the expression (18) becomes 

i _ L ( h)( N a(k',s)+l 
Cjj' - k',s 2M W(k', s) {Ei- Ej' -hw(k' , s)}* {Ei- Ej -hw(k' , s)} 

NaCk',s) ) 
+ {Ei-Ej' +hw(k', s)}* {Ei- Ej+hw(k', s)} 

Ii 

x (hi li)(jrr (jpp, L I R(k I, s, r, p) \2 , (19) 
p=l 

where the summation is over vectors k' that are not related by symmetry elements 
of the point group, that is, k vectors that lie in the irreducible segment of the 
Brillouin zone. The effect of the (j functions in equation (19) is to eliminate the 
summations over r' and pi in equation (17) so that the electronic contribution to 
(,1 V) ia becomes 

L (I/!j' I V II/!j) L L (I/!i I b, (r) B, (r, p) II/!j') (I/!j I b,.(r) B,,(r, p) II/!;) . (20) jj' r,p 1,1' 

Failure to include these (j functions in this way may result not only in incorrect 
numerical results but, for a tensor operator such as the e.f.g. V, in expectation values 
that have a lower symmetry than that of the point group ofthe ion concerned. For 
example, the time-averaged e.f.g. at the nucleus of an ion in an axially symmetric 
environment must have axial symmetry (the symmetry of the e.f.g. may be higher 
but cannot be lower than that of the ion), but neglect of the symmetry properties of 
the strain operator may result in the appearance of non-axial e.f.g. components. 
Baker (1971) has previously drawn attention to the necessity of properly accounting 
for the symmetry of the strain in some computations of relaxation effects that involve 
the orbit-lattice interaction to second order. The present case gives an even clearer 
illustration of this necessity, involving as it does the overall symmetry of the result 
as well as the magnitude. 

-----------------------------------,------------------------
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Considerations similar to those above apply also to the calculation of the normali­
zation constant I Ai~ 12 in equation (16), which is 

IAial 2 = (1+ ~ l(iPJploy'fOL~iP~)12)-1 
1,(1 Eia- Ej(1 

(21) 

Both (AV)ia and I Aia 12 will therefore be temperature dependent through the 
populations of the phonon states. Consequently, if these quantities are large enough 
they will introduce a temperature dependence in the quadrupole interaction observed 
in a Mossbauer spectrum over and above that produced by the normal electronic 
state repopulation effects (e.g. Ingalls 1964). 

At this point in the calculation an average may, if necessary, be performed over 
the directional properties of the phonon states. The simplest approximation 
(Orbach 1961) is to assume that the phonon spectrum is isotropic, i.e. that the phonon 
states depend only on k (= I k I) and s, and to average over the directional properties 
of the strain. The three mutually orthogonal polarization directions are taken to be 
equivalent. The following approximate substitutions can then be made: 

roCk, s) -+ ro(k) , Nik,s) -+ Nik) , R(k, s, r,p) -+ k, 

and the phonon term ejj' in equation (19) becomes 

ei _ 3 ( hk2 
)( Na(k) + 1 

jj' - ~ 2M roCk) {Ei-Ej'-hro(k)}* {Ei-Ej-hro(k)} 

Na(k) ) + * (jTT' (jpp" {Ei - Ej' + hro(k)} {Ei - Ej + hro(k)} 
(22) 

The e.f.g. is then 

(V)ia = (iPia I VI iP ia ) = I Aia 12 (iP?a I V I iP~)+(AV);a), (23) 

with 

(AV)ia = L (t/tj' I V It/tj) L I (t/ti I bl (r) BI (r, p) I t/tj') 
jj' T,p I,r 

x (t/t j I br(r) BI.(r, p) I t/t)C~j' . 

In order to illustrate the calculation in more detail, the specific example of Fe2 + 

ions in FeC03 will now be examined, but first the superposition model of the 
orbit-lattice interaction will be briefly summarized. 

(d) Superposition Model of Orbit-Lattice Interaction 

Newman (1978) has recently described the application of the superposition model 
of the crystal field (e.g. Newman 1971), in which it is assumed that each ligand acts 
independently on the open-shell electrons of a central paramagnetic ion, to the 
determination of orbit-lattice coupling coefficients. In the superposition model the 
static crystal field is expressed as a sum of axially symmetric contributions from the 
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individual ligands, and so can be thought of as a generalization of the point charge 
model, albeit one with much wider range of validity. If the crystal field hamiltonian 
is written in the form 

ytO = L L AlDBlr,p) , (24) 
I T,p 

where the AI(D are coefficients and, as before, the Blr,p) are linear combinations 
of tesseral harmonics that transform as the pth subvector of the irreducible represen­
tation r of the point group of the magnetic ion, then the parameters AI(r) may be 
written 

AzCD = L Klr, p, ()j' cpj) AlRj) . (25) 
j 

The sum is over ligands at R j = (R j, ()j> cpj) and the AzCRj) are intrinsic parameters 
describing the axially symmetric crystal field due to a ligand at R j. The KI(r,p, ();, cpj) 
are known as coordination factors and are functions of the angular positions of the 
ligands. They are determined from the transformation properties of the BI(r,p). 
The parameters AzCR) are normally assumed to follow a power-law dependence on 
R, at least over small ranges of R: 

AI(Rj) = AzCRo)(Ro/Rj)t l • (26) 

Using this model, the orbit-lattice interaction becomes 

yt OL = L BI(r, p) L L {KI(r, p, ()j' cp/JAlR;) vj + oKI(r, p, ()j> cpj) v)IlRj)}S 
I,T,p p"V j O/ll o/lj p,v 

= L Blr,p)L L{Yil(r,p,/l,v,(),cp)A;(Rj)+PIl(r,p,/l,v,(),cp)AlRI)}sp,v> (27) 
l,r,p ""V i -

where Yll and Pi! are referred to as dynamic coordination factors and are derived 
from the K I• The quantity A; may be treated as a distinct parameter but, if equation 
(26) is assumed, then 

Ai(RI) = R;(oAI(Rj)/oR j) = - tIAzCR j). (28) 

The expression (27) has the form (4) since 

blDs(r,p) = L sp,v L {YilA;(R j) +PilAzCRj)}. (29) 
p,lI i 

Newman (1978) has discussed the methods by which values may be obtained for the 
parameters Al and t l • 

3. Model Calculation for Fe2 + in Trigonal Symmetry: FeC03 

(a) Crystal Structure and Static Crystal Field Theory 
FeC03 and the isomorphous compounds MgC03, ZnC03• CaC03 etc. have a 

rhombohedral structure in which the cation is coordinated to six oxygen ions that 
form an octahedron with an elongational distortion along a [111] axis. This axis 
coincides with the crystallographic c axis. The point group of the cation site is S6. 
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The group S6 (= C3 X i) contains six one-dimensional irreducible representations 
of which three are even under inversion. One of these is the totally symmetric A1g 
representation, for which the spherical harmonics Y~ (n even) form bases. The 
other two even representations are related by time reversal, so states that transform 
according to them are degenerate; the two representations are therefore grouped 
together and labelled Eg • The spherical harmonics Y~ and Yi 1 transform according 
to one of these representations and Yi 2 and Y1 transform according to the other. 
Table 1 is a character table for the even representations of S6 and gives the spherical 
harmonics Y~ for n = 2,4 that transform according to each of these representations. 
The transformation properties of the tesseral harmonics Z~ can therefore be deduced 
readily from Table 1. 

Table 1. Character table for even-parity representations of group 86 

The spherical harmonic functions V; (n = 2,4) that transform according to various irreducible 
representations are listed. Here co = exp(tni) 

V::, for 8 6 (3) Representation E C3 C2 
3 iC3 iCi 

VO 
2 VO 

4 V3 
4 

V- 3 
4 Ai. 

Vi Yz2 Vi V-2 V4 } { co co2 
2 4 4 4 E. V-l V~ V-l V2 V- 4 co2 co 2 4 4 4 

co co2 

co2 co 

The crystal field acting on the 3d electrons of Fe2 + in FeC03 has been discussed 
recently by Spiering et al. (1976) and by Price et al. (1977), and reference should be 
made to these papers for details of the spectroscopic work involved. The 5D ground 
electronic term of Fe2 + is split by a field of Oh symmetry into an orbital triplet (5T 2g) 

and a doublet CEg), with the triplet lying below the doublet (by'" 104 cm-1). When 
the symmetry is lowered to S6' the 5T 2g multiplet is split into an orbital singlet C A1g) 
and a time-reversed doublet CSEg). The doublet is lower in FeC03 (Ono and Ito 
1964) by ;;(; 1000 cm-1 (Spiering et al. 1976). Unfortunately, however, insufficient 
electronic transitions have been unambiguously identified to enable a unique set of 
values to be determined for the parameters of the crystal field, and the situation is 
complicated somewhat by the fact that FeC03 is antiferromagnetically ordered at low 
temperatures (;:5 38 K) where, of necessity, much of the spectroscopic work has been 
done. The hamiltonian that describes the splitting of the free ion 5D term may be 
written in terms of the Stevens operator equivalents O~ (whose form is given by 
Orbach 1961) as 

:Yf = Bg og +B~ O~ +BIoI +AL.S +JSz ' (30) 

A set of parameter values (given by Price et al. 1977) that satisfies the observations 
of electronic transitions to levels at 112· 5, 160 and 438 cm -1, describes the applied 
magnetic field dependence of the 112·5 em -1 transition (Prinz et al. 1973) and gives 
a reasonable value for the ionic magnetic moment (as measured by Jacobs (1963) 
in a crystal of unknown purity) is: Bg = -125 cm -1, B~ = - 55·56 cm-1, 
BI = -20-J2B~ = 1571 cm-I, .Ie = -94·4cm-1 and J = -17·Ocm-1. For this 
parameter set the cubic field 5T2g ~ 5Eg splitting is 1801B~1 = 10000cm-1 and the 
trigonal distortion is given entirely by the term Bg og in equation (30); the 5 A1g level 
is 91 Bg 1 = 1125 em -1 above the 5Eg ground multiplet in the absence of spin-orbit 
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coupling and exchange. While these parameter values are not unambiguous, they 
are expected to be of the correct order of magnitude: the experimental data clearly 
require the trigonal 5 A1g- 5Eg splitting to be much larger than A, and that A be not 
reduced greatly in magnitude from its free ion value of - 103 cm -1. This is the 
basis for the argument, referred to in the Introduction above, that Jahn-Teller 
effects are small and that, consequently, the perturbation approach to vibronic 
admixture effects described in Section 2c is valid for FeC03 (and presumably for 
other Fe2 + compounds as well). 

Effects of a large Jahn-Teller coupling of the electronic and vibrational wave­
functions include partial quenching of the orbital moment and of the spin-orbit 
coupling (Ham 1965) and significant reduction in the trigonal splitting of the cubic 
5T 2g level (Stephens 1969; Abou-Ghantous et al. 1974). While the values of the ionic 
magnetic moment ('" 5 Bohr magnetons) and the spin-orbit splitting of the 5Eg 
ground multiplet indicate that the Ham reduction must be quite small, perhaps the 
strongest evidence of minimal Jahn-Teller effects can be drawn from the crystal field 
parameters. If the superposition model (see Section 2d above and Newman 1971) 
is applied to the Fe2 + ion in FeC03 then, considering only the effects of the six 
coordinated oxygen ions and using the X-ray data of Graf (1961), we find that the 
crystal field parameters in equation (30) are given by 
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with R = 2· 14 A. Estimates of the intrinsic parameters ..42 and ..44 may be obtaim;d 
from the following. 

(i) Manson et al. (1976) measured a value ..44 = 701 cm-1 for Fe2 +: MgO 
that scales to 642 cm-1 in FeC03 with t4 = 5, for which there is some 
theoretical and experimental evidence (e.g. Stedman 1969); 

(ii) Newman et al. (1978) found ..44 = 596 cm-1 (with t4 = 5) and ..42 = 6300 
±800 cm- 1 (with t2 = 3·5±0·5) for Fe2 + in D2 sites in pyrope garnets. 
Scaling these values to R = 2· 14 A, appropriate to the oxygen ligands in 
FeC03 , gives ..44 = 680 cm -1 and ..42 = 6900 ± 800 cm-1• 

If the values ..42 = 6900±800 cm-1 and ..44 = 660±20 cm-1 are assumed for 
Fe2+ in FeC03 , then the expressions (31) give 
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These values, when compared with those listed above, would indicate very small, if 
any, reduction of the trigonal splitting due to Jahn-Teller effects. Consequently, 
it will be assumed that the perturbation approach to the treatment of vibronic effects 
described in this paper has some justification, at least for Fe2+ in FeC03 • 

(b) Orbit-Lattice Interaction in FeC03 

The orbit-lattice interaction can now be written in the form (4) of Section 2. 
Two of the harmonic components of the strain tensor (88 and 8~) transform as A1g 

and the other four as two different Eg representations. For simplification, the small 
effect of the trigonal distortion on the orbit-lattice coupling will be ignored, and the 
expressions given below correspond strictly only to cubic symmetry. In terms of 
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both the cartesian components of the strain tensor and those that transform as tesseral 
harmonics, the e(r,p) are given by 

e(AW, I) = e8 = .JHBxx+eyy+Bzz), 

B(A~~), I) = Bg = H2Bzz-exx-Byy) , 

B(E~l), I) = .JtB~ -.JtB~ = Bxz -.JHBxx-Byy) , 

B(E~1>'2) = .JiB2l +.JiB22 = Byz +.J2Bxy, 

B(E~2), I) = .JtB~ +.JtB~ = .J2Bxz +!(exx-Byy) , 

B(E~2>'2) = .JtB2l -.JiB22 = .J2Byz -BXY • 

(32a) 

(32b) 

(32c) 

(32d) 

(32e) 

(32f) 

The corresponding combinations of tesseral harmonics Zi (normalized to 4n/(21+ I)) 
that comprise the Blr,p) are 

B2(AW, I) = 0, 

B2(A~~),1) = zg, 

BiE~l>, I) = .JHZ~ -.J2zD, 

BiE~1),2) = .JHZ2l +.J2Z22) , 

B2(E~2), I) = .JH.J2Z~ +Z~), 

BiE~2),2) = .JH.J2Z2l -Z22), 

BiAW, I) = -t.JH.J7 zg -2.JSZ!); (33a) 

BiA~~), I) = -t.JH2.JSZg +.J7Z!); (33b) 

BiE~l), I) = t.JHszl- zi + 2.J7 Z~) ; (33c) 

B4(E~1),2) = t.J-HSZ;1+Z;2 +2.J7Z44); 
(33d) 

BiE~2),I) = t.JH2z1-4zi-.J7Z~); (33e) 

B4(E~2),2) = t.JH-2Z;1_4Z;2 +.J7Z;4). 
(33f) 

Estimates of the coupling coefficients b,(r) are available from two independent 
sources. Firstly, Price et al. (1977) measured the spin-lattice relaxation of Fe2+ in 
the isomorphous compound ZnC03 • A different but equivalent formulation of the 
orbit-lattice interaction was used in that work and only I = 2 terms were included. 
According to their interpretation of their data, the coupling parameters appropriate 
to the present formulation of JIf OL (equation 4) would lie in the range 

3x 103 ;$ I bir) I ;$ 3x 104 cm- l • 

Secondly, a superposition model calculation (Section 2d) can be employed, Consider­
ing only the six coordinated oxygen ligands and using the X-ray data of Graf (1961), 
such a calculation yields 

biAW) = 0, 

(2) I() -biAlg) = 16y !n AiR), 

b2(E~1») = 1 6.J (tn) AiR) , 

biE~2») = 8.J (tn) A;(R) , 

biAW) = V.J(¥n)A4(R); 

biA~~») = ¥.J(fn) AiR) ; 

b4(E~1») = ¥.J(in) AiR) ; 

b4(E~2») = If.J (in) A4(R). 

(34a) 

(34b) 

(34c) 

(34d) 

These expressions are identical with those given by Orbach and Tachiki (1967) if 
the point charge values of the A, and t, are substituted in them. If the values of 

408 D. C. Price 

both the cartesian components of the strain tensor and those that transform as tesseral 
harmonics, the e(r,p) are given by 

e(AW, I) = e8 = .JHBxx+eyy+Bzz), 

B(A~~), I) = Bg = H2Bzz-exx-Byy) , 

B(E~l), I) = .JtB~ -.JtB~ = Bxz -.JHBxx-Byy) , 

B(E~1>'2) = .JiB2l +.JiB22 = Byz +.J2Bxy, 

B(E~2), I) = .JtB~ +.JtB~ = .J2Bxz +!(exx-Byy) , 

B(E~2>'2) = .JtB2l -.JiB22 = .J2Byz -BXY • 

(32a) 

(32b) 

(32c) 

(32d) 

(32e) 

(32f) 

The corresponding combinations of tesseral harmonics Zi (normalized to 4n/(21+ I)) 
that comprise the Blr,p) are 

B2(AW, I) = 0, 

B2(A~~),1) = zg, 

BiE~l>, I) = .JHZ~ -.J2zD, 

BiE~1),2) = .JHZ2l +.J2Z22) , 

B2(E~2), I) = .JH.J2Z~ +Z~), 

BiE~2),2) = .JH.J2Z2l -Z22), 

BiAW, I) = -t.JH.J7 zg -2.JSZ!); (33a) 

BiA~~), I) = -t.JH2.JSZg +.J7Z!); (33b) 

BiE~l), I) = t.JHszl- zi + 2.J7 Z~) ; (33c) 

B4(E~1),2) = t.J-HSZ;1+Z;2 +2.J7Z44); 
(33d) 

BiE~2),I) = t.JH2z1-4zi-.J7Z~); (33e) 

B4(E~2),2) = t.JH-2Z;1_4Z;2 +.J7Z;4). 
(33f) 

Estimates of the coupling coefficients b,(r) are available from two independent 
sources. Firstly, Price et al. (1977) measured the spin-lattice relaxation of Fe2+ in 
the isomorphous compound ZnC03 • A different but equivalent formulation of the 
orbit-lattice interaction was used in that work and only I = 2 terms were included. 
According to their interpretation of their data, the coupling parameters appropriate 
to the present formulation of JIf OL (equation 4) would lie in the range 

Secondly, a superposition model calculation (Section 2d) can be employed, Consider­
ing only the six coordinated oxygen ligands and using the X-ray data of Graf (1961), 
such a calculation yields 

biAW) = 0, 

(2) I() -biAlg) = 16y !n AiR), 

b2(E~1») = 1 6.J (tn) AiR) , 

biE~2») = 8.J (tn) A;(R) , 

biAW) = V.J(¥n)A4(R); 

biA~~») = ¥.J(fn) AiR) ; 

b4(E~1») = ¥.J(in) AiR) ; 

b4(E~2») = If.J (in) A4(R). 

(34a) 

(34b) 

(34c) 

(34d) 

These expressions are identical with those given by Orbach and Tachiki (1967) if 
the point charge values of the A, and t, are substituted in them. If the values of 



Vibronic Admixture Effects 409 

AiR) and t I given in Section 3a are used, the coefficient values (in units of cm -1) are 

biA~~» = 0, 

biA~!» = biE~l» ~ (8' 7 ± 1 . 0) X 104 , 

b2(E~2» ~ -(l5·0±0·5) x 10\ 

(c) Electronic States and Phonon Spectrum 

b (A(l»", -lOxl04 • 
4 18 "'. , 

b (A (2» - b (E(l» '" 1· 6 X 104 • 4 19 - 4 g '" , 

biE~2» ~ -4·0 X 104 • 

(35a) 

(35b) 

(35c) 

Appropriate L = 2 functions for the A1g and Eg states derived from the octahedral 
sT2g multiplet are (e.g. Bleaney and Stevens 1953) 

A1g : 1/10 = yg; (36a) 

Eg : 1/11 = -sinOy;2 -cosOYL 1/1-1 = sinOY~ -cosOy;l; (36b) 

with cos 0 = .Jt, sin 0 = .Ji for cubic symmetry. For the sake of simplicity only 
these electronic states will be included in the calculation, i.e. consideration will 
only be given to vibronic admixtures between these low-lying states. The matrices 
of the operators Bl(r,p) of equations (33) in the basis 1/11,1/10,1/1-1 are given in 
Appendix 1. Because (in cubic symmetry) these states transform under rotation like 
a P(L = 1) state (Abragam and Pryce 1951), the Bir,p) matrices are proportional 
to those of the Bir,p) operators, and all of the effects of the orbit-lattice interaction 
can be obtained if only the I = 2 terms in the ;/t' OL of equation (4) are included. 
Consequently the I = 4 terms will be ignored for the purposes .of the present 
qualitative discussion. 

It will be assumed henceforth that the acoustic phonon states can be adequately 
described by the Debye model. While this may not be a particularly good 
quantitative approximation, it should serve to illustrate the qualitative effects of the 
vibronic coupling. In any case, the measured phonon spectrum of the isomorphous 
compound CaC03 (Plihal 1973) appears to be reasonably Debye-like at low 
frequencies (Price et al. 1977). The 'characteristic temperature will be taken as 
'" 300 K, which is roughly what is derived from Mossbauer relative area data 
(Price et al. 1973, and results to be published). 

(d) Case of No Spin-Orbit Coupling 

The expression (23) will now be evaluated. As an initial simplification the 
spin-orbit coupling will be ignored, so that no account need be taken of the five-fold 
spin degeneracy of the electronic states (36). The justification for such a simpli­
fication being made at this stage is that, in the absence of vibronic effects, the 
dominant temperature dependence of the quadrupole interaction in the temperature 
range up to several hundred kelvins is expected to be due to temperature-dependent 
repopulation of the three orbital states (Ingalls 1964). 

In evaluating equation (23) it will be seen that only three different phonon factors 
cjj' (equation 22) are required. This is because (i) CJj' = CJ'j and (ii) all sums of 
electronic matrix elements of the form 

L <1/11 1 Bz (r, p) Il/Ir><l/I j 1 Bl,(r, p) 11/11> 
p 
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are zero forj 1= j', as can be verified by inspection of the matrices given in Appendix 1. 
Consequently, if the electronic energies Ei are taken to be E1 = E-1 = 0, Eo = LI 
(see Fig. 1 inset) then the only C)r factors required are (see equation 22) 

( hk2 ) ( Na(k) + 1 Nik») 
C6,o = Co,6 = 3 ~ 2M w(k) {LI +hw(k)Y + {LI-hw(k)}2 , (37a) 

( hk2 ) ( Nik) + 1 Nik») 
C~,l = C<:l,-l = 3 ~ 2M w(k) {LI-hw(k)Y + {Lt +hw(k)}2 ' (37b) 

( hk2 ) (2Nik) + 1) cg,o = Ci,l = C:::i,-l = C~l,-l = Cl,~ = 3 ~ 2M w(k) h2w2(k) . (37c) 

These same terms also appear in the expressions for the normalization constants 
1 Aia 12. They are evaluated within the Debye model by replacing the k summations 
by integrals over a uniform distribution of points in k space. The set of phonon 
state occupation numbers IX is taken to be the thermal equilibrium set at temperature 
T, that is, 

NaCk) = {exp(hw(k)/kB T)-l} -1, (38) 

where kB is the Boltzmann constant. 
Since LI is expected to be ~ 1000 cm -1 (e.g. Spiering et al. 1976; Price et al. 

1977) and the Debye temperature 8D ,..., 300 K, there will be no problem with diver­
gence of the integrands in equations (37) for hw ,..., Lt. For smaller values of LI such 
divergence can be removed by inclusion of the lifetime broadening of the excited 
electronic state, as was done in the resonant relaxation problem (Orbach 1961; 

. Orbach and Stapleton 1972). The integrals in equations (37) reduce to 

3 (2k T) 2 (X . (eX e -X ) 

C6,o = A_L •. 51'. + Jo -!x3cosechx ((j+X)2 + ((j_X)2 dx, (39a) 

3 (2k T) 2 ( X (eX e -X ) 

C~,l = A_2- .. 51'. + Jo -!X3 cosechx ((j_X)2 + ((j+X)2 dx, (39b) 

CO _ 3 (2kBT)2 (X 
0,0 - 4n2pv5h -h Jo xcothx dx, (39c) 

where p is the density of the lattice, v is the (average) velocity of sound in the lattice, 
x = hw(k)/2kB T, X = hWD/2kB T = 8D/2T and (j = LI/2kB T. In the high temperature 
limit (T ~ 8D) the behaviour is 

C6,o oc aT-b, C~,l oc aT+b, cg,o oc T, 

with a and b constants. 
The c]r could be evaluated even more readily for optical phonons or other 

essentially dispersionless modes (such as local molecular rotations), but the calcula­
tions done here have incorporated only the long wavelength acoustic phonons. 

Because the only nonzero contributions to the sum in equation (23) come from 
j = j' terms, only diagonal matrix elements of the e.f.g. operator V are involved and 
consequently the e.f.g. retains its axial symmetry in the presence of the vibronic 
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coupling. Then, since (V)i~ represents the thermal equilibrium expectation value 
at temperature T, equation (23) may be rewritten 

(V)i~ = (V);CT) = (V)? + Z; (V)J Dij(T)) / (1 + Z; Du(T)) , (40) 

where 
(V)? = (!frd V I t/li) = (<P~ I V I <P~) 

and 

Du(T) = (L L (!fri I bl (r) BI (r, p) l!frj)(!frj I bl.(r) BI.(r, p) l!fri») QiT ). 
T,p 1,1' 

Since all of the states derived from the cubic 5T 2g orbital triplet are included, 
it follows that Lj (V)J = O. Therefore at least one of the (V)J values will be of 
opposite sign to (V)? and so, if the corresponding coupling coefficient Dij is 
nonzero, I (V);(T) I will be less than I (V)? I and will decrease progressively as T 
increases owing to the temperature dependence of the Dij(T). The calculation of 
the observed e.f.g. is completed by making an ensemble average of the (V)i(T), 
assuming that the relaxation between the electronic states is sufficiently fast: 

«V»(T) = (V)1(T) +(V)_1(T) +(V)o(T)exp( -AjkB T) 
1 + 1 +exp( -AjkB T) (41) 

The matrix elements of the diagonal cartesian components of V, taking the z axis 
as the crystal c axis, are given in Appendix 2 for the basis !fr1' !fro,!fr -1' These are the 
only components that have nonzero diagonal matrix elements. Since (Vxx)i = 
(Vyv) i = - t( Vzz) i, only (Vzz) i and its ensemble average have been calculated. 

Representative results of this calculation are shown in Fig. 1. The energy difference 
A was taken to be ~ 1000 cm- 1 (e.g. Spiering et al. 1976; Price et al. 1977), and the 
wavefunctions and energy levels are shown in the inset to the figure. Relative values 
of the coupling parameters were chosen roughly in accordance with the results of 
the superposition model calculation referred to above; that is, b2(E~2) = 1· 5 b2(E~1). 
The curves in Fig. 1 show the 57Fe quadrupole splitting, which is proportional to 
« Vzz» and which has been normalized so that in the absence of vibronic coupling 
its low temperature value is 2·0 mm S-1. The vibronic coupling induces a change 
in the temperature dependence of the quadrupole splitting when it mixes the excited 
A1g state with the ground Eg states, since the e.f.g. values associated with these states 
have opposite sign. For these calculations the velocity of sound v was taken to be the 
Debye model value of ~ 4 x 103 m s -1 and the crystal density to be 4·0 g cm - 3 . 

The three curves drawn correspond to different values for the vibronic coupling 
parameters, as explained in the figure caption. 

Coupling to the A1g vibrational modes alone does not produce any change in the 
temperature dependence of the quadrupole splitting, since these modes cannot mix 
the A1g and Eg electronic states (matrix elements of the form (A1g I A1g I Eg) are 
always zero since A1g x Eg does not contain A1g). However, the Eg modes mix A1g 
and Eg electronic states since, Eg x Eg contains A1g, and coupling to Eg modes will 
change the temperature dependence of «Vzz». Therefore, observable effects may 
be expected if coupling to Eg modes is sufficiently strong whereas, if coupling to the 
A1g modes is dominant, little effect should be seen. The results shown in Fig. 1 
confirm this expectation. 
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(V)i~ = (V);CT) = (V)? + Z; (V)J Dij(T)) / (1 + Z; Di/T)) , (40) 

where 
(V)? = (!fr;lVltfJi) = (<P~IVI<P~) 

and 

Dij(T) = (L L (!fri I bl (r) BI (r, p) l!frj)(!frj I bl.(r) BI.(r, p) l!fri») q/T). 
T,p 1,1' 
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1 + 1 +exp( -AjkB T) 
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its low temperature value is 2·0 mm S-1. The vibronic coupling induces a change 
in the temperature dependence of the quadrupole splitting when it mixes the excited 
A1g state with the ground Eg states, since the e.f.g. values associated with these states 
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always zero since A1g x Eg does not contain A1g). However, the Eg modes mix A1g 
and Eg electronic states since, Eg x Eg contains A1g, and coupling to Eg modes will 
change the temperature dependence of «Vzz». Therefore, observable effects may 
be expected if coupling to Eg modes is sufficiently strong whereas, if coupling to the 
A1g modes is dominant, little effect should be seen. The results shown in Fig. 1 
confirm this expectation. 
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Fig. 1. 57Pe quadrupole splitting teQ< < Vzz» calculated as described in Section 3d. The 
inset shows the wavefunctions and energy levels assumed. The coupling parameters used 
in the calculations were: 

A: no vibronic coupling (or coupling to Ai. modes only); 

B: b2(A~~) = b2(E~1» = 12000cm-t, b2(E~2» = 18000cm- i ; 

C b2(A~!» = 0, b2(E~1» = b2(E~2» = 12000cm- i • 

While the values of the coupling parameters used in the calculation were chosen 
mainly for illustrative purposes they are of the same order of magnitude as the 
parameters deduced by Price et al. (1977) from the study of the spin-lattice relaxation 
rates of 57Pe2+ in ZnC03 that was referred to above. Consequently, effects of 
vibronic coupling might be expected to be observed in the 57Pe quadrupole splitting 
in PeC03 and similar compounds. It is believed that this is a likely explanation for 
the 'anomalous' temperature dependence of the quadrupole splitting in these com­
pounds (Price et al. 1973; Nagy et al. 1975). In the following subsections possible 
effects on the vibronic coupling of the spin-orbit splitting of the ground electronic 
multiplet and of the exchange interaction will be examined. 

(e) Approximation to Effect of Spin-Orbit Coupling 
Spin-orbit coupling affects the temperature dependence of the e.f.g. at a 57Pe 

nucleus in a compound like PeC03 , particularly in the low temperature region, 
both by removing the spin degeneracy of the Eg ground orbital states tjJ1, tjJ -1 and 
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Fig. 1. 57Pe quadrupole splitting teQ< < Vzz» calculated as described in Section 3d. The 
inset shows the wavefunctions and energy levels assumed. The coupling parameters used 
in the calculations were: 

A: no vibronic coupling (or coupling to Ai. modes only); 

B: b2(A~~) = b2(E~1» = 12000cm-t, b2(E~2» = 18000cm- i ; 

C b2(A~!» = 0, b2(E~1» = b2(E~2» = 12000cm- i • 

While the values of the coupling parameters used in the calculation were chosen 
mainly for illustrative purposes they are of the same order of magnitude as the 
parameters deduced by Price et al. (1977) from the study of the spin-lattice relaxation 
rates of 57Pe2+ in ZnC03 that was referred to above. Consequently, effects of 
vibronic coupling might be expected to be observed in the 57Pe quadrupole splitting 
in PeC03 and similar compounds. It is believed that this is a likely explanation for 
the 'anomalous' temperature dependence of the quadrupole splitting in these com­
pounds (Price et al. 1973; Nagy et al. 1975). In the following subsections possible 
effects on the vibronic coupling of the spin-orbit splitting of the ground electronic 
multiplet and of the exchange interaction will be examined. 

(e) Approximation to Effect of Spin-Orbit Coupling 
Spin-orbit coupling affects the temperature dependence of the e.f.g. at a 57Pe 

nucleus in a compound like PeC03 , particularly in the low temperature region, 
both by removing the spin degeneracy of the Eg ground orbital states tjJ l' tjJ -1 and 
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Fig. 2. 5 7Fe quadrupole splitting teQ« Vzz» calculated as described in Section 3e. The 
inset shows the wavefunctions and energy levels assumed. The coupling parameters used 
in the calculations were: 

A: no vibronic coupling (or coupling to AI. modes only); 
B: b2(A~!» = b2(E~1» = 6000cm- 1 , b2(E~2» = 9000cm- 1 ; 

c: b2(A~~) = b2(E~I» = 12000cm- 1 , b2(E~2» = 18000cm-1 ; 

D: b2(A~!» = 6000cm-1, b2(E~I) = 12000cm-1, b2(E~2» = 18000cm-1• 

by mixing some of the excited A1g state l/Io with them: Although this admixture can 
have a significant effect on the 57Pe quadrupole splitting it shall be ignored initially 
and only the effect on the vibronic admixture of removing the spin degeneracy of 
l/I 1, l/I -1 will be considered. 

The essential features of the problem can be retained whilst simplifying the 
calculation if the spin degeneracy is taken to be two. If the spin states are labelled 
1 + > and 1-> then the eigenstates of the static hamiltonian £0 + J,L • S are as shown 
in the inset of Pig. 2. The calculation then proceeds along the same lines as described 
in subsection (d) above, but, since the orbit-lattice hamiltonian does not operate 
on the spin functions, only states with the same spin quantum number will be 
vibronically admixed. Therefore, the only difference between this calculation and 
that of subsection (d) is that some of the energy denominators in the CJj terms (37) 
are different. 
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Fig. 2. 57Fe quadrupole splitting teQ< < Vzz> > calculated as described in Section 3e. The 
inset shows the wavefunctions and energy levels assumed. The coupling parameters used 
in the calculations were: 

A: no vibronic coupling (or coupling to AI. modes only); 
B: b2(A~~») = b2(E~1)) = 6000cm-r, b2(E~2») = 9000cm- 1 ; 

c: b2(A~~») = b2(E~1») = 12000cm-r, b2(E~2») = 18000cm- l ; 

D: b2(A~~») = 6000cm-r, b2(E~1)) = 12000cm-r, b2(E~2») = 18000cm- 1• 

by mixing some of the excited A[g state 1/10 with them: Although this admixture can 
have a significant effect on the 57Pe quadrupole splitting it shall be ignored initially 
and only the effect on the vibronic admixture of removing the spin degeneracy of 
1/11,1/1-1 will be considered. 

The essential features of the problem can be retained whilst simplifying the 
calculation if the spin degeneracy is taken to be two. If the spin states are labelled 
1 + > and 1-> then the eigenstates of the static hamiltonian Jlfo + AL • S are as shown 
in the inset of Pig. 2. The calculation then proceeds along the same lines as described 
in subsection (d) above, but, since the orbit-lattice hamiltonian does not operate 
on the spin functions, only states with the same spin quantum number will be 
vibronically admixed. Therefore, the only difference between this calculation and 
that of subsection (d) is that some of the energy denominators in the cjj terms (37) 
are different. 
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Representative results are shown in Fig. 2. The A1g-Eg level splitting L1 was again 
taken to be 1000 cm -1 and the overall splitting of the ground spin-orbit multiplet 
taken as 400 cm-I, which is roughly that expected for Fe2+ (Section 3a; Spiering 
et al. 1976). All other parameters had the values given in Section 3d. 

From Fig. 2 it will be seen, again, that the effect of the vibronic coupling is only 
important when there is significant coupling to E modes. The effect of the spin-orbit 
coupling in this case is to further decrease the quadrupole splitting. This is because 
the splitting causes a decrease in the Eg-Eg (l/Icl/l -1) admixture and consequently 
an enhancement of the effect of the Eg-A1g admixture. 

While these calculations can have at best a qualitative relationship to the situation 
in a real compound such as FeC03 , this mechanism may be at least partially respon­
sible for the unusual temperature dependence of the quadrupole splitting at 57Fe 
nuclei in the rhombohedral carbonate compounds and should be investigated in more 
detail. It also seems possible, although again only on the basis of qualitative arguments, 
that the rather abrupt change in the 57Fe quadrupole splitting at the Neel temperature 
in FeC03 ('" 38 K; Ok 1969) which has previously been assigned to static effects 
associated with magneto stricti on may be due predominantly to changes in the 
vibronic coupling, and this will be considered below. 

(f) Possible Effect of Exchange Interaction 

As already noted in the Introduction, the 57Fe quadrupole splitting in FeC03 

increases sharply by '" 0·07 mm s -1 near the transition from the antiferromagnetic 
to the paramagnetic phase. It has been speculated (Nagy et al. 1975; Spiering et al. 
1976) that this is due to the effect of magneto stricti on on the (static) crystal field. 
Possible effects that the exchange interaction might have on the vibronic coupling 
described above will now be examined. In doing so it will be necessary to look more 
closely than above at the effects of the spin-orbit coupling on the lowest electronic 
multiplet. 

Fig. 3 shows the energy levels derived from the 5Eg orbital doublet ground state 
in the presence of spin-orbit coupling and the exchange interaction (see e.g. Prinz 
et al. 1973; Price et al. 1974). The wavefunctions, written in terms of the l/I i I Sz) 
basis states, for spin-orbit coupling only and including admixtures of the 5 A1g excited 
states, are given in Appendix 3. The small changes in these functions that accompany 
the application of the exchange interaction will be neglected. It may be seen from 
Appendix 3 that the admixtures produced by the spin-orbit coupling give rise to small 
nonzero matrix elements of the orbital operators Bl(r,p) involved in the orbit-lattice 
interaction (4) between states where they would otherwise have been spin-forbidden. 
Consequently, the orbit-lattice interaction couples together many of the 'states 
within this multiplet and not just the strongly spin-allowed ones, although the electronic 
matrix elements involved in the· coupling may be reduced by an order of magnitude 
or more. These couplings will therefore be insignificant unless the phonon terms 
are correspondingly larger than those involved in spin-allowed coupling. However, 
inspection of Fig. 3 shows that the energy separations of the lowest level (labelled 
II») from several excited levels, to which it may be coupled by the orbit-lattice 
interaction, decrease significantly when the exchange is reduced to zero. Since 
these states all produce approximately the same e.f.g. at the Fe nucleus the decrease 
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of their excitation energies as the temperature is raised through the Neel temperature 
( '" 38 K) and the associated increase of their vibronic admixture into the ground 
state II) mean that the effect of coupling to the 5 A1g multiplet will be decreased and 
hence the quadrupole splitting will increase, as is observed. It remains to be 
demonstrated that the change in the quadrupole splitting from this mechanism will 
be large enough to be observable. This will be done in a future publication . 
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Fig. 3. Splitting of the ground 5Eg multiplet of Fe2 + in a trigonally elongated octahedral 
crystal field (B~ O~) by the spin-orbit coupling (AL. S) and axial exchange interaction 
(JSz )' The parameters used for the purely illustrative purposes of this diagram were 
Bg = -100cm- 1 , A = -lOOcm-1 and J= -16cm-t, which are of the correct 
general order of magnitude for FeC03 (see Section 3a). The labels /1) given to the 
states refer to the functions listed in Appendix 3. 

(g) Fe2+ Quadrupole Splitting for Trigonal Compression 

If an Fe2 + ion in an octahedrally coordinated site that has a compres­
sional trigonal distortion, such as occurs in, for example, ferrous fluosilicate 
(FeSiF6 ,6H20) (Johnson 1967; Varret and Jehanno 1975), is considered then a 
similar model to that set up for Fe2+ in FeC03 , but with the orbital singlet 1/10 lower 
than the doublet I/I±l' can be used. In fact there is a small non-axial distortion in 
FeSiF6 ,6H20 (Varret and Jehanno 1975; Chappert et al. 1977) below ",230K, but 
this should have little influence on the results of the present calculation. The inset 
of Fig. 4 shows the energy level scheme used, and representative results are shown 
in the same figure. All parameters have been arbitrarily given the same values as for 
FeC03 • It can be seen that, particularly when coupling to the Eg vibrational modes 
is dominant, the results bear a qualitative similarity to the experimental quadrupole 
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crystal field (B~ O~) by the spin-orbit coupling (J.L . S) and axial exchange interaction 
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Fig. 4. 5 7Pe quadrupole splitting teQ«Vzz» calculated as described in Section 3g. The 
inset shows the wavefunctions and energy levels assumed. The coupling parameters used 
in the calculations were: 

A: no vibronic coupling (or coupling to Ai. modes only); 
B: b2(A~~) = b2(E~1») = 6000cm-t, b2(E~2») = 9000 cm- i ; 

C: b2(A~;») = b2(E~1») = 12000cm-t, b2(E~2») = 18000cm- i ; 

D: b2(A~;») = 6000cm- i , b2(E~1») = 12000cm-t, b2(E~2») = 18000cm- i • 

splitting measurements ofVarret and Jehanno (1975), although, of course, no definite 
conclusions can be drawn as no independent information regarding the strength of 
the orbit-lattice coupling parameters is available. 

For the cases of Fe2 + in nickel and zinc fiuosilicates, for which measurements 
were also reported by Varret and Jehanno (1975), the situation is far more complex 
because the axial splitting is much smaller than in the ferrous compound and is only 
of the same order of magnitude as the spin-orbit coupling. Consequently the 
spin-orbit coupling will produce strong admixture between the 5 A1g and 5Eg states 
and there will be many electronic states that can be coupled by the orbit-lattice 
interaction to the ground state and that will lie within the phonon continuum 
associated with the ground state. Calculation of the temperature dependence of the 
Fe2 + quadrupole interaction including vibronic coupling effects would therefore be 
very difficult, but it does not seem implausible that the results of Varret and Jehanno 
may be explained by the consideration of vibronic effects. 
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Fig. 4. 57Pe quadrupole splitting teQ«Vzz» calculated as described in Section 3g. The 
inset shows the wavefunctions and energy levels assumed. The coupling parameters used 
in the calculations were: 

A: no vibronic coupling (or coupling to A1 , modes only); 
B: b2(A~~) = b2(E~1») = 6000 cm - " b2(E~2») = 9000 cm -1 ; 

C: b2(A~;») = b2(E~1)) = 12000cm- 1 , b2(E~2») = 18000cm-1 ; 

D: b2(A~~») = 6000cm-" b2(E~1») = 12000cm-" b2(E~2») = 18000cm-1. 

splitting measurements ofVarret and Jehanno (1975), although, of course, no definite 
conclusions can be drawn as no independent information regarding the strength of 
the orbit-lattice coupling parameters is available. 

For the cases of Fe2 + in nickel and zinc fiuosilicates, for which measurements 
were also reported by Varret and Jehanno (1975), the situation is far more complex 
because the axial splitting is much smaller than in the ferrous compound and is only 
of the same order of magnitude as the spin-orbit coupling. Consequently the 
spin-orbit coupling will produce strong admixture between the 5 A1g and 5Eg states 
and there will be many electronic states that can be coupled by the orbit-lattice 
interaction to the ground state and that will lie within the phonon continuum 
associated with the ground state. Calculation of the temperature dependence of the 
Fe2 + quadrupole interaction including vibronic coupling effects would therefore be 
very difficult, but it does not seem implausible that the results of Varret and Jehanno 
may be explained by the consideration of vibronic effects. 
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4. Conclusions 

An approximate formalism has been outlined for the calculation of the effects of 
vibronic coupling on an electronic observable, and referred particularly to the 
calculation of the electric field gradient at the nucleus of a paramagnetic ion in a 
crystal or molecule. For the specific case of the temperature dependence of the 57Fe 
quadrupole splitting in FeC03 it has been seen that significant effects may be 
expected. Further experimental evidence of this will be presented in a future publi­
cation, in which detailed measurements of the qudrupole splitting at 57Fe nuclei 
in a series of isomorphous rhombohedral carbonates will be described. 

Vibronic coupling may similarly be expected to affect other observables, such as 
g factors, magnetic hyperfine coupling constants and magnetic moments to some 
extent and can also give rise to a temperature dependence of electronic transition 
energies. This latter effect will be considered in a separate paper with particular 
reference to the observed temperature dependence of the 438 cm -1 Raman transition 
in FeC03 . This work emphasizes that vibronic coupling can make quite large 
zero-point and temperature-dependent contributions to electronic transition energies 
so that one must be wary when obtaining static splitting parameters. 

It must be emphasized that the work reported here represents a very much 
simplified picture designed to examine only the qualitative features of the coupling. 
As may be inferred from the discussion in Section 3/ of the effect of the spin-orbit 
coupling and the exchange interaction in FeC03 , more realistic calculations become 
rapidly more complex. Also, because of the strength of the vibronic coupling, at 
least in some cases, it is doubtful whether a perturbation approach is really satis­
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Appendix 1 

Presented here are the matrices for the orbital operators Blr,p) defined by 
equations (33) in terms of the basis states 1/11,1/10,1/1-1 (in that order) that are in 
turn defined by equations (36) for cubic symmetry. The operator matrices for the 
A~~) representations are 

o ;l B2 (AW,1) = 0, B,(AW. 1) ~ -3JlP{ ~ 
o 

For all other representations the operator matrices for I = 4 are proportional to 
those for I = 2. 'Then, for I = 2,4, the required expressions are 

and 

B,(E;", 1) ~ p{ 
o 
3 

-6 

f
3 0 0 1 

BlA~~1, 1) = )2PI 0 -6 OJI 
003 

3 

o 
-3 

-61 -3 , 

o J 

B,(E;". 2) ~ ;P'l 
o -3 

3 0 

6 -3 

-6j 
3 , 

o 

f 
0 -3)2 -3)2', 

BlE~2), 1) = PI - 3)2 0 3)2 i' 
-3)2 3)2 0 J 

I 0 3)2 -3)2j 
BI(E~2),2) = iPI -3)2 0 -3)2 . 

L 3)2 3)2 0 

Here 
P2 = !/!-<LllaIIL>, P4 = /hLllf3lfL>, 

where the reduced matrix elements <L II a II L> and <L II 1311 L> have the values - 2\ 
and l3 respectively for Fe2 + . 

Appendix 2 

Matrix elements of the diagonal cartesian components of the electric field gradient 
operator in the basis 1/11,1/10,1/1-1 are presented here. All elements are zero except 
the following: 

<1/11 I Vzz I 1/11> = <1/1-11 Vzz I 1/1-1> = 3p, 

<1/101 Vzzil/lo> = -6p, 

<1/111 Vxx 11/l1> = <1/1-11 Vxx I 1/1-1> = -tp, 

<1/10 I Vxx 11/10> = 3p, 

<1/11 I Vyy I 1/11> = <1/1-1 I Vyy 11/1-1> = -tp, 

<1/10 I Vyy 11/10> = 3p, 
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Appendix 1 

Presented here are the matrices for the orbital operators Bz(r,p) defined by 
equations (33) in terms of the basis states t/J1' t/Jo, t/J -1 (in that order) that are in 
turn defined by equations (36) for cubic symmetry. The operator matrices for the 
AW representations are 

o 

o 

For all other representations the operator matrices for I = 4 are proportional to 
those for I = 2. 'Then, for I = 2,4, the required expressions are 

and 
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Here 
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-6 

3 

o 
-3 
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-3 , 
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3 0 

6 -3 

P4 = Ji<LIIPIIL), 

-,61 3 , 

o 

where the reduced matrix elements <L II IX II L) and <L II P II L) have the values - 221 

and i3 respectively for Fe2 +. 

Appendix 2 

Matrix elements of the diagonal cartesian components of the electric field gradient 
operator in the basis t/J1' t/Jo, t/J -1 are presented here. All elements are zero except 
the following: 

<t/J1 I Vzz I t/J1) = <t/J -1 I Vzz I t/t -1) = 3p, 

<t/Jol Vzzlt/Jo) = -6p, 

<t/J1 I Vxx I t/J1) = <t/J -1 I Vxx I t/J -1) = --tP, 

<t/Jo I Vxx I t/Jo) = 3p, 

<t/J1 I Vyy I t/J1) = <t/J -1 I Vyy I t/J -1) = --tP, 

<t/Jo I Vyy I t/Jo) = 3p, 
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where 
p = <L II oc \I L)<r- 3)(I-R). 

The reduced matrix element <LII oclIL) = - 221 for Fe2+, while <r- 3 ) is an average 
for the valence electrons of the ion and R is the Sternheimer shielding factor. 

Appendix 3 

Presented here are the wavefunctions for the lowest spin-orbit multiplet of Fe2 + 
in a trigonal crystal field as described in the text. Admixtures from states within 
the cubic 5T 2g levels only are included. Basis states are 1/1 i I Sz) with the 1/11 defined 
by equations (36) and S = 2. Labels II), I = 1, ... ,10, relate to the levels in Fig. 3. 
The required wavefunctions are then 

II) = c1/l110) +b1/lo II) +(I-a)1/I_112), 

12) = (l-a)1/I11-2)+b1/lol-1)+c1/l-110), 

13) = (J!-d)1/Il I -I) +e1/lo I 0) + (J!- d)1/I -111), 

14) = -J!1/Ill-1) +Jt1/l-111), 

15) = (1-/)1/1110) +g1/lo II) +h1/l -112), 

16) = h1/l11 -2) +g1/lo I-I) +(I-f)1/I-ll 0), 

17) = (l-P)1/Il I 1) +q1/loI2), 

18)= q1/lol-2) +(I-p)1/I-ll-1), 

19) = 1/1112), 

110) = 1/1-11-2). 

For typical values of the static splitting parameters, e.g. A,..., 1000 cm-1 and 
A"'" -100 cm -1, and when the states are normalized, the quantities oc = a, ... , h,p, q 
are of order loci ,..., 0·01-0·2. In general, the exchange interaction changes these 
admixture parameters only slightly. 
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