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Abstract 

The matrix elements of the group generators of E7 have been calculated in an E7 :::> SU~x SU~ :::> 

SU: x SU~I x SU~:::> SUIf. X SU~ x Ur x SU~ basis for the fundamental and adjoint irreps of E7. 
The results were obtained by first calculating the 3jm factors for the various group-subgroup com­
binations. Tables of the relevant 3jm factors for E7:::> SU6 X SU3 , SU6 :::> SU2 X SU3 and 
SU3 :::> SU2 X U1 are given. 

1. Introduction 

The group-subgroup structure E7:::> SU~l x SU~ has been used to develop unified 
theories of strong, electromagnetic and weak interactions (Giirsey et al. 1975; Giirsey 
and Sikivie 1976; Ramond 1976, 1977; Cung and Kim 1977; Saclioglu 1977; 
Sikivie and Giirsey 1977; Gell-Mann et al. 1978). In these theories the basic fermions 
(quarks, leptons and their antiparticles) are associated with the 56-dimensional funda­
mental irreducible representation (irrep) of E7 , and the gauge vector bosons that 
mediate the interactions are associated with the 133-dimensional adjoint irrep. 

There are many possible schemes for breaking the E7 symmetry down to an 
appropriate SU~ x Ur x SU~ subgroup (Ramond 1977; Sikivie and Giirsey 1977). 
The correct scheme, if indeed there is such a scheme, must be decided by a confronta­
tion with experimental results. In this paper we set ourselves the somewhat modest 
task of calculating the various 3jm factors associated with the group-subgroup 
structure 

E7:::> SU~lX SU~:::> SU~ XSU~IXSU~:::> SU~ xSU~ x Ur xSU~. 

These 3jm factors are then used to calculate the matrix elements of the generators 
of E7 in the fermion and boson sectors. These calculations give added insight into 
two significant problems: (1) the properties of 3jm factors and (2) the structure of 
the fermion and boson mass matrices. 

A detailed discussion of the basic properties of the exceptional groups has been 
given by Wybourne and Bowick (1977) and we refer to that paper for matters of 
notation. Additional general information has been considered by Butler (1975, 1979) 
and by Butler and Wybourne (1976a, 1976b). The calculation of the relevant 6j 
symbols for E7 has been reported by Butler et al. (1978). These 6j symbols form 
the key to obtaining the 3jm factors for E7 :::> SU6 X SU3 • 
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2. Irreps of SUn Groups 

The irreps of E7 and their associated properties have already been given (Wybourne 
and Bowick 1977; Wybourne 1978; Butler et al. 1978) and need not be repeated 
here. We label the irreps of SUn by partitions {A} of integers into not more than 
n-1 nonzero parts (Wybourne 1970). For the irreps of SU3 and SU6 we shall omit the 
braces and use a dot to separate the irreps for the direct product group SU6 x SU3 (e.g. 
the {21} x {32} irrep of SU6 x SU3 will be designated as 21.32). In the case of SU ~ 
we shall usually label the irrep by 1== 1-A while for the product group SU~ x su f1 
we shall indicate the SU~ irrep as a spectroscopic multiplicity (H = A+ 1) that appears 
as a left superscript attached to the SU~l irrep (e.g. the 1.21 irrep of SU~ x SU~l will 
be designated as 221). ' 

Table 1. Some SU6 and SU3 irreps and their associated properties 

Irrep A Dimension I AI Power PA Phase rPA 2jA value 

(a) SU6 irreps 

0 1 0 1 0 
1 6 1 -1 1 
P 15 2 1 0 
2 21 2 1 2 

214 35 2 1 2 
P 20 3 -1 3 
3 56 3 -1 3 

21 70 3 -1 3 
2P 84 3 -1 3 
314 120 3 -1 3 
2P 105 4 1 2 

(b) SU3 irreps 

0 1 0 1 0 
1 3 1 1 2 
2 6 2 1 0 

21 8 2 1 0 
3 10 3 1 2 

31 15 3 1 2 
4 15 4 1 0 

The dimensions I AI, power PA and 2j symbol CPA associated with each irrep of SU6 

or SU3 arising in our calculations are given in Tables 1a or 1b respectively. In the 
case of contragredient pairs of irreps, we give only one member since the quantities 
listed are common to both members. All the irreps considered here are simple phase 
(Butler and King 1974) and may be associated with aj value such that 

CPA = (_1)2h, (1) 

where j A is an integer if A is orthogonal and a half-integer if A is symplectic. We 
hasten to add that such a simple phase structure is not always possible (Butler 1975). 
The jA value to be associated with a given irrep A is found from an analysis of the 
Kronecker square of A. The appropriate values of 2jA are included in Table 1. The 
relevant branching rules for E7 --t SU6 X SU3 are given in Table 2. 
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3. Basic Group Structure 

The generators of E7 span the 21 6 irrep of E7. The various subgroup structures 
contained in E7 may be explored by systematically discarding sets of the E7 
generators (cf. Wybourne 1973). Under E7 ~ SU6 X SU3 we have (Wybourne and 
Bowick 1977) 

21 6 ~ 214.0 +12.12 +14.1 +0.21. (2) 

The 35 vector bosons are associated with the 214.0 and form the generators of the 
SU6 subgroup. The 90 leptoquarks span the 12.12 and 14.1 irreps of SU6 x SU3 

while the 8 gluons span the 0.21 irrep and form the generators of the presumably 
unbroken colour gauge group SU~. 

E7 irrep 

(0) 
(16) 
(21 6) 

(26) 

(25F) 

Table 2.· Some E7 .... SU6 X SU3 branching rules 

Branching to SU6 x SU3 

0.0 
1.1+P.P+P.0 
214.0+0.21 +F. F +14.1 
214.21 +214.0 +2F.l +23 F. F +23 .0 +2.2+25 .22 

+F.F+14.1 +0.0 
214.21 +214.0 +2F.l +23 F. F +0.21 +2. F +25 .1 

+P.2 +14.22 +F.F +14.1 +22F.0 +0.0 

The SU6 subgroup may be broken in various ways. Under SU6 ~ SU2 X SU3 

we have 
214 ~ 30 +321 +121. (3) 

In this case the three vector bosons associated with 30 can be regarded as forming 
the generators of an SU2 group and those with 121 the generators of the SU3 group. 
The SU3 group may be reduced to SU~ x ui by noting that under SU3 ~ SU~ x ui 

21 ~ n·, 1)+(1,O)+(O,O)+(h -1), (4) 

where we use (/, Y) to label irreps of SU~ x ui. The three vector bosons transforming 
as the (1,0) irrep of SU~ x ui form the generators of SU~ while the (0,0) gives the 
single generator of Ur. 

So far we have neglected to give any specific representation of the spin. The 
n-particle fermion states may be regarded as spanning the anti symmetric {In} irreps 
and the n-particle bosons the symmetric {n} irreps of U112 ';;) SU2 X E7 • Some 
relevant branching rules are given in Table 3. 

We note that the basic fermions span the vector irrep of U112 • The objects spanning 
the {12} and {1 3} irreps of U112 can be constructed out of pairs and triplets of the 
basic fermions. Presumably only objects corresponding to colour singlets will be 
accessible to observation. This class of objects will include mesons, lepton pairs and 
massive leptoquark-antileptoquark states in the case of the {12} irrep and the various 
baryons and lepton triplets for the {I3} irrep. 

Objects spanning the symmetric {2} irrep of U112 cannot be constructed from the 
basic fermions and they represent the scalar and vector bosons. These objects can 
be expected to contribute to the fermion and boson mass matrices. 
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4. 3j Symbols 

The 3j symbols {(n)Al A2 A3 }rr' give the permutational symmetries of the 3jm factors 
(Butler 1975). For simple phase irreps the 3j symbol is no more than a phase factor 
(Butler and King 1974) and we may write (Butler and Wybourne 1976a) 

{(123)Al A2 A3}rr' = {(132)Al A2 A3}rr' = brr , , (5) 

{(12)A1A2A3}rr' = {(23)A1A2A3}rr' = {(13)A1A2A3}rr' = {A1A2A3r}brr,. (6) 

In the cases treated here it was always possible to cast the 3j symbols of equation (6) 
into the form 

{A1A2 A3r} = (_I)h,+h2+h3+ r, (7) 

where r is the product multiplicity index. For the irreps considered here the 
multiplicity never exceeds 2 and we may restrict r to 0 and 1. The relevant 3j symbols 
may be readily evaluated using Tables la and Ib for SU6 and SU3 respectively, and 
the results given by Butler et al. (1978) for E7 • 

Table 3. Some U1l2 -->- SU2 X E7 branching rules 

Dimension U112 Branching to 
[A[ irrep A SU2 xE7 

1 0 '0 
112 1 21 6 

6216 P 3(0+25f2)+'(21 6 +26 ) 

6328 2 '(0+2512)+3(21 6 + 26 ) 

227920 P 2(3521 +325 1 +27 + 16 ) +4(3423+ 16 ) 

240464 3 2(35 21 +325 1 +27 + 16) +4(36 +325 1 + 16) 

12543 21110 3(26 +21 6 +25 F+0) +'(26 +21 6 +25 P)A 

A The generators of U112 span this irrep. 

5. 6j Symbols 

The relevant 6j symbols for E7 have been given by Butler et al. (1978). In addition, 
6j symbols for the direct product groups SU6 x SU3 and SU2 x SU3 were required. 
These 6j symbols are simply products of those of the individual groups. The required 
6j symbols were calculated in a similar fashion to those for E7 using the orthogonality, 
Racah backcoupling and generalized Biedenharn-Elliott relations to construct sets 
of simultaneous equations which were then systematically solved. Very careful 
attention was given to the fixing of phases, ensuring that phase choices were made 
only when a clear freedom to choose them existed. 

In some instances nonlinear equations were obtained and it was necessary to find 
the roots of a quadratic equation. In these cases it was sometimes possible to use 
the duality between SUn and Sn to relate the required 6j symbol to an SU2 6j symbol. 
This allowed the correct root to be obtained with the phase being determined by 
the solution of the quadratic equation. 

The calculation of the 6j symbols was greatly facilitated by a computer program 
that constructs all the required equations. In the process of carrying out the calcula­
tions reported here several hundred 6'; symbols for SU6 and SU3 were evaluated. 
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6. 2jm Factors 

The 2jm factor is defined as (Butler and Wybourne 1976a) 

(A)aO' ,a '0' , = I A It I U l-t(O I Aau; A *a' u') , (8) 

giving the coupling of a representation and its complex conjugate to the identity 
irrep O. Here we use A to denote the irreps of a group G, and u the irreps of the 
subgroup H, with a being a branching multiplicity index. It follows from equation (8) 
that 

(A)aO',a'O" = (A)aO' ,a '0'. c50',0'. (9) 
and we have the symmetry 

(A)aO',a'O'. = <P;.<PO'(A*)a'O'.,aO'· (10) 

We find <P;. <PO' = + 1 for E7::> SU6 X SU3 and SU6 :::;; SU2 X SU3 whereas for SU3 ::> 

SU~x Ur we find <P;.<PO' = (_1)21. For the first two cases we can choose 

(A)aO',a'O'. = c5aa' 

with 
(A)aO',a'O'. = (A *)a'O'o.aO" 

(11) 

(12) 

remembering also that for E7 we have A == A*. In the case of SU3 ::> SU~ x Ur we 
have 

(A)aO',a'O'. = (-l)21(A *)a'O'o,aO" (13) 

For I integral there is no difference from the previous cases. If I is a half-integer 
we can still maintain equation (11) provided we sequence the au in a definite order. 

7. 3jm Factors 

A typical 3jm factor may be written symbolically as 

( A1 A2 A3 )' 

a1 U1 a2 U2 a3 U3 .' 

where rand s are product multiplicity indices for G and H respectively. The 3j symbols 
give the permutational symmetry relations for the 3jm factors: 

( Aa Ab Ac )" "{() , , '} {( -1) } (A1 A2 A3)' = ~ 11: 11.1 11.2 11.3 ,', 11: U 1 U 2 U 3 .'. • 

aaua abub acuc .' a1u1 a2u2 a3u3. 

(14) 

In all cases considered here an odd permutation results in at most a change of sign. 
In Table 4 below we use a right superscript plus or minus sign to indicate whether 
or not a given 3jm factor changes sign under an odd permutation. 

Under complex conjugation we have 

( A1 A2 A3 )r* = ~, (A1)alO'lal '0'1· (A2)a20'2a20'2· (A3)a30'3a3'0'3· 
al 'a2 "3 a1u1 a2 u2 a3 u3 s 

(
A* A* A*)' X 1 2 3 

, * , * , * a1u1 a2u2 a3u3 s 

. (15) 
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Comparison of equations (14) and (15) often indicates that a given 3jm factor is 
necessarily imaginary. For example, in the case of E7:::> SU6 X SU3 we find from 
equation (14) that 

( 16 16 216 ) (16 16 216 ) 
1.1 15.12 0.21 = - 15.12 1.1 0.21 ' 

whereas (15) gives 

( 16 16 216 )* (16 16 216 ) ( 16 16 216 ) 
1.115.12 0.21 = 15.12 1.10.21 = - 1.115.12 0.21 ' 

leading to the conclusion that this 3jm factor is imaginary. 
The 3jm factors satisfy the orthogonality relations 

'" I A3 I (Al A2 A3 )'* (Al A2 A3)' 
£.., TCTl = oa,a" 0a2a2' oa,a,' 0a2a2' 0 •• , (16a) 

A3a3 3 alCTl a2 CT2 a3 CT3 • aiCTi a~CT~ a3 CT3/.' 

and 

'" I A31 (Al A2 A3 )'*( Al A2 A~ )" 
£.., -ICT I = 0a3a3,OA3A3,orr" (16b) 

atO'tQ20'2S 3 , alCTl a2CT2 a3 CT3. alCTl a2 CT2 a3 CT3 • 

The orthogonality conditions give equations that will often yield the magnitudes of 
3jm factors and some phase information but by themselves cannot lead to a complete 
evaluation of the 3jm factors. 

Two further equations that relate the 3jm factors to the 6j symbols of the group G 
and its subgroup H playa crucial role in the calculation of 3jm factors. Firstly (Butler 
and Wybourne 1976a) 

'" (Al A2 A3 )'4 {Al A2 A3} 
£.., = L {J.tl)b,p,b, 'p,. (1l2)b2P2b2'P2· (1l3)b3P3b3'P3· 
'4 alCTl a2CT2 a3CT3 84 III 112 113 "'2'3'4 

( Al Il! 113 )" (Ill A2 Ilt )'2 (Ili 112 A3 )'3 {CT 1 CT 2 CT3} 

X al CTl b~ p! b3 P3., bl Pl a2 CT2 b; P;.2 bi pi b2 P2 a3 CT3 .3 Pl P2 P3 .'.20354' 

(17) 

where the right-hand summation is over all bib; PiSi (i = 1,2,3). It is convenient 
to rearrange the above equation to obtain the second equation 

L 1.&1 (Ili 112 A3 )'3* (Al A2 A3 )'4 Cl A2 A3) 
A3'3'4 I P31 , * . alCTl a2 CT2 b3P3 53 blPl b2P2 b3P3 54 1 112 113 "'2'3'4 

L cPp, cPa, (Il~)a, 'a,"a,a, (1l2)a2a2a2'a2· {J.t3)a3a3a3 'a3" 
0'38 182 

( ~ * )'1 ( ~ * )'2 { } X 1\1 112 113 III 1\2 113 Pl P2 P3 (18) 

blPl a~CT! a3CT3 " alCTl b2P2 a;CT; 52 CTl CT2 CT3 '152'3'4 
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The two equations (17) and (18) contain all the information that can be extracted 
from the orthogonality relations together with additional phase and magnitude 
information. 

The trivial 3jm factors that involve the identity irrep 0 in the group G follow 
immediately from equation (8) to give 

(A A* 0) 
aa a'a* 0 = +laltIAI-tJaa ,· (19) 

To proceed to the practical calculation of 3jm factors we first calculate the required 
6j symbols of the group G and its subgroup H. In the case of G only primitive 6j 
symbols are required while for H a somewhat larger set is needed. The trivial 3jm 
factors are then found via equation (19). 

The next stage is to systematically calculate the primitive 3jm factors (Butler and 
Wybourne 1976a). Here it is essential to give careful attention to the choice of phases 
associated with each primitive 3jm factor. Once these phases are chosen, those of the 
non-primitive 3jm factors are implied via equation (17). Some of the phases of the 
primitive 3jm factors may be freely chosen while others may not. These latter must 
be determined by use of equations (16)-(18). It is important to note that the ortho­
gonality relations alone do not give sufficent phase information. In fixing the phases 
of the primitive 3jm factors we note that there is a free choice for each new ket vector. 

The calculation of the primitive 3jm factors proceeds by first determining the per­
mutational symmetry of each of the 3jm factors followed by use of equation (15) 
to determine which 3jm factors are necessarily imaginary. The orthogonality relations 
are used to establish a set of simultaneous equations in the 3jm factors. In many 
cases these equations together with the phase freedom allow us to fix a number of 
3jm factors, but not all of them. Additional equations are required and these are 
found by a judicious use of equations (17) or (18). For example, the magnitude of 
the E7::::> SU6 X SU3 3jm factor 

( 
1 21 6)+ 

1.11.114.1 

was determined by first evaluating the 3jm factors 

(16 16 A) 
1.115.1 2 0.21 

and then choosing in equation (18) /11 = /12 = A1 = A2 == 16, /13 == 21 6 and a1 = 

ai = P~ = P2 == 1.1. This choice then made P3 == 0.21 and a3 == 14.1, leading to 

I( 16 16 21 6 )+1 2 

1.1 1.1 14.1 = l353' 

Since the 121 6,14.1) ket arose here for the first time, we used our phase freedom to 
fix the 3jm factor as real and positive. This then allowed the magnitudes of all the 
remaining primitive 3jm factors to be immediately determined. Where a phase 
freedom existed it was chosen. The remaining phases were found by again making a 
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3jm factor Value 
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Table 4 (Continued) 

3jm factor Value 3jm factor Value 3jm factor Value 

(c) SU3 ::> SU~ x Ur 
( O~O 

0 
o r l 

0.0 0.0 2 

(~\ /~t o r v't (O.~t 
l' 

o r v't 0.0 o·t 0.0 

(t~t /~t 21 r tv'i (t~t t.l~t 21 r tiv'6 (O.~t 
l' 21 r -tv't 0.0 1.0 o·t 0.0 

( I l' 21 r t (O.~ j t.l~t ;1 r 1 
1 1 o·t t·-l 

., 
2'3 .,.1 

( t~t 22 r v't (t~t o·-t 
22 r v't (O.~t O.~t 2 r v'i 1 1 1.-1- 1 1 o·t 2'3 2'3 

( 21 21 
o r 1 ( 21 21 

o r tv'6 ( 21 21 
o r tv't t·1 l-1 0.0 

., 
1.0 1.0 0.0 0.0 0.0 0.0 

( 21 21 21 )1- ( 21 21 21 r+ 0 0.0 -j-.J /0 0.0 0.0 0.0 0.0 0.0 

( 21 21 21 )1- ( 21 21 21 r+ 
1.0 1.0 0.0 

0 
1.0 1.0 0.0 tv' >'0 

( 21 21 21 )1+ 1 ( 21 21 21 r- 0 
1.0 1.0 1.0 T 1.0 1.0 1.0 

( 21 21 21 )1+ 1 • ( 21 21 21 r- _lv'l 
II j-.-l 0.0 

-41 
t· 1 t·-l 0.0 4 5 

( 21 21 21 r- 1 ( 21 21 21 r+ tiv't II t·-I 1.0 4 t·1 t·-I 1.0 

judicious use of equation (18), arriving at the important result that the phases of the 
3jm factors 

(16 16 21 6 r C6 
1
6 

21
6 r and 

13.013.0214.0 1.115.12214.0 

must be chosen to be of opposite sign. Such a result would not be implied by simple 
use of the orthogonality relations (16). 

With the primitive 3jm factors evaluated, it is a comparatively simple task to 
calculate the non-primitive 3jm factors by use of equation (17). Each non-primitive 
3jm factor is calculated separately and then the resulting sets of 3jm factors are checked 
by demanding that they form orthonormal sets. 

The 3jm factors evaluated for E7 ::> SU6 x SU3 are given in Table 4a while those 
for SU6 ::> SU2 X SU3 and SU3 ::> SU~ x ui are given in Tables 4b and 4crespectively. 
These tables suffice to calculate the matrix elements of all the generators of E7 within 
the fundamental and adjoint irreps of E7 • 

8. Matrix Elements of E7 Group Generators 

With the 2jm and 3jm factors determined it is a comparatively simple task to use 
the Wigner-Eckart theorem (Butler 1975) to calculate the matrix elements of the group 
generators. The symmetry classification of the group generators has already been 
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considered in Section 3. The group generators will be necessarily diagonal in the 
E7 irreps but will not be so in the subgroup irreps. 

If Qt is a tensor operator belonging to a tensorial set Q\ where A labels an irrep 
of the group G, and i the components of the irrep, then it follows from the Wigner­
Eckart theorem that 

(Xl ..11 il I Qt I X2 ..12 i2) = ~ (Al)hh'(~! ~ ~2)r (Xl ..11 II QAr II X2 ..12) , (20) 

'1 , '2 
where (Xl ..11 II QAr II X2A2) is a reduced matrix .. 

Table 5. Reduced kets 

E7 SU~lXSU~ SU1f.xSUt.] Reduced E7 SU~lXSU~ SU1f.xSU~l Reduced 
irrep irrep irrep ket irrep irrep irrep ket 

16 P.O 40 IUO) 21 6 214.0 30 IVB3O) 
221 IU21) 321 IVB321) 

121 I VB121) 

1.1 21 IQ21) 0.21 10 IG1O) 

Is .P 2p IQ212) 14.1 31 11.'031) 
122 I[Q122) 

P.P 3p ILQ312) 
12 ILQ12) 

Consider now the case where we have an operator QAau that is a tensor operator 
with respect to the group G and its subgroup H. Applying the Wigner-Eckart theorem 
to both groups (Butler 1975), we obtain 

(Xl ..11 al Ul II QAauSl1 X2 ..12 a2 (2) 

= L (Al)a1ul.al'U'.( AT A A2)r (Xl ..11 II QAr II X2 ..12), (21) 
r ai uT au a2 U2 s 

This result can be used along an entire group chain. The dependence of the matrix 
elements on the various subgroup irreps is fully contained in the relevant group­
subgroup 2jm and 3jm factors. 

There are 133 group generators for E7 and clearly a table of the matrix elements 
of these generators even for just the 16 and 21 6 irreps would be very large. In order 
to restrict the size of the tabulation we shall assume that the Wigner-Eckart theorem 
has been used to factor off the dependence on the SU~ x Ur subgroups of the SUfi 
and SU~ groups and the U1 subgroup of the SU~ group. The present calculation 
has thus been reduced to the calculation of the SU~ x SU~I X SU~ reduced matrix 
elements, for which we introduce a set of reduced kets to describe the ket states 
associated with the group-subgroup chain 

E7 => SU~I X SU~ => suf X SU~I x SU~ . (22) 

These reduced kets are fully specified in the fermion sector (i.e. in the (16) irrep of 
E7 ) and the boson sector (i.e. in the (21 6) irrep of E7 ) by specifying the appropriate 
SU~ x SU~I irrep together with a descriptive label indicating whether the ket 
corresponds to a lepton (L), quark (Q), vector boson (VB), gluon (G) or leptoquark 
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(LQ), as shown in Table 5. The reduced ket labels serve equally as well to designate 
the reduced operators corresponding to the group generators of E7 • An example 
of a typical SU~ x SU~l X SU~ reduced matrix element would be 

(L221II VW21 II L22l)1' (23) 

where here the subscript 1 is a product multiplicity index for the SU~l product 
21 x 21 x 21. An expanded description in accord with the breakdown (22) would be 

(1613.022111216214.0121111613.0221)1 (SU~XSU~lXSU~). (24) 

(Note that in both descriptions (23) and (24) the SU~ label at the SU~ x SU~l X SU~ 
level has been suppressed because all states are colour singlets.) 

To obtain the actual matrix elements of the generators of E7 in the fermion or 
boson sectors it is necessary to determine their dependence on the quantum numbers 
(I, Y,Iz) for SU~l, (Ic, Yc, I~ for SU~, and Hz for SU~. 

The dependences of the matrix elements on the azimuthal quantum numbers I z , 

I~ and Hz all follow by noting that the matrix elements of a tensor operator kq in 
the angular momentum basis I IXJM) is given by (Judd 1963) 

(IXl J1 Mll kq I IX2 J2 M 2) = (-l)Jt -M, (IXl J1 II k II IX2 J2). ( Jl k J2 ) 

-Ml q M2 
(25) 

The 3jm factor can be readily obtained from tables (e.g. Rotenberg et al. 1959). 
The dependence of the matrix elements on I and Y follows by noting that if Ai 

labels irreps of the appropriate SU3 group then we have from equation (21) 

( IXl Al /1 Y1 II IXUYI! IX2 A2 12 Y2) 

(
Ai A A2)r 

= L (Al)I,Y"I,-y, (IXl Al II IXAr II IX2 A2)' 
r / 1 , - Y1 I. Y 12 , Y2 

(26) 

The 3jm factors this time may be found in Table 4c. Thus we have given all the 
information required to calculate the matrix elements of all the generators of E7 in 
the fermion and boson sectors. 

For illustration let us calculate the SU~ x SU~ x SU~ reduced matrix element (23). 
To do this we are required to fix the normalization of the group operators, which 
we do by choosing below the corresponding E7 reduced matrix elements (1 6 II 21 6 111 6). 

Consider the E7 generator I z • Since I z is a generator of SU~l, SU~" SU~ and ui, 
it transforms as the adjoint irrep of each of these groups. I z is scalar under the other 
groups SU~, SU~ ui, and their various subgroups, and thus transforms like the ket 

21 6(E7 ) 

214(SU~1) O(SU~) 

O(SU~) 21(SU~1) 

O(U~') I(SUD O(UD O(SUn O(Urc) 

O(Ui') O(Ui'c) 
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From the list of reduced kets in Table 5 we see that /z transforms as one. of the set 
of partners 1 VB121). . 

The action of the operator /z on any ket is known, its eigenvalue being the value 
of /z of the ket. Take as an example a particular 1 of the 1 L221) set. We have 

16 216 16 

13 • 0 214 . 0 13 . 0 

1 = ( 1- .21 o .21 1- .21 

1-.1 .. 0.0.0 0.1.0.0.0 1-.1.0.0.0 

0 0 0 1 0 

= I (1 6)1 3 .0,1 3 .0 (1 3)221.221 (0)0.0,0.0 H)t,-t (21)1.0,1.0 (1)1,-1 
r 

(
16 21 6 16 )( 13 214 13 ) 

X 16 21 6 116) (II 1 13.0214.013.0 221121221 r 

( 0 0 0)( t 0 -!-)( 21 21 21 )r( 1 1 1) 
x 0.00.0 0.0 -t 0 t 1.0 1.0 1.0 -1 0 1 

1 6 6 6 
21y'(3 .133) (I 1121 111), (27a) 

that is, we have 
(16 11216 111 6) = -y'(3.133). (27b) 

In obtaining the value of this reduced matrix element we could equally have 
employed the irrep tensor operators Hz of sUIf or /~ of SU~c and arrived at different 
numerical values. However, the renormalization of tensor operators is completely 
arbitrary and the above value may be chosen; a proviso being that we adhere to 
this choice in subsequent calculations. In a completely analogous fashion the E7 
reduced matrix element (21 6 11216 11216) can be determined as 3y'(6.133). 

The suIf x SU~l x SU~ reduced matrix elements for the generators of E7 can be 
readily evaluated. An example would be: 

(L221 II VB121 II L221)1 = (1613.022111216214.0121111613.0221)1; 

by equation (21), the right-hand side becomes 

(1 3)221221 (1613.011216214.0111613.0), (
13 214 13 ) . 

, 221 121 221 1 

and use of equation (11) and Table 4b gives this as 

2y' 325 (1613.011216214.0111613.0); 

then by equation (21) again we have 

( 
16 216 16 ) 

2y'325(16)13 .0,1 3 .O 13.0214.013.0 (1611216 1116), 
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Table 6. Nonzero reduced matrix elements of E7 generators 
Where a product multiplicity r arises in the SU3 subgroup, the value of r is given as a right subscript 

attached to the value of the matrix element 
(a) Fermion sector 

VB30 jL4 O) jL221) jQ21) jQ212) VB321 JUO) jL221) jQ21) jQ212) 

(L4 Oj r ~10 
1 

(L4 Oj [ 4J2 ~,] (L221j -2~2 (L221j -4~2 -4~5o 
(Q21j l -3 (Q21j -fj~2 

(Q2Pj -3 (Q212j 

VB121 jL4 O) jL221) jQ21) jQ2P) G10 jL4 O) jL221) jQ21) jQ2P) 

(UOj 

[ ~J 
(UOj 

[ Ml 
(L221j 4~31 . (L221j 
(Q21j -2i~6 (Q21j -4i~3 

(Q212j (Q2Pj 

L031 JUO) jL221) jQ21) jQ2P) LQ122 jL4 O) jL221) jQ21) jQ2P) 

(UOj 

[ ~ 6 1 
(UOj 

[ ~2l (L221j -6~2 (L221j 
(Q21j -fj~2 (Q21j -fj~2 

(Q212j -6~3 (Q212j -6~2 

LQ3P jL4 O) jL221) jQ21) jQ2P) LQ12 jL4 O) jL221) jQ21) jQ2P) 

(UOj 

[ ~ 
6 

~3l 
(L4 Oj 

[ ~2l (L221j -6~2 (L221j -fj~2 
(Q21j (Q21j 

(02Pj -fj~2 (Q2Pj -6~2 

(b) Boson sector 

VB30 jVB30) jVB321) jVB121) jG10) j(Q31) jLQ122) jLQ3P) jLQ12) 

(VB3Oj r -~3o 
(VB321j -4~6 
(VB121j 

(G10j 
(LQ31j 6~2 

(LQ122j 
(LQ3Pj 6~2 
(LQ22j 

VB321 jVB3O) jVB321) jVB121) jG10) jLQ31) jLQ122) jLQ3P) jLQ12) 

(VB3Oj r -4~6 -4~6 
(VB321j -4~15o 6~61 
(VB121j 6~61 

(G1Oj 
(LQ31j -fj~6 18 

([Q122j 18 
(LQ3Pj -6~6 18 
(LQ12j 18 
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Table 6b (Continued) 

LQ31 IVB3O> IVB321> IVB121> IG1O> ILQ31> ILQ122> ILQ312> ILQ12> 

<VB3OI 6./3 
<VB321I -6./6 18 
<VB121 I 6i./3 

<G1OI 6./6 
<LQ3 1 I 6./3 -6./6 -6i./3 -6./6 

<L(P22 I 18 
<LQ3PI 18 -18 
<LQ121 -18 

LQ122 IVB3O> IVB321> IVB121> IG1O> ILQ31> ILQ122> ILQ3p> ILQ12> 

<VB3OI 

r 
<VB321 I 18 
<VB121 I -6i./S 

<G1OI 12 
<LQ311 

l 
18 

<LQ1221 6i./S -12 
<LQ312 1 -18 
<LQ121 18 

LQ3P IVB3O> IVB321> IVB121> IG1O> ILQ31> ILQ122> ILQ312> ILQ12> 

<VB3OI 6./3 
<VB321 I -6./6 18 
<VB1211 -6i./3 

<G1OI -6./6 
<LQ31 I 18 -18 

<LQ122 1 -18 
<LQ3121 6./3 -6./6 6i./3 6./6 
<LQ121 18 

LQ12 IVB3O> IVB321> IVB121> IG1O> ILQ31> ILQ122> ILQ312> ILQ12> 

<VB3OI 
<VB321 I 18 
<VB1211 6i./S 

(G1OI -12 
(LQ31 I -18 

(:[Q1221 18 
(LQ3121 18 
(LQ121 -6i./S 12 

VB121 IVB3O> IVB321> IVB121> IG1O> ILQ31> ILQ122> ILQ312> ILQ12> 

<VB3OI 
(VB321I I 6./61 
(VB121 I 6./21 

<G1OI 
(LQ31 I 

l 
6i./3 

([Q1221 -6i./S 
(LQ3PI -6i./3 
<LQ121 6i./S 
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GIO 

<VB30I 
<VB3211 
<VB12ll 

<GIOI 
<[Q3 ll 

<[Q122 I 
<LQ3FI 
<LQ121 

P. H. Butler et al. 

Table 6b (Continued) 

IVB30> IVB32l> IVB121> IGIO> 1[<Pl> ILQ122> ILQ3l2> ILQ12> 

121 
6-./6 

6-./6 
-6-./6 

-6-./6 

whence we use equation (11), Table 4a and equation (27b) to finally obtain 

(L 221 II VB121 II L 221)1 = 4.J3. 

We attach to the numerical value of the matrix element the SU~l product multiplicity 
as a right sUbscript. This is important in the further use of the reduced matrix elements 
of the group generators. 

The reduced matrix elements of the generators of E7 are given in Table 6a for 
the fermion sector and in Table 6b for the boson sector. 

9. E7 Symmetrized Operators 

It is sometimes useful in developing models of symmetry breaking to construct 
operatorS that transform as tensor operators with respect to a group G and a chain 
of its subgroups. If these operators are constructed from products of the generators 
of G, they will have the property of preserving the irreps of G while at the same time 
coupling different irreps of the subgroups. Thus these operators will allow one to 
introduce a symmetry breaking in a given irrep of G without at the same time coupling 
the irreps of G. 

In the case of E7 , the generators can be regarded as forming the 133 components 
of a tensor operator T(216 ). The matrix elements of this tensor operator have already 
been evaluated. New tensor operators [T(21 6 ) T(21 6 )](J.) can be formally constructed 
from bilinear products of the group generators. These operators will be symmetric 
in the generators for (A) = (0) and (25 12). The operator rr(21 6) T(216)](0) will have 
matrix elements proportional to those for the second-order Casimir invariant for E7 
(Wyboume 1974). The reduced matrix elements of these operators may be found 
by noting that (cf. Butler 1975, equation 19.5) 

(Xl Al II [T(216 ) T(21 6 )](J.)r II X2 A2> 

= c5X1X2 c5J.IJ.2 1 AI! 4>1.1 {(12)A1216 Adr2r2,{(23)A1216 Adrlr1' 

x {(123)216216A}rr{:11
6 ~ :1]r2'or1r' 

x (Xl Ai II T(21 6 )r1 II Xl Ai> (Xl Ai II T(21 6 )r 2 11 Xl Ai), (28) 
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where there is a summation over repeated product multiplicity indices. If Al is 
identified with the fermion or boson irreps of E7 then the reduced matrix elements 
on the right-hand side of equation (28) follow from equation (27b) and we find 

{
216 A 216} 

(1 6 11 [T(21 6) T(2I 6 )](J.) II 16> = -15961 A It 
16 16 16 

for the fermion sector and 

{
216 A 216} 

(21 6 11 [T(2I 6) T(2I 6 )](J.) II 216> = 23941 A It 
21 6 21 6 21 6 

(29) 

(30) 

for the boson sector. The 6j symbols follow directly from the work of Butler et al. 
(1978). 

The eigenvalues of the operator [T(2I 6) T(2I 6)](O) may be placed into correspondence 
with those of the second-order Casimir operator 12 by writing 

12 = - ls.J133 [T(2I 6) T(2I 6)](O) , (31) 
with (Wybourne 1974) 

12 = (A, A+2g), (32) 

where A is the highest weight of the E7 irrep and 2g is the sum of the positive roots 
of the E7 Lie algebra. The eigenvalues of 12 may be read from Table 1 of Wybourne 
and Bowick (1977) by noting that the eigenvalues of their Dynkin index B(A) are 
related to those of 12 by 

12 == t,J133 B(A)/N(A) , (33) 

where N(A) is the dimension of the E7 irrep (A). 
The other symmetric bilinear operator [T(2I6)T(2I 6)](2 512) has couplings both within 

the fermion sector and in the boson sector. These matrix elements can be found by 
using equations (29) and (30) to calculate the E7 reduced matrix elements together 
with the tables of 3jm factors. We note that the (2512) irrep, also often designated 
as the 1539 irrep, has been used as a possible candidate for the Higgs field to give 
superheavy masses to the leptoquarks (Ramond 1977; Sikivie and Gtirsey 1977). 

An operator having eigenvalues proportional to those of the sixth-order Casimir 
invariant of E7 can be constructed by first constructing the tensor operator 

U(26) == [[T(2I6) T(21 6)](2 5 1 2 ) T(2I6)] (26) (34) 
and then the operator 

[U(26) U(26)](O) • (35) 

The E7 irrep (27) (often designated as the 912 irrep) has also been considered as 
a candidate for the Higgs field to give superheavy masses to the leptoquarks (Ramond 
1977; Sikivie and Gtirsey 1977). It is interesting to note that to construct a tensor 
operator transforming as (27) from the group generators of E7 we must go to operators 
that are certainly higher than third order in the generators. Of course such an operator 
will necessarily be null in the fermion and boson sectors. 
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10. Concluding Remarks 

The 3jm factors given here have been systematically evaluated, paying unusual care 
in the assignment of phases. The entire calculation has been made within a particular 
E7 group chain, avoiding the need to resort to Gelfand basis states as is frequently 
done. The calculations required a knowledge of the character theory of the relevant 
group chain and little more, other than the dimensions of the group representations. 
There would be little difficulty in extending the tables to include other E7 triads such 
as {16,216,26} and {16,21 6,325 1} or to obtain 3jm factors for the triads {A1AzA3} 
where Ai = 16,216,26 or 251z. The necessary character theory already exists. 

The examples we have discussed expose most of the problems that arise in the 
evaluation of 3jm factors and encourage the view that it is comparatively simple to 
evaluate 6j symbols and 3jm factors directly in the physical group structure without 
transforming to nonphysical canonical group structures. 

The 3jm factors given here are fully symmetrized and permit full use of the Wigner­
Racah calculus to be made. These 3jm factors have been used to compute the matrix 
elements of the generators of E7 in a particular basis for the fermion and boson 
sectors. It does not appear difficult to obtain the results for other bases. The calcula­
tions reported here will form the basis for a more detailed study of symmetry breaking 
in E7 models. 
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