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Abstract 

The penetration of plasma sheaths for spherical probes in a slightly ionized continuum plasma has 
been computed for values of 8 (the ratio of ion to electron temperature) of 0·01 and 1·0 with pp 
(the ratio of probe radius to plasma Debye length) set at 5, 10, 20 and 30. Values of the potential 
drops at the sheath boundaries are presented. 

Introduction 

Electrostatic probes have become indispensable diagnostic tools for determining 
plasma properties. In the simplest form, a probe biased at a certain potential is 
inserted into a gaseous discharge and a plot is made of the probe current versus probe 
voltage, from which local parameters of the plasma can be calculated. This is in 
contrast to many other diagnostic methods which give values averaged over a large 
volume, e.g. microwave techniques (Huddlestone and Leonard 1965). Single, double 
and triple probe methods have been used, with particular advantages claimed for 
each. 

Currently, much interest lies in the high pressure region (> 1 torr; i.e. > 133 Pa) 
where collisions cannot be neglected (UI'yanov 1970, 1978). Collisional theory 
applies to those cases where the mean free path of the particles is much smaller 
than the sheath thickness. Particles entering the probe sheath are influenced by the 
probe potential, and it is thought that the collisions they experience produce random 
walks up to within one collision path from the probe (Cozens and von Engel 1965). 
A different type of collection occurs in low pressure plasmas; here only the high 
energy particles capable of overcoming the retarding potential are collected. High 
pressure theories can be classified as either general, continuum or continuum plus 
free fall. All three cases are complicated because there is no simple equation of 
motion for the particles at high pressure. 

Although probe measurements are simple experimentally, the underlying theory 
is complex because of the many factors to be considered. Progress in plasma theory 
has been impeded by the lack of computational techniques for solving nonlinear 
differential equations. Detailed analyses have been restricted to approximations and 
limiting cases only, leaving a great amount of extrapolation necessary for experimen­
talists working in the field of plasmas. Recently, we have demonstrated by use of 
iterative techniques (Dorman and Hamilton 1977a) that an analogue computer 
(Hamilton 1975) is ideal for examining boundary value problems, particularly those 
describing plasma behaviour. The computer used in our studies permitted an investi­
gation of Cohen's (1963) continuum theory. Dorman (1973) demonstrated how the 
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continuum equations could be solved numerically using Runge's method. About 
the same time, Yastrebov (1972) solved the continuum equations in a manner similar 
to Dorman. Both authors commenced integration at the probe surface and varied 
the initial conditions of the equations until the curve of the sheath solution joined the 
curve of the quasi-neutral solution smoothly. Such methods were tedious and few 
cases were solved, thus restricting further investigation of the sheath region. Barad 
and Cohen (1974) extended Cohen's (1963) earlier work by numerically solving some 
cases of spherical probes in a moderately ionized plasma. This theory further compli­
cates the continuum equations because transport coefficients vary with position in 
the plasma. The limiting case of large Debye length was examined and solved by 
Chang and Laframboise (1976). An extension was made of Cohen's theoretical probe 
current-potential characteristics (limited to a ratio of probe radius to plasma Debye 
length of Pp > 50) to lower values of Pp (Dorman and Hamilton 1977b). The results 
led to an examination (Dorman and Hamilton 1976) of existing theories, particularly 
the use suggested by Huddlestone and Leonard (1965) of an ion shielding factor in 
determining physical parameters such as charged particle concentration, kinetic energy 
and electron temperature. 

Boyd (1951) calculated the potential distribution around a spherical probe, assuming 
the sheath radius to be known. From this, he was able to compute the current of 
positive ions to the probe. The potential around the probe was separated into four 
regions: (i) the sheath, close to the probe, where the ion concentration n+ is much 
greater than the electron concentration n_; (ii) the abnormal extra-sheath region; 
(iii) the normal mobility region, where n+ = n_; (iv) the undisturbed region. Only 
electronegative probes were considered, so that the electron current J _ could be 
ignored. Although Boyd's treatment of the regions has been criticized by Cohen 
(1963), because of the difficulty in matching the boundaries, it was shown by Dorman 
and Hamilton (1976) that the use of Sena's (1946) equation for the ion velocity in 
the abnormal extra-sheath region is valid over a certain region. It was the present 
author's opinion that ions do move to the probe by an ion exchange mechanism, 
but that the resulting changes due to mobility dependence on the continuum equations 
would make computations extremely difficult. This paper demonstrates the calculation 
of sheath thicknesses for different probe potentials yp and the parameter Pp' for various 
values of the ratio, e of ion temperature T + to electron temperature T _. 

Basic Equations 

For a slightly ionized ( < 1 %) gaseous plasma at a pressure p ;;;: 1 torr, the differ­
ential equations describing particle concentration and potential are, as stated by 
Cohen (1963), 

edn+/dC -n+dy/dC = -eJ+, 

dn_/dC +n_ dy/dC = -J_, 

(C4/p~)d2y/dC2 = n+ -n_, 

with the boundary conditions 

y = 0, n+ = n_ = 1 ; 

y=yp' n+ =n_ =0. 

(1) 

(2) 

(3) 

(4a) 

(4b) 
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Here n± is the normalized positive ion or negative electron concentration; ,= rp/r 
is the ratio of probe radius r p to radial distance r from the probe centre; J ± is the 
normalized ion or electron current received by the probe; y is the normalized potential, 
withy = yP at the probe surface; and pp = rp/Ao and c: = T+/T_, as defined above 
(Ao being the Debye length for electrons). 
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Fig. 1. Scaled (to 100 V) curves of n±, Y and dy/dR versus R, ob­
tained on an analogue computer. The quasi-neutral solutions are 
shown by the dashed curve for n and by the chain curve for y. 
When R = 1·46 we have n+ -n_ = 0·01 (Boyd's (1951) criterion). 

It was convenient to change the independent variable, to R = C 1 for use on 
the computer; thus equations (1)-(3) become 

dn+/dR = e- 1(c:J+/R2 +n+ dyjdR), 

dn_/dR = J_/R2 -n_dy/dR, 

d2y/dR2 = p;(n+ -n_) -2R-1 dy/dR, 

with the boundary conditions 

R = 00, y = 0, 

R = 1, 

(5) 

(6) 

(7) 

(8a) 

(8b) 

Graphs of potential and of ion and electron concentrations were presented by Dorman 
and Hamilton (1977a). 
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Calculation of Sheath Thickness 

Fig. 1 shows the computer curves of n±, Y and dy/dR versus R for 8 = 0'01, 
y" = 2·42 and Pp = 12·7. 

To determine the sheath thickness As it is necessary to extrapolate slightly, for 
each computer curve (approximately 100 altogether), the curves for n+ and n_ along 
the quasi-neutral line (Dorman and Hamilton 1977a). The criterion for the position 
of the sheath edge is an arbitrary one, but Boyd's (1951) criterion n+ -n_ = 0·01 
is adopted here. From each computer plot the distance R and hence' is determined, 
where n+ -n_ = 0'01, this being the sheath thickness. The Debye length AD is 
calculated from the ratio of probe radius rp to Pp (four different values of Pp were 
used). With knowledge of the sheath thickness it is also possible to determine the 
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Fig. 2. Ratio of the sheath thickness As to Debye length AD versus the normalized potential YP at 
the probe surface for four values of pp and 8 = 0·01 and 1·0. 

potential drop across the sheath, since the initial value of yp is known fot each com­
puter plot. The potential is read from the computer plot and subtracted from the 
initial value, enabling the value to be expressed as a percentage. 

Results and Discussion 

Fig. 2 shows graphs of As/AD versus yp for Pp = 5, 10, 20 and 30 with 8 = 0·01 
and 1· O. The percentagt: potential drop across the sheaths for these cases is plotted 
in Fig. 3. 
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(a) AsiAD versus yp 

Boyd (1951) defined a sheath edge as being that region near a probe where 
n+ -n_ = 0·01. Because of the difficulty in solving equations (1)-(3) above, other 
authors (e.g. Waymouth 1964) have assumed that the ratio of sheath thickness As to 
Debye length AD was typically 5-10. By extrapolating the computer curves it is now 

Fig. 3. Percentage potential drop across the sheath versus YP for the cases 
shown in Fig. 2. 

possible for us to be more precise. As can be seen from Fig. 2, there is little difference 
for various values of B; for B = 1·0 the ratio As/AD is about one more unit for a 
given Yp than for B = 0·01. The results quoted by Waymouth (1964) were for a 
free-fall sheath based on the Child-Langmuir law (equation 12.24 in the text by 
Brown 1966), so it can be said that values of AsiAD for both the collisional sheath 
and the collisionless sheath are comparable. 

It is informative to calculate the minimum number of collisions that occur within 
a sheath. Using the typical values for A_ (the mean free path of electrons) and As from 
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Dorman and Hamilton (1976) of 0·01 cm and 0·5 cm respectively, we see that at least 
50 collisions occur. The actual number would be greater because the charged 
particles do not move radially into the probe, especially at the sheath edge. 

The random walk model proposed by Cozens and von Engel (1965) can now be 
examined more closely with the aid of the computer curves. If particles exhibited 
purely random walk then equations (1)-(3) would not apply, and instead the particle 
concentration from the centre of the probe would approximately follow an inverse 
square law. Cozens and von Engel also claim that the energy distribution remains 
position independent, except for the last electron path. However, this would imply 
that there is no field penetration, and from our computer curves (Dorman and 
Hamilton 1977a) this is known to be incorrect. Also, the variation in sheath thick­
ness with potential cannot be explained by their theory. Nevertheless, random walks 
probably do occur farther out from the probe where potential gradients are small. 
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Fig. 4. Scaled (to 10 V) curves of n±, Y and dy/dR versus R, for 
e = 1· 0, yp = 3 and pp = 5. Note the absence of a clearly defined 
diffusion region near the probe surface (R = 1·0); cf. Fig. 1. 

(b) Potential Drop across Sheath 

Fig. 3 shows the potential drop across the different plasmas (probe to sheath). 
For the same yp, values of the potential drop were 5 % higher for B = 1· 0 than for 
B = 0·01. Since in practice double probes are usually at least 1 cm apart, and from 
the computer curves the potential at 1 cm distance was found to be less than 10 % 
of the maximum value, we can conclude that interference between probes is negligible. 
Waymouth (1964) claimed that the dimension of the region within which the quasi­
neutral plasma is disturbed is of the order of 20 r p' However, this value is rather 
conservative, since even at 10 r p the potential will have fallen to about 1 % of its 
initial value. 
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A basic assumption in the use of the continuum theory is that the diffusion coefficient 
and the mobility of the particles remain constant. As seen in Fig. 5 of Dorman and 
Hamilton (1977a), the potential gradients at the sheath edge and probe surface are 
20 and 40 V cm -1 respectively. Hornbeck (1951) has shown that the ionic mobility 
is approximately inversely proportional to the square root of the field strength at 
high fields. For 40 V cm -1 and a pressure of 1 torr, i.e. the worst case in the experiment 
performed by Dorman and Hamilton (1976), it can be seen from Fig. 1 of Frost (1957) 
that the positive ion mobility varies only 10 % between the undisturbed plasma and 
a point close to the probe surface. Higher pressure would result in a smaller mobility 
variation. The corresponding changes in the diffusion coefficient given by the Einstein 
relation are similar. 

(c) Diffusion Widths 

As shown by the computer curves (Fig. 1), the gradient of the positive ion curve 
(n+) is high across the diffusion region, whose width, to a first approximation, is of 
the order of one mean free path. Su and Lam (1963) determined the diffusion width 
to be of the order of e(l +e)tIlD; for e ~ 0·01 and Pp = 10, the diffusion thickness 
is 0·001 r p from their definition. In the present study, Fig. 5 of Dorman and Hamilton 
(1977a) was repeated with the solution time reduced by a factor of 10 in order to 
measure it more accurately. From the plot, the diffusion width was found to be 
0'0075rp, thus approximately agreeing with the Su and Lam definition. 

From Fig. 4 it can be seen that the diffusion region, when e ~ 1·0 with yp small, 
is not clearly defined because for these cases the high energy ions have a thermal 
energy comparable with the diffusion energy. However, cold ions gain little energy 
between collisions, and hence the potential drop across the last collision path is large. 
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