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Abstract 

Electron-cyclotron instabilities may be classified in two ways depending on whether the relativistic 
correction to the gyrofrequency is important (class S) or not (class N), and whether the instability 
mechanism is of a maser type (class M) or due to bunching (class B). Renewed interest in class SM 
has followed the Wu and Lee application of it to the interpretation of terrestrial kilometric radiation. 
The maser is assumed to be driven by a one-sided loss-cone distribution of electrons. This mechanism 
seems particularly favourable for the interpretation of certain planetary, solar and stellar radio 
emissions. 

The loss-cone driven SM instability is explored in detail here through numerical calculations of 
the growth rate and the development of a semi-quantitative theory for the maser mechanism. The 
numerical calculations are for a hot Maxwellian distribution with a hole in pitch angle IX; the distri­
bution falls off with pitch angle inside the loss cone IX > 1X0 (> tn) as a power of a sine function of 
1X-1X0. It is assumed that the dispersive properties of the waves are determined by a cold plasma 
(with frequency rop) and only emission in the x mode and the 0 mode above their respective cutoff 
frequencies is considered. The semi-quantitative theory involves the parameters 1X0 and the character­
istic range of IIX -lXo lover which the distribution falls off inside the loss cone !!.IX, the energy tmv~ 
and the number density nH of the energetic electrons, and the ratio rop/Q., with Q. the electron-cyclo­
tron frequency. 

The maser emission is possible at all harmonics s = 1,2, ... (ro ;::::: sQ.) and occurs just above the 
relevant harmonic. The maximum growth rate falls off with increasing s roughly as (Vm/c)2S sin2sIX0 
and is smaller for the 0 mode than the x mode by a factor ;:::::(Vm /C)2. The effective growth is confined 
to a narrow range of angles !!.() ;:S (vm/c)sin 1X0 about the surface of a cone with half-angle ()m ;::::: 
arccos(vm/c). The frequency range at fixed () is very narrow, with !!.ro/sQ. ;::::: (vm/c)2!!'lXsinIX0. Emission 
of the x mode at s = 1 is quite strongly suppressed (from what it would be for negligible rop) for 
rop/Q. ~ tvm/c, and is noticeably suppressed even for much smaller values of rop/Q •. 

An application of the mechanism to the interpretation of the Jovian decametric radio emissions 
is outlined. 

1. Introduction 

In the astrophysical literature over the past few years there has been renewed 
interest in electron-cyclotron maser emission in connection with the interpretation 
of certain planetary, solar and stellar radio emissions. The renewed interest was 
initiated by Wu and Lee (1979) who pointed out that when the Lorentz factor 
y = (1 _v2 jc2 )-t is approximated by y = 1 +v2 j2c2, the resonance condition 
OJ -sQejy -kll VII = 0 has qualitatively different solutions from the strictly non­
relativistic case y = 1. In particular, the equation becomes quadratic in VII and hence 
has two solutions rather than the single solution for y = 1. It is now recognized 
that the exact resonance condition corresponds to an ellipse in vrvil space (Hewitt 
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et al. 1981). The ellipse becomes highly eccentric for kU c2 ~ OJ2, when it may be 
approximated by the straight line vII = (OJ-sQe)/k ll , and it becomes nearly circular 
for OJ2 ~ q c2. Let us refer to these limiting cases as the· nonrelativistic (N) and 
semirelativistic (S) limits respectively. Electron-cyclotron maser emission in the S 
limit has some peculiar features which were not anticipated before the Wu and Lee 
discussion. These features include (a) the maser emission is above the cyclotron 
harmonic frequency, as opposed to below it in the N limit (Melrose 1973), (b) the 
emission may be confined to a narrow range of angles 0 and/or to a narrow frequency 
range, and (c) it can be driven by a distribution with a loss-cone anisotropy under 
surprisingly mild conditions. The fact that a loss-cone anisotropy can be set up 
readily whenever electrons precipitate from a magnetosphere or a magnetic trap 
suggests that this type of electron-cyclotron maser emission might be common in 
situations of astrophysical interest. 

In this paper we explore the loss-cone driven electron-cyclotron instability in 
detail for a specific analytic distribution of electrons. In particular we choose a 
Maxwellian distribution with a hole corresponding to a one-sided loss cone; the 
distribution varies as a power of a sine function of IX -IXO, where the pitch angle 
IX = lXo denotes the edge of the loss cone. Our main purpose is to elucidate and 
quantify the main features of this instability. To this end we also develop a semi­
quantitative theory which complements our detailed calculations. Before proceeding 
with this discussion let us place the present interest in S-type maser instabilities and 
their suggested applications in context. 

Cyclotron instabilities may be classified in two complementary ways. One is the 
classification Nand S introduced above. The other is into maser (M) mechanisms, 
which involve negative absorption, and bunching (B) instabilities, which occur for 
monoenergetic particles. This second classification corresponds to Briggs' (1964) 
'resistive-medium' and 'reactive-medium' instabilities respectively, and to the distinc­
tion between 'kinetic' and 'hydrodynamic' instabilities respectively in the Russian 
literature. There are thus four classes of cyclotron instability: SM, NM, SB and NB. 
We are concerned with SM instabilities. 

Class SM instabilities were amongst the first discussed in the literature by Twiss 
(1958), Schneider (1959) and Bekefi et al. (1961) (cf. also Bekefi 1966, p. 302). In 
these earlier discussions the resonance condition was artificially reduced to the form 
OJ -sQe/r = 0, either by assuming VII = 0, as done by Twiss (1958) and Schneider 
(1959), or by assuming perpendicular propagation kll = 0, as done by the other 
authors cited. The renewed interest in SM instabilities arose when the implications 
of relaxing this assumption were recognized by Wu and Lee (1979). The existence 
of the other classes of instability were also recognized around 1960; the class NM 
by Sagdeev and Shafranov (1960) (cf. also Stix 1962, p. 207), and classes NB and SB 
by Gaponov (1959a, 1959b respectively). The relation between NM and NB instabili­
ties was discussed by Melrose (1973), that between NB and SB by Sprangle and 
Drobot (1977) and Chu and Hirshfield (1978), and that between SM and SB by 
Winglee (1982). Broadly speaking, NM instabilities apply to the growth of waves 
in magnetized plasmas due to anisotropic distributions of particles, and SB instabilities 
to laboratory gyrotrons. 

The suggested astrophysical applications of SM instabilities are to the Jovian 
decametric radiation (DAM), to the terrestrial kilometric radiation (TKR) and anal­
ogous radiation from Saturn (SKR), to solar microwave spike bursts and to bright 
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radio emission from some flare stars. Earlier cyclotron theories for DAM included 
examples of NB and SB instabilities (see e.g. Ellis and McCulloch 1963; Ellis 1965; 
Fung 1966; Goldreich and Lynden-Bell 1969) and ofNM instabilities (see e.g. Chang 
1963; Goldstein and Eviatar 1972, 1979; Melrose 1973, 1976). Parenthetically we 
remark that although Goldstein and Eviatar (1972, 1979) considered a loss-cone 
driven NM instability for directly escaping radiation, this work contained an error 
(Goldstein and Goertz 1982) and the existence of loss-cone driven NM instabilities 
for k ~ wle is unproven. There was also an earlier suggestion of an SM instability 
for DAM by Hirshfield and Bekefi (1963), but their assumptions of perpendicular 
propagation, isotropic electrons and no cold plasma were unrealistic. One of the 
particularly favourable features of the loss-cone driven SM instability for the inter­
pretation of DAM is the predicted emission on the surface of a hollow cone (Hewitt 
et al. 1981). There is strong observational evidence for such an unusual emission 
pattern both from Earth-based observations (Dulk 1967) and from the nested-arc 
pattern observed from VOYAGERS 1 and 2 (see e.g. Goldstein and Thieman 1981). 
TKR has some properties similar to those of DAM and is known to correlate closely 
with 'inverted-V' precipitating electrons. Recently, observational data on such elec­
trons have been used to determine the distribution functionf(p .l,PII)' which has then 
been used to calculate the growth rate for the SB instability (Melrose et al. 1982; 
Omidi and Gurnett 1982; Wu et al. 1982). It has been shown that an observed one­
sided loss-cone feature due to reflected electrons is capable of driving the instability 
as proposed by Wu and Lee (1979) (cf. also Lee et al. 1980; Lee and Wu 1980; Wu 
et al. 1982). An important detail is that the instability requires a plasma frequency 
wp much less than the electron-cyclotron frequency De, and this inequality is satisfied 
in the source region for TKR (Benson and Calvert 1979). The suggested application 
of SM instabilities to solar spike bursts was proposed by Holman et al. (1980) and 
has been discussed in more detail by Melrose and Dulk (1982a, 1982b). 

In Section 2 we review the geometric interpretation of the resonance condition in 
terms of a resonant ellipse and point out why a loss-cone distribution is particularly 
favourable for wave growth. In Section 3 we report the results of our numerical 
calculations of the growth rate. We consider the growth rate as a function of (a) 
angle e, (b) frequency and (c) steepness of the distribution within the loss cone. We 
discuss both the x mode and the 0 mode at s = 1, and also the x mode at s = 2. In 
Section 4 we consider the implications of the existence of 'boundary curves' in w-e 
space defined by the vanishing of the resonant ellipse. In Section 5 we discuss the 
effect of a variation in wp/De and provide a qualitative interpretation of a suppression 
which occurs for the x mode at s = 1 when wp/De exceeds a quite modest value. In 
Section 6 we develop a semi-qualitative theory which is consistent with our numerical 
results and which offers a physical interpretation of several important features of 
the maser emission. In Section 7 we discuss one application, specifically to DAM, 
to illustrate the use of our results. 

2. Resonant Ellipse and Growth Rate 

In this section we present the geometric interpretation of the resonance condition 
in terms of a resonant ellipse, following Hewitt et al. (1981). We then summarize 
the relevant wave properties, write down a formula for the growth rate arid comment 
on several of its features, 
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(a) Resonant Ellipse 

The resonance condition 

(1) 

with y = (1 _v2Ie 2)-t corresponds to an ellipse in v.L-vll space. (Actually the physical 
curve is a semi-ellipse restricted to V.L ~ 0, but for simplicity we refer to it consistently 
as an ellipse.) The ellipse is centred at 

ville = wkll el(kn e2 +s2Q;) , v.Lle = 0, (2a, b) 

and has an eccentricity 

e = {kIT e2/(kIT e2 +s2Q;)}t, 

and semi-major axis, parallel to the V.L axis, 

Vie = {(kIT eZ +S2QZ -w2)/(kTI e2 +s2Q;)}t. 

(3) 

(4) 

The nonrelativistic (N) and semirelativistic (S) approximations are relevant only 
in the region v21e2 ~ I and correspond to e ~ I and e ~ ° respectively. In the S 
limit the ellipse may be approximated by a circle centred at 

ville = kll elw, v.L/e = 0, (5a,b) 

with radius 

V 
(6) 

e 

Note that the position and shape of the resonant ellipse is uniquely determined by 
specifying sQ., wand kll' For waves in any given mode, the dispersion relation 
determines kll in terms of wand e. Hence, once wand e are specified, the resonant 
ellipse at each harmonic s is determined. In practice there is only a localized region 
of V.L-V II space in which the conditions for wave growth are favourable, and the waves 
which grow are those whose resonant ellipses lie entirely or predominantly within this 
region. 

(b) Wave Properties 

We are concerned with waves which can escape from the plasma. These are the 
magnetoionic waves in the 0 mode at w > wp and in the x mode at w > wx' where 

Wx = -!Q.+!(Q;+4w~yl:. (7) 

These waves have a refractive index less than unity, and hence I kll elw I < 1. 
The wave properties are given by (Melrose 1980b, p. 258): 

2 XT" ncr = 1- , 
T" - Ycose 

T" = - u(x2 + 1)t - X , 

X = W 2/W 2 p , 

XY sin e T" 
K = --- ____ --=----= 

" 1 - X T" - Y cos e' 
x = Ysin2eI2(1-X)cose, 

Y = De/w, 

(8a, b) 

(8c, d) 

(8e,f) 

where u labels the mode, with u = 1 for the 0 mode and u = - 1 for the x mode, 
ncr is the refractive index, and K" and T" describe the polarization of the waves. 
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(c) Growth Rate 

A general formula for the growth rate at the sth harmonic for waves in the magneto­
ionic modes is (Melrose 1980b, p. 275) 

(01)( f (01)( . / (SQe a a ) ) rs k) = dp As p,k)<>(w -sQe y -kll vII) --;- +kll -;- f(p1.,PII ' 
yv 1. up 1. up II 

(9) 

where 

A(u)( k)= 4n2e2vi jKuSinO+(COsO-nuVII/C)TuJ ,\2 (10) 
s p, wnu{o(wnu)jow}(l+T;) nu(V1.!c) sin 0 s +J s , 

with Js and J~ respectively a Bessel function and its derivative with argument 
(wjQe)niv 1.jc) sin O. 

Hewitt et al. (1981) showed that the triple integral in (9) could be reduced to a 
single integral around the circumference of the resonant ellipse. At each point on the 
circumference the sign of the integrand is determined by the sign of the sum of the 
two terms involving derivatives in (9). Growth requires that the net positive contri­
bution exceeds any net negative contribution around the ellipse. 

In the S limit one has I kill ~ wlc and with w::::; sQe the coefficient of the PII 
derivative in (9) is much smaller than the coefficient of the P 1. derivative. An SM 
instability therefore requires a/lap 1. > o. A loss-cone distribution has a deficiency or 
absence of particles with small sin rx, and hence is an increasing function of sin rx for 
small sin rx. This corresponds to being an increasing function of P 1. inside the loss 
cone. Waves corresponding to resonant ellipses which lie entirely within the loss 
cone then have a positive growth rate. The maximum growth occurs for that ellipse 
with the largest (weighted) integrated value of a/lap 1.. By implication any loss-cone 
distribution is subjected to an SM instability. The requirement that the frequency 
be greater than the cutoff frequency (w = wp for the 0 mode and w = Wx for the 
x mode) implies that electron-cyclotron maser emission is stronger for small values 
of wp/Qe when s = 1. 

3. Detailed Results 

In this section we summarize the results of numerical calculations for the growth 
rate (9) for the x mode at s = 1,2 and the 0 mode at s = 1. Throughout, the rate 
wp/Qe is fixed at 0·1 and the loss-cone angle at rxo = 1500 (these assumptions are 
relaxed in Sections 5 and 6 respectively). Relativistic effects are ignored except in 
the resonance condition. 

The distribution function chosen is Maxwellian with a hole: 

with 

gN(rx)=aN, rx~rxo, 

= aN[sin{tn(n-rx)/(n-rxo)}t, rx > rxo. 

(11) 

(12a) 

(l2b) 

In (11), nH is the number density of the hot electrons and is assumed much less than 
the number density nc of the cold electrons; thus we have w; = nc e2 leo m. Specifically 
it is assumed that the cold electrons determine the dispersive properties of the waves 
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and the hot electrons determine their absorption or growth rate. The parameter N 
in (12) determines the steepness of the edge of the loss cone, with large N corresponding 
to f dropping rapidly to zero just inside the loss cone. The normalization coefficient 
aN is close to unity for all cases of interest, as shown by the following tabulation for 
all values of N used in the detailed calculations: 

1·30 
2 

2·06 
3 

2·57 
4 

2'94 
5 

3·24 
6 

3·47 

We approximate aN by unity in our detailed results, which leads to errors of only a 
few per cent. 

The growth rate is proportional to nH. Our results are for the specific numerical 
values nH = 1013 m- 3 , nc = 1015 m- 3 and Qe/2n = 3 GHz. However, the growth 
rate may be plotted as a fraction of Qe and then the functional dependence involves 
only the ratios nH/nC, wp/Qe and w/Qe • The other parameters are chosen to be 
T = 108 K and N in the range 1 to 6. 

(a) x Mode at s = 1 

The variation with wand e of the growth rate for the x mode at the fundamental 
s =·1 is illustrated in Figs 1-3. In Fig. 1 a selection of e values is chosen and r is 
plotted asa function of w. To illustrate the variation with () the maxima of the curves 
in Fig. 1 are plotted against e in Fig. 2. In Fig. 3 a specific angle is chosen and the 
dependence of the steepness of the distribution function inside the loss cone is illustra­
ted by plotting r as a function of w for N = 1, 3 and 6. The resonant ellipses at 
which the maximum growth rates occur are shown in Fig. 4. 

Note that there isa double peak in one of the curves for the smallest angle () = 105° 
in Fig. 1. This maybe attributed to there being two regions of growth at this angle, 
corresponding to two values ofkrr C2/W 2• The main peak is for the larger value of 
this quantity. Similar narrow peaks occur near the cutoff frequency for other angles 
of propagation, but cannot be shown in Fig. 1 because all the narrow peaks overlap. 
In the following discussion we concentrate almost exclusively on the peaks at the 
greater frequency. 

(b) 0 Mode at s = 1 

For the 0 mode at s = 1 the growth rate has very similar properties to the x mode 
at s = 1. This maybe seen by inspection of Figs 5-7, which are the counterparts of 
Figs 1-3 for the 0 mode rather than the x mode. The most notable change is that the 
growth rate for the 0 mode is smaller than that for the x mode by a factor of about 
ten. One expects this to be the case because the handedness of a spiralling electron 
is the same as the handedness of an x mode wave (at w > w x) and opposite to that 
of an 0 mode wave (at w > wp). A semi-quantitative discussion of this point is given 
in Section 6e below. 

There is no double structure in any of the peaks for the 0 mode, or for the x mode 
at s ~ 2 (see Fig. 8), because we have k 2 c2 /w2 ~ 1 throughout the regime of interest. 
The resonant ellipses for the 0 mode and for the x mode at s ~ 2 are similar to those 
shown in Fig. 4. The maximum growth occurs for smaller ellipses closer to the origin 
than for the x mode ~t s = 1; this is due to the suppression effect discussed in Section 
5. 



Electron-<yciotron Maser 453 

(c) X Mode at s = 2 

The growth rate for the x mode at s = 2 is shown in Figs 8-10, which are analogous 
to Figs 1-3. The most notable change from s = 1 to s = 2 is the drop in the magni­
tude of the growth rate by a factor of ~ 102 • The explanation for this is straight­
forward. It is well known that for nonrelativistic particles the strength of the gyro­
magnetic interaction varies with s as {naCvol/e)sinOV·. Inspection of Fig. 4 shows 
that one has Vol/e ~ 0·1 for the relevant resonant particles, and with nx ~ 1 and 
sin 0 ~ lone would predict a drop by a factor of ~ 10 - 2 with an increase in s of 
unity. Otherwise the second harmonic (as a function of w/2D.) is similar to the 
fundamental (as a function of w/D.). An exception is a suppression effect for the 
fundamental (see Section 5). 

4. Boundary Curves 

As a first step in interpreting the foregoing results qualitatively and semi-quantita­
tively, we consider the 'boundary curves' defined by V = 0, i.e. by the vanishing of 
the semi-major axis of the resonant ellipse. The resonant ellipses in Fig. 4 have 
V ~ e, and one might anticipate that the growth is restricted to regions near V = O. 
This is the case. 

(a) Boundary Curves for wp/D. = 0 

The boundary curve V = 0 corresponds to (cf. equation 4) 

k2e2cos20+s2D;-w2 = O. (13) 

Firstly, we consider the case k = w/e, i.e. for wp/D. negligibly small. Then in w-O 
space, the solution of (13) defines two curves 0 = 0' and 0 = n-,--O', with 

0' = arccos {(w2 -s2D;)t/w}. (14) 

In the region 0' < 0 < n - 0' no resonance is possible. We are interested in upgoing 
waves and hence we concentrate on the branch at 0 > -tn. Provided wp/D. is less 
than unity, and not too close to unity, the boundary curves for the 0 mode at all 
s ~ 1 and for the x mode at s ~ 2 differ little from the vacuum case. 

(b) Boundary Curves for M agnetoionie Waves 

When we include the effect of a magnetoionic medium, k, wand 0 are related by 
the dispersion equation (see e.g. Stix 1962, p. 11; Melrose 1980a, p. 55) 

with 

(Pcos20 +Ssin20)(k2e2/w2)2 

- {(S2-D2)sin20+PS(1 +cos20)}k2e2/w2 +P(S2_D2) = 0, (15) 

P = 1 _(Wp/D.)2y2, 

S = 1_(wp/D.)2y2/(I_y2), 

D = -(wp/De)2y3/(l- y2), ' 

(16a) 

(l6b) 

(16c) 

with Y defined by (8f). On eliminating k 2 between (13) and (15) one obtains an 
equa,tiqn for the bO\1p,dary curves'in ro-Ospace. Thes~ boundarx curves are plotted 
in Fig. 11 for wp/De';;;' 0·1. ," '" 
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Fig. 1. Relative growth rate Tlfle for the x mode at s = 1 as a function of wlfle for () = 105°, 110°, 
115°, 120° and 125° (from left to right). The dotted curves are for N = 1 in equations (12) and the 
solid curves for N = 6. 
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Fig. 2. Maxima of the curves in Fig. 1 as a function of () for N = 1 (dotted curve), N = 3 (dashed 
curve) and N = 6 (solid curve). The sharp cutoff atO ~ 104° is due tQ the suppression effect dis­
cussed in Section 5. 
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Fig. 3. Relative growth rate for the x mode at s = 1 as a function of wjQ. for () = 110° for N = 1 
(dotted curve), N = 3 (dashed curve) and N = 6 (solid curve). The frequency at which the maximum 
occurs over the range N = 2 to 6 is wm •• /D. ~ 1·050 -0,001 N; the case N = 1 is anomalous. 
The frequency separation AW1/2 between the half-maximum growth points is roughly independent 
of N at AWI/2jQ. ~ 0·009. 

-0·8 

-0·8 

". ...... 

". 

(a) 
'" 

(b) 

t'u /e 

6·4 

0·2 

o 

0·4 

0·2 

u 

Fig. 4. Resonant ellipses for the curves in Fig. 1 for (a) N = 1 and (b) N = 6. The sizes of the 
ellipses increase as () increases. Tn each case, the upper dotted line shows the loss-cone boundary 
and the lower dotted line an estimate of the half-width of the loss cone, as discussed in Section 6b. 
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Fig. 5. As for Fig. 1 (p. 454) except for the 0 mode at s = 1. In this case () = 95°, 100°, 105°, 110°, 
115°, 120° and 125° (from left to right). 
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Fig. 6. As for Fig. 2 (p. 454) except for the 0 mode at s = 1. 
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Fig. 7. As for Fig. 3 (p. 455) except for the 0 mode at s = 1 and 
for () = 100°. In this case we have wmax/D. ;;:: 1·0136-0·OOO2N 
and AW1/2/D. ;;:: 0·0028. 
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The shape of the boundary curve for the x mode at s = 1 (Fig. IIa) is qualitatively 
different from those for the 0 mode at s = 1 (Fig. lIb) and the x mode at s = 2 
(Fig. lIe), due to the presence of a nose and a segment of the curve nearly parallel 
to the a-axis. Well above the nose, the curve may be approximated by the vacuum 
case a = 7r - 8' with a' given by (14). Below the nose the shape of the curve is domi­
nated by the dispersive properties of the x mode near its cutoff frequency. We return 
to this point in Section 5 below. 

(c) Half-maximum Growth Boundaries 

Also plotted in Fig. 11 are the curves corresponding to the growth rates being 
equal to half their maximum values. The curves for increasing N are at an increasing 
distance from the curve V = 0, but to avoid confusion only the curves for N = 6 
are plotted. The half-maximum growth curves for N = 1, 3 and 6 are plotted in 
Fig. 12 as a function of bwjQ. and a, where bw (a negative quantity) is the frequency 
separation at fixed a between the half-maximum growth curves and the curve V = o. 

5. Suppression of Fundamental x Mode 

For quite modest values of wpjQ., growth of the x mode at s = 1 can be strongly 
suppressed compared with that for negligible wpjQ •. This suppression may be under­
stood semi-quantitatively in the following terms. In the limit of negligible wpjQ. 
there exists a favoured region of w-a space where growth is most effective. As wpjQe 

increases the curve V = 0 moves in such a way as to decrease the region where 
resonance is possible. Suppression occurs when the favoured region for growth 
moves from inside to outside the curve V = o. 
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Fig. 8. As for Fig. 1 (p. 454) except for the x mode at s = 2. In this case 0 = 95°, 100°, 105°, 110°, 
115° and J 20° (from left to right). 
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Fig. 9. As for Fig. 2 (p. 454) except for the x mode at s = 2. 
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Fig. 10. As for Fig. 3 (p. 455) except 
for the x mode at s = 2 and for 
() = 100°. In this case we have 
wmax/2Q. ~ 1·0131 -0,0001 Nand 
I!..Wl/2/2Q. ~ 0·0023. 
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The effect of increasing wpjQe on the growth rates is illustrated in Fig. 13. For 
the x mode at s = 1 (Fig. 13a), the maximum growth rate decreases rapidly with 
increasing wpjQe <: 0·01 and the position of the maximum moves to increasing 
18-tn I. In contrast, the growth rate for the 0 mode at s = I (Fig. 13b) is affected 
substantially only for wpjQe <: 0'6, and for the x mode at s = 2 (Fig. 13c) there is 
little noticeable effect for all wpjQe ~ 1. 

This suppression effect is also evident in the results of Lee et al. (1980) (cf. their 
Fig. 3). Note however that these authors plotted a function which differs from our 
growth rate by a factor of w~. 

(b) Nose in Boundary Curve 

The position of the nose in the boundary curve in Fig. Ila depends on the value 
of wpjQe ; the variation of the boundary curve with wpjQe is illustrated in Fig. 14. 
The position of this nose may be estimated as follows. The curve above the nose may 
be approximated by 8 = n-8' with 8' given by (14). Below the nose, the x mode 
waves are close to their cutoff frequency Wx (cf. equation 7). Using the expression 
(8a) one finds, for W-Wx ~ w~jQe and (WpjQe)2 ~ 1, that the dispersion relation 
may be approximated by expanding in powers of I-X - Y ~ 2(w-wx)jQe. To 
lowest order we find 

(17) 

Then 8' is given by 

(18) 
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Fig. 12. Half-maximum growth curves as a function of the frequency separation (for fixed 0 in 
Fig. 11) from the boundary curve for N = 1 (dotted curves), N = 3 (dashed curves) and N =;; 6 
(solid curves); (a) the x mode at s = 1, (b) the 0 mode at s = 1 and (c) the x mode at s = 2. No 
emission occurs to the right of the dashed line at 104° in part a (cf. Fig. 2). 
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The position of the nose may be estimated from the intersection of the asymptotic 
curve, with (J' given by (14), and the nearly horizontal curve for OJ ~ OJx, with (J' 

given by (18). One finds that the nose should occur at 

(19a, b) 

The actual positions of the nose in Fig. 14 are reasonably well approximated by 
equations (19) for OJ~/Q; ~ 1. 
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Fig. 13. Maxima (in w) of the growth rates as a function of B for the ranges of values of wp/Q. 
indicated on the curves: (a) the x mode at s = 1, (b) the 0 mode at s = 1 and (c) the x mode at s = 2. 
All curves are for N = 6. 
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(c) Interpretation 

In practice there is a most favourable resonant ellipse, i.e. the one with the largest 
integrated value of aj/ah (weighted by a power of V-L which varies with s). Let this 
ellipse be designated by its centre vII = Vrn and its semi-major axis V = Vrn. For 
ellipses with centres and/or semi-major axes substantially different from those opti­
mum values, the growth rate is much less than the maximum value. 

Suppose that wp/Qe is negligibly small. Then there always exist values of wand () 
which lie inside the boundary curve V = 0 and which correspond to cos () = vrn/c 
and Vrn/c = {cos2 (} -2(w- Qe)/Qe}!- (cf. equations 5a and 6 with k = w/c). Let this 
point in w-(} space be denoted by () = (}m and W = Wm' 

1·20 

1.15 

~v 
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3 

1·10 

0·25 

1·05 ______ 

0·15 

6·10 

1·00 ------ ------ - ---- - ----- --- - - - ---- --::::.-:.~---

120 110 100 90 

8 (degrees) 

Fig. 14. Boundary curves for the x mode at s = 1 for five values of wp/Qe • 

The dashed curve shows the limiting case wp/Qe = O. We refer to the 
extremum point as a function of () as the nose. 

As wp/Qe is increased the curve V = 0 moves as shown in Fig. 14, and at some 
value (wp/Qe)rn it intersects the point 8m, Wm' For wp/Qe ~ (wp/Qe)m the branch of 
the boundary curve above the nose corresponds to the centre of the ellipse being at 
I vIII ~ I vrn I· Consequently, resonant ellipses just to the left of this curve sample 
regions of velocity corresponding to I v II 1 ~ 1 Vm I. In practice the growth rate is then 
very small; for example, it falls off as exp( -mvrr/2KT) for a Maxwellian distribution. 
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For wp/Q. ~ (wp/Q.)rn there is still a resonant ellipse corresponding to kll c/w = 

vrn/c and Vrn/c = {kIT C2/W2 -2(w-Q.)/Q.}t; it lies very close to the nearly horizontal 
branch of the curve in Fig. 14. The corresponding growth corresponds to the narrow 
peaks in Fig. 1, as discussed in Section 3a. The temporal growth rate is then small 
and is confined to an exceedingly small frequency range. The spatial growth rate 
remains quite large because of the small group speed in this case. Although we have 
not explored this particular regime in detail, several features are clear. First, to satisfy 
V;,/c 2 = V~/C2 -2(w-Q.)/Q., with V;' ~ v~, we require 2(w-Q.)/Q. ~ V~/C2. 
However, for W ~ Wx and w~ ~ Q;, we have 2(w-Q.)/Q. ~ 4w~/Q; and hence 
growth in this limiting case is favourable only for wp/Q. ~ I Vrn 1/2c; from (29) in 
Section 6c below this is just the parameter regime where the suppression effect be­
comes important. Second, the growth is confined to an exceedingly narrow band­
width. This places a strong limitation on any effective growth because Qe must not 
change by more than the bandwidth of the growing waves across the source region 
(cf. Section 7 below). 

In summary, the growth of the x mode at s = 1 should be expressed for wp/Qe ~ 
(wp/Q.)rn, with (wp/Q.)rn later to be identified as ~ I Vrn 1/2c. The suppression is stronger 
at small values of cos 8, as is apparent from the sharp cutoffs at small cos 8 in the 
curves of Fig. 2. Growth near the cutoff, with k2c2 ~ w2, is possible and may be 
favourable for wp/Q. ~ I Vrn 1/2c, but we have not explored this point in detail. 

6. Semi-quantitative Theory of Loss-cone Driven Cyclotron Masers 

In this section we formulate a semi-quantitative theory for loss-cone driven electron­
cyclotron masers. The basis of the theory is a model for the range of resonant ellipses 
for which growth is effective. Under ideal circumstances the maximum growth rate 
can approach the value (Melrose et al. 1982) 

r max (Wp)20n c2 

Q. ~ n Q. nc Vm Vrn ' 
(20) 

where Vrn and V rn denote the centre and semi-major axis respectively of the most 
favourable ellipse, and On is defined in terms of the value f = fm of the distribution 
function at the edge of the loss cone at v II ~ Vrn and V.L ~ V m' with 

On = 2nm3 V;' I Vrn I frn. (21) 

In (20) the ratio w~/nc = e2/eo m is independent of the number density of cold electrons. 
The questions we address in formulating the semi-quantitative theory include 

estimates of (i) the bandwidth i1w and (ii) the angular width i18 of the growing 
waves, (iii) the dependence of the growth rate on wp/Qe, (iv) the coherence volume 
of the radiation and (v) the relative magnitude of 0 and x mode growth rates. 

(a) The Model 

In Fig. 4 it is apparent that favourable ellipses lie entirely within the loss cone. 
Furthermore they do not touch the edge of the loss cone at a = ao but remain inside 
the line a = aD by an amount, i1a say, dependent on the steepness of the gradient 
in/, i.e. dependent on N in our case. It is reasonable to assume that the favourable 
resonant ellipses correspond to ranges i1vc and i1V of centres and semi-major axes 
about the optimum values Vm and Vm respectively. 
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Inspection of Fig. 4 shows that Vm and Vm are related by 

(22) 

where in the final approximate equality we assume il(~ = 7C - il(o ~ 1. For a fixed 
centre the range of V is determined by the range of il( : 

Table 1. Maximum growth rate rmax for x mode with s = I and for N = 6 in equations 
(12) compared with negative (damping) contribution ro from cold electrons 

The hot (H) and cold (C) properties are related by nc = 100nH and Tc = 0·1 TH, 
and Vc = VII is the centre of the resonant circle. The rapid fall-off of I ro I with 
increasing (J may be attributed to the dependence of a Maxwellian distribution 

(J (deg) I Vc lie 

105 0·201 
106 0·233 
107 0·256 
108 0·277 
109 0·296 
110 0·313 
115 0·392 
120 0·464 
125 0·528 

proportional to exp( - mv; 12KT) 

rmaxlQ. rolQ. 

6·5 x 10- 5 -2'30x 10-4 

9·7 x 10-5 -1'18xI0-4 

1·01 x 10-4 -5,2 X 10-5 

1·03 x 10-4 -1,07 X 10- 5 

1'0IxI0-4 -4,3 x 10- 6 

9·0 x 10- 5 -1'86x 10- 6 

4·4 x 10- 5 -I' 85 x 10- 8 

1'54xI0-5 -1'82xlO- 11 

4·5 x 10- 6 -7,8 X 10- 15 

--I' 65 x 10-4 

-2'llxlO- 5 

4·9 X 10- 5 

9·2 X 10-5 

9·6 xlO- 5 

8·8 x 10-5 

4·4 X 10- 5 

1'54xlO-5 

4·5 X 10- 6 

(23) 

The range of centres is more strongly model dependent. From Fig. 4 we would 
estimate 

(24a) 

However, there is a constraint which in its severest form would require ~vc much)t(ss 
than I Vm I· This is the effect of thermal particles. In v 1--v II spac~ the thermal particles 
are concentrated in a central circle. For any resonant ellipse which intersects this 
central circle there is a large damping contribution from the thermal electrons. This 
is shown for a particular case in Table 1. It is reasonable to conclude that growth 
occurs only for those ellipses which lie outside this central circle. The severest form 
of constraint is to assume that the inner edge of the resonant ellipses at I VIII = 

I Vc I - V is constrained to touch this central circle. Then we have 

~Vc ~ ~V. (24b) 

In practice ~vc is likely to be between these two limits. Probably 

(24c) 

is a plausible value. (Our numerical calculations do not allow us to discuss this point 
quantitatively because of the neglect of the damping by the cold electrons, except 
in the illustrative example in Table 1.) 

Equations (22)-(24) constitute our semi-quantitative model for the location of the 
favourable ellipses. We now use (5a) and (6) to relate these parameters to those of 
the emitted radiation. 
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(b) Estimates of 8m, Wm' A8 and Aw 

Let us assume that k is close to w/c. In practice this excludes only emission very 
close to Wx for the x mode at s = 1. Then (Sa) implies 

(2S) 

and (6) implies 

(26) 

From Figs 3,7 and 10 our numerical results imply 8m ~ 110° and (wm-Qe)/Qe ~ 
O·OS for the x mode at s = 1, and 8m ~ 100° and (wm-sQe)/sQe ~ 0·013 for the 0 

mode at s = 1 and the x mode at s = 2. The x mode at s = 1 is an exception because 
of the suppression effect, which is not negligible for wp/Qe = 0·1. From Fig. 13a 
one concludes that for sufficiently small wp/Qe, 8m would also occur at ~ 100° for 
the x mode at s = 1. Now 8m = 100° implies\vm\/c = 0·17, which is close to the 
value expected from the thermal speed of electrons at 108 K, (KT/m}t = 0·13 c. The 
estimate of (wm-sQe)/sQe then implied by (26) and (22), with sinll(o = t, is 0·011, 
which is in satisfactory agreement with our numerical results for the 0 mode at s = 1 
and the x mode at s = 2. For the x mode at s = 1 equation (26) is valid only for 
Wm - Wx ~ Wx - Qe' which is not the case for wp/Qe = 0 ·1. It may be concluded that 
(2S) and (26) are satisfactory except for the x mode at s = 1, where they apply only 
for sufficiently small wp/Qe. 

The range A8 follows from 

(27) 

where we assume sin 8m ~ 1. From our numerical calculations for the 0 mode at 
s = 1 and for the x mode at s = 2 we estimate A8 ~ 10°; for example, from the 
half-maximum growth points in Figs 6 and 9. These results are consistent with AVe 

being given by (24a). However, the constraint imposed by the cold electrons was not 
included in our numerical calculations, and this result in no way invalidates the 
arguments leading to the smaller estimates (24b) and (24c) of A8. 

Finally, the range of frequencies at fixed 8 follows from (26) and (23): 

Aw ~ Vm \ Dm \ All(. 
sQe C C 

(28) 

Before inserting numerical values we need to estimate All(. For a fit indicated in 
Fig. 4 we find the empirical estimate All( ~ 21l(~/3Nt. For the x mode at s = 1 we 
have vm/c ~ -0· 3, and then (28) with Vm = t \ Vm \ and Il(~ = in gives Aw/Qe ~ 
0·02/Nt. The width at half-maximum growth for 8 = 110° and N = 6 corresponds 
to Aw/Qe ~ 0·0l. For the 0 mode at s = 1 and the x mode at s = 2, vm/c ~ -0·17 
is a better fit. Then (28) gives Aw/sQe ~ O·OOS/Nt. For 8 = 100° and N = 6 our 
numerical results give Aw/sQe = 0·003 and 0·002 in these two cases respectively. 
It may be concluded that (28) gives a reasonable estimate of the width at half-maximum 
growth. 

(C) Suppression of x Mode at s = I 

Our semi-quantitative model may be used to estimate the value (wp/Qe)m at which 
suppression of the x mode at s = 1 becomes an important effect. From the argument 
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given in Section 5e the suppression must be a substantial effect for alI values of wp/Q. 
for which the point Wm' em lies outside the boundary curve in w-e space, where 
Wm' em are the values for maximum growth in the limit of arbitrarily smaIl wp/Qe· 
Comparison of equations (19) with (25) and (26) shows that the nose crosses the 
point Wm' em for wp/Q. ~ -!-I Vrn lie. Therefore we estimate 

(29) 

In our case we have I Vm lie ~ 0 ·17 for small wp/Q., and then (29) implies that 
suppression is a substantial effect for wp/Q. ~ 0·08. It is clear from Fig. 13a that 
the maximum growth rate for wp/Q. ~ 0·08 is down by at least a factor of five fram 
the unsuppressed value. Some suppression is evident even for wp/Q. ~ 0·05. 

The sharp cutoff in the curves at e = 104° in Fig. 2 is due to this suppression effect. 
On the basis of (25) and (29) we would predict a cutoff at I cos e I ~ 2( wp/Qe), i.e. at 
I cos e I = O· 2 for wp/Q. = 0·1. The predicted angle is e = 102°, in satisfactory 
agreement with the value 104° evident from Fig. 2. 

(d) Coherence Volume 

An important observational feature of maser emISSIOn is its high brightness 
temperature. The brightness temperature Tb is related to the energy density -W in 
the radiation by 

(30) 

where 

{ ( 
W ) 3 ilw } - 1 

Vcoh ~ 2ne ~ 2n ile sin e (31) 

is the coherence volume of the radiation. Now W is restricted to ;:S -!- <5n m V~, and 
is likely to be very much less than this value (Melrose and Dulk 1982a, 1982b). A 
high brightness temperature requires a large coherence volume, and the coherence 
volume is indeed large for a loss-cone driven cyclotron maser. Using (24a), (27) and 
(28) we find 

Vcoh ~ {2n (~ I Vm I rt~) 3 (ilrt) 2} - 1 

2ne c rto (32) 

For thermal radiation Vcoh is of the order of a wavelength cubed, and (32) implies 
that for the maser emission Vcoh exceeds the thermal value by a factor of order 
(ell Vm I rto)3(rtolilrt)2. 

(e) Comparison of 0 and x Modes 

In our numerical calculations we found the growth rate for the 0 mode at s = 
to be smaIler than that of the x mode at s = 1 by a factor of about ten. Let us use 
our semi-quantitative model to estimate how the relative magnitudes of the growth 
rates for the 0 and x modes should depend on the parameters I Vm lie and rto. We 
assume that wpjQ. is suffiCiently small that the growth of the x mode is not suppressed. 
Then the relative magnitudes of the growth rates can depend only on the polarizations 
of the two modes. 
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For OJ ::::: Qe ~ OJp , equation (8c) implies 

To::::: -I/cosO. (33a, b) 

In (10) the dependence on the mode for n" ::::: 1 and negligible K" (which is the case 
here) is only on T", and we have 

(34) 

For I cos 0 I <a; 1, to a first approximation we may set Tx = 0 and To = 00, implying 
that inside the modulus squared the unit term dominates for the x mode and the 
other term for the 0 mode. Now on integrating around the resonant ellipse, 
cosO -vrr/e (:::::(vm-vrr)/c) passes through zero, and the net contribution from the 
integral of (cos 0 - vrr/c)2 should be of order cos2 0 smaller than the integral of unity. 
Thus, with cos 0 ::::: vm/c, we expect 

(35) 

In particular the ratio depends on the energy of the electrons driving the instability, 
but not on the loss-cone angle eto. 

10-4 

0·00 

10-5 

C;V 
-0·03 

'-. 
3 

GO 

10-6 

-0·06 
(a) (b) 

~O·O9 
130 120 110 130 120 110 100 

(j (degrees) 

Fig. 15. Effect of changing the value of lXo from 1500 (solid curves) to 1700 (dashed curves) on (a) 
the maximum growth for the x mode at s = 1 and (b) the half-maximum growth points. In part 
a the curve for lXo = 1500 is the same as the N = 6 (solid) curve in Fig. 2 and in part b the curves 
for lXo = 1500 are the same as the N = 6 (solid) curves in Fig. 12a. 

In our numerical calculations vml c is roughly - 0·3 (cf. Fig. 4), and F\O) I FiX) is 
of order 0·1. These results are consistent with (35). Note however that the value 
vrn/c ::::: - 0·3 is affected by the suppression effect and we have neglected the suppres­
sion in deriving (35). Alternatively, in the absence of suppression vm/c is of order 
-0'17, implying (vrn/c)2 ::::: 0·03. The suppression affects the x mode, but not.the 
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o mode, effectively increasing the ratio by a factor of order ten for wp/Qe ~ 0·1. It 
may be concluded that even when the suppression is significant, it is reasonble to 
use (35) with urn/ c identified as the value for maximum growth of the x mode at s = 1. 

(f) Dependence on O(~ 

Finally, let us return to the quantitative estimate (20). The maximum value of 
r rnax/Qe according to Fig. 14 is probably of order 10- 3 for sufficiently small wp/Qe· 
Assuming Q e/2n = 3 GHz, O(~ = 30° and nH = 1013 m- 3 , as in our numerical calcu­
lations, with urn/c ~ -0· 3 and Vrn ~ tl Urn I, equation (20) gives r rnax/Qe ~ 10- 3 as 
required. 

One other feature of (20) which we might test is the dependence on O(~. With 
Vrn/I Urn 1 ~ sin O(~ from (22), the Vrn dependences in (20) and (21) imply that r max is 
proportional to sin 0(0. Unfortunately, the details of our numerical code precluded 
treatment of the case of very small sin 0(0. In Fig. 15 we compare the cases 0(0 = 150° 
and 170°. The difference in the magnitude of the growth rates is a factor of two. 
This compares reasonably with the ratio sin 1500 /sin 170° = 2·9. 

7. Application to DAM 

As an illustration of the use of the results derived here let us discuss the application 
to Jovian emission DAM. In our earlier discussion of this application (Hewitt 
et al. 1981) we did not have an adequate understanding of the semi-quantitative 
dependence of /).() and /).w on the parameters Urn' 0(0 and /).0(, and of the dependence of 
the growth rate on these parameters and on wp/Qe. Hence we concentrate on these 
features. 

From the work of Dulk (1967), it appears that DAM is emitted on the surface of 
a hollow cone with ()rn ~ 80° and /).() ~ 1°. Using (25) and (27), the implied energy 
of the emitting electrons is tmu~ ~ 8 keY and with /).uc = I Urn 1 /).0( the implied value 
of /).0( is ~6°. Then using (28) and /).0( ~ 20(~/3Nt, the expected relative bandwidth 
of the radiation is /).w/Qe ~ 5 x 10- 4 Nt. Assuming N ~ 4, one would expect a 
bandwidth of ~ 20 kHz for emission at ~ 20 MHz. Such narrow frequency structures 
have been observed in DAM by Ellis (1974, 1979). 

Using these estimates, the coherence volume (32) is Vcoh ~ 3 X 107 m3 at w/2n ~ 
20 MHz. Dulk et al. (1967) and Dulk (1970) have estimated the brightness temperature 
of DAM to be ;;;: 1017 K. However, the large coherence volume implies that such a 
high brightness temperature corresponds to a relatively modest radiative energy density 
in the source. Specifically we have KTb/ Vcoh.~ 5 x 10 -14 J m - 3 for Tb ~ 1017 K, 
and this energy density is much less than that of 8 keY electrons according to our 
estimates below. 

The most severe constraint on the maser mechanism arises from the narrow band­
width. The path length for amplification is limited by the fact that Qe must not 
change by more than /).w along it .. Assuming 1 gradQe 1 ~ Qe/RJ' where RJ is the 
radius of Jupiter, the effective amplification length is 

(36) 

Assuming that more than ten e-folding growths are required, growth is effective only 
for 

(37) 
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Now using (20), (22), (28), (36) and (37) and estimating (jn by rxc} nH , where nH is the 
number density of ~ 8 keY electrons, we find 

10 lie Qee 
IIH ~ -- 2 • 

n w 2 R rx' Arx p J 0 

(38) 

Inserting numerical values, with Qe/2n ~ 20 MHz, the inequality (38) requires 
IIH~5x107m-3. 

A maser theory such as that developed here applies only when the growth rate is 
less than the bandwidth of the growing waves. For the values estimated above the 
condition r max;;;; Aw implies nH ;;;; 108 m - 3, so use of the maser theory is only 
marginally justified. (However, if our estimate of Ae were increased from 10 to 20 , 

the right-hand sides of the inequalities IIH ~ 5 X 107 m- 3 and nH ;;;; 108 m- 3 would 
be altered by multiplication factors of r 3 and 2 respectively.) Both this inequality 
and (38) apply only for wp/Qe ~ tl Vm lie, i.e. for lie ~ 3 x 1010 m - 3. 

Further discussion of the application to DAM requires a physical model for the 
formation and evolution of the distribution of radiating electrons in the source region. 
No such satisfactory model is available. 

8. Concluding Remarks 

In the Introduction we emphasized that the instability under discussion is of class 
SM and that the significance of this class of instabilities has been recognized only 
recently. In these concluding remarks we comment on the loss-cone driver of the 
instability. 

Any maser requires a pump, and the pump must operate on a time scale comparable 
with or shorter than the radiative decay time of the state being pumped. In our 
classical maser, the occupation number in discrete states is replaced by a continuous 
distribution functionf(p -L,PII)' and an inverted population requires of!op -L > O. The 
pump must either supply electrons with large p -L or remove electrons with small P -L. 

The only obvious candidate involves a loss cone which allows electrons with small 
P -LIp II to escape from a magnetic trap. The pump then involves a source of energetic 
electrons within the trap. The maser emission itself causes enhanced scattering into 
the loss cone (Wu et at. 1981; Melrose et at. 1982; Melrose and Dulk 1982a) and 
the pump must operate on a time scale shorter than that in which the electrons would 
be lost through this enhanced scattering into the loss cone. 

The only well-formulated idea for a pump is that proposed by Wu andLee (1979) 
and which evidently operates in the source region for TKR. Electrons directed 
downward towards the Earth reflect if they are outside the loss cone and precipitate 
if they are inside the loss cone. The reflected electrons then include none inside an 
upward directed loss cone. However, even in this case, it is not obvious how the 
pump modulates the emission of TKR. It is clear from observations of TKR, and 
the more so for DAM, that the emission is far from uniform and constant across the 
source region. Bursts of radiation seem to require some additional mechanism which 
modulates the downward flow of electrons on a relatively short time scale. A parallel 
electric field, for example in the form of an electrostatic shock or double layer, is a 
likely candidate. 

It may be concluded that although the pump for a loss-cone driven maser has been 
identified in general terms, further work on this important aspect of the maser mechan-
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ism is required. In particular, the processes which tend to form a loss-cone distribution 
on a longer time scale must be modulated on a time scale of a few tens of growth 
times in order for the maser to operate effectively. 
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