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Abstract

Two procedures, which retrieve phase information from magnitude data, are examined. These
procedures, one due to Bates, Fright and Garden and the other due to Fienup, are firstly reviewed,
and then numerical results are presented to quantify the effectiveness of the algorithms. Some
areas where Bates' algorithm could be further refined are suggested.

1. Fourier Phase Problem

In many imaging fields it is far easier to measure the Fourier transform (or
visibility) of an object, rather than to measure the object's image directly. The
visibility phase is usually far more difficult to measure than the visibility magnitude,
and indeed is sometimes impossible to measure. In cases where phase information
is absent (or extremely unreliable) we have the Fourier phase problem, namely
estimating the visibility phase.

¢(u,v) = arg{F(u, v)} ,

from the visibility magnitude" IF(u, v) I.
This paper first starts with a brief review of the problem, followed by considera­

tions of existence and uniqueness of a solution. It then proceeds to a more detailed
examination of two procedures, one due to Bates (1982), Fright and Bates (1982)
and Garden and Bates (1982), and the other due to Fienup (1978, 1982). Com­
putational experiences with the procedures on simulated data are discussed.

2. Statement of the Problem and Background

For notational simplicity only two-dimensional images will be considered.
Extension to higher dimensional images is straightforward. We note, however, that
the one-dimensional case (phase retrieval for signals) is very different, and contains
many "inherent ambiguities. Additionally the images will be assumed positive and
compact (i.e. non-negative in a finite region and zero elsewhere). Again (or notational
simplicity, images will be assumed to be nonzero only in the region
M = [-t,-!J x [-t,t].

0004-9506/84/020209$02.00



210 R. J. Sault

The Fourier phase problem can now be stated as

Given IF(u, v) I

estimate ¢(u, v) = arg{F(u, v)}

subject to f'ix, y) ~ 0, (x, y) E M

and = 0, (x,y)ttM,

where

F(u,v) = f:oof:oo!(x,y)exp{i 27t(XU+ YV)} dxdy

= ~{f(x,y)}

= IF(u, v) Iexp{i ¢(u, v)} . (1)

The problem could be equivalently expressed in estimating the phase- from a power
spectrum

P(u,v) = IF(u,v)1 2
,

or an autocorrelation function

R(x,y) = f:oof:O'/(X,y)!(x+P,y+q)dPdq

= ~-l{p(U,V)},

(2)

(3)

as these are simply related to the visibility magnitude.
Various forms of the phase problem appear in many scientific disciplines. In

electron microscopy the image and its Fourier transform are both complex valued,
and magnitude data are available in both domains. Gerchberg and Saxton (1972)
have devised an iterative algorithm which will recover the phase. This algorithm
will be discussed further in Section 7, as it is the basis of Fienup's procedures.
In X-ray crystallography, the diffraction pattern is the Fourier transform of the
atomic lattice. However, the symmetrical properties of the lattice heavily constrain
the possible phases (Ramachandran and Srinivasan 1970), and consequently the phase
problem is somewhat different from that considered here. In addition, the crystal
lattice will be periodic which, as Bates (1982) has pointed out, produces a problem
quite different from the compact image case.

In radio astronomy, Gull and Daniell (1978) have used the maximum entropy
method (MEM) to solve the phase problem. As the magnitude data is undoubtedly
noisy, MEM finds (by an iterative technique) the image which maximizes the entropy
measure

H = Lp(k, I) log {p(k, I)} ,
k,l

where

p(k, I) = f(k, 1)/ Lf(k, I) .
k,l

The maximization is constrained so that the solution is consistent with the magnitude
data. The MEM differs significantly from the algorithms by Bates, Fright and Garden
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and by Fienup in that the latter two neglect noise, and essentially look for the unique
image which is consistent with the data (exactly) and the constraints.

3. Existence and Uniqueness

Two immediate points of interest are existence and uniqueness of a solution to
the phase problem, A necessary condition for existence of a compact positive image
obviously is that the autocorrelation function must also be compact and positive.
(Additionally, the autocorrelation of a real function will always be centrosymmetric
or even.) An arbitrary compact positive centrosymmetric function, however, need
not be a candidate for an autocorrelation function. Fienup et ale (1982) gave a
simple counter-example. No sufficient condition to guarantee existence is known.

Image positivity requires that the power spectrum must satisfy properties such
as (Papoulis 1965)

P(O,O)-P(u,v) ~ 0,

~ 4 -n{P (0,0) - P {2nu, 2nv)} .

(4a)

(4b)

Physical existence of the image is often sufficient to indicate existence of a
solution, but measurement imperfections and noise ,can make the data incompatible
with a positive compact image.

Uniqueness is a far more interesting question. It is well known that without
phase, certain 'trivial' characteristics of an image cannot be recovered (Bates 1982).
In particular we cannot distinguish F(u, v) from its conjugate mirror F( - u, - v).
This, however, only introduces an ambiguity of 1800 rotation in the image, and does
not affect the image's 'form' (Bates 1982). Even the crudest of phase estimates can
be used to distinguish between these 'trivial' ambiguities.

To analyse less trivial ambiguities, let us consider dividing (sampling) an image
into an array of picture elements, or pixels. If we sample at a rate of unity, we
define the z-transform of an image (Bracewell 1978) as

Fz(Zl , Z2) = If(k,l)zlkz2l. (5)
k,l

As the image is compact, only a finite number of the pixels will be nonzero and
Fz(Zl ' Z2) is a finite polynomial (probably with negative and positive powers). The
z-transform of the image's autocorrelation function can be shown to be (Bracewell
1978)

(6)

This relates the polynomial Pz (Zl ' Z2) (whose coefficients can be derived from the
visibility magnitude) to the product of two polynomials. As .two (and higher)
dimensional polynomials can almost never be factorized (reduced) (Bruck and
Sodin 1979; Hayes and McClellan 1982; Fiddy et ale 1983), then it would be
unlikely that Fz(Zl ' Z2) could be factorized. Consequently the factorization of
Pz(Zl ' Z2) into two factors would usually be unique. Each of these factors could
be taken as the image's z-transform. (This is the ambiguity between an image and
its conjugate mirror image.) Although counter-examples to this uniqueness argument
can easily be constructed, it is believed that these are pathological. The problem
of uniqueness can be seen as a problem of guaranteeing the irreducibility of the
image's z-transform. This approach has been taken by Fiddy et ale (1983).
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It should be noted that the uniqueness argument fails for one-dimensional
images, as polynomials in one dimension can always be factorized. This is a real
ambiguity, and indeed one-dimensional problems will, in general, have many solutions.
Fienup (1978) has noted that, in some instances, all solutions have similar forms
and so the solution might be 'effectively' unique. Additional prior knowledge, such
as symmetries or the constraints on the roots of the z-transform Fz(Zl ' Z2)' can
sometimes be used to guarantee unique solutions, even in one dimension.

The effects of noise on uniqueness in the two-dimensional problem is unclear.
Bates (1982) conjectured that the noise present means that the image's z-transform
is never reducible. Due to noise, however, there will be an infinite number of
autocorrelation functions which are consistent with the measurements.

The computational experiences of Fienup (1978, 1982) tend to suggest that the
solutions are usually unique, although Fiddy et al. (1983) have noted that Fienup's
techniques work better when the solution is unique.

4. Canterbury Algorithm-Theory

Bates, Fright and Garden have proposed a method for solving the phase problem
which they call the 'Canterbury algorithm' or 'crude phase estimation'. The algorithm
consists of the three steps of firstly estimating a phase difference cosine, secondly
estimating a phase difference, and finally estimating the phase.

Bates and Fright (1983) have used the Canterbury algorithm as one stage in a
several-stage phase-retrieval procedure, however, only the Canterbury algorithm stage
will be considered here. Other stages of the procedure were intended for use with
low constrast or noisy images (these are not relevant to the tests performed here),
or to tidy up the phase estimate using Fienup's algorithm (see Sections 7 and 8).

To understand the Canterbury algorithm, we recall that the image is confined
to the region [-!,!] x [-!,!]. The sampling theorem (Bracewell 1978) can now
be applied to the object's visibility. By sampling at the Nyquist rate (which is unity
in this case), the visibility can be expressed using sine function interpolation:

00

F(u, v) = L F(m, n) sinc(u-m) sinc(v-n) ,
n,m= - 00

(7)

where sinc(x) = {sin(nx) }/nx.
If sampling is performed at higher rates (i.e. closer spacing in the visibility plane),

then there will be redundancy in the samples. The Canterbury algorithm uses this
known redundancy to estimate the phase.

The visibility midway between two sampling points on the u-axis is given by

00

F(k+!,/) = L F(m,/)sinc(k-m+!).
m=-oo

Truncating the infinite series to the two dominant terms, we have

F(k+!, I) ~ {F(k, 1)+F(k+ 1, I)}sinc(!).

(8)

(9)

The truncation to two terms would introduce a large error. It is known that there
are better interpolation kernels for two-point interpolation than the sine function.
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Representing the interpolation weight by W, we then have

F(k+t,/) ~ W{F(k,/)+F(k+1,/)}, (lOa)

/F(k+t, I) /exp{i¢(k+t, I)} ~ W[/ F(k, I) Iexp{i¢(k, I)}
. +IF(k+1,/)/exp{i¢(k+1,/)}]. (lOb)

Taking the magnitudes of both sides, and manipulating the equation, we get

c {A.(k 1 I)-A.(k I)} = {IF(k+t,/)//W}2 -/F(k,/)/2 -IF(k+1,/)1
2

(11)
os ~ +, 0/, 2/F(k,/)/IF(k+1,/)/ '

which can be interpreted as an application of the cosine rule (of elementary
trigonometry).

Thus by sampling at twice the Nyquist rate (and thus measuring terms like
/F(k+t, I) /), an approximation to the cosine of the phase differences can be obtained.
The technique could be easily generalized to non-cartesian systems (such as the radical
data of radio astronomy), although the justification and practice might be more
difficult.

Although the approximations might seem gross, the errors should decrease as the
sampling rate is increased. In other words, for sufficiently close sampling, even linear
interpolation should prove reasonably accurate.

~ u 4>( k, 1+ 1)

(k,l+l) (k+ 1,1+ 1)

~ r 4>(k, I) ~ i: 4>( k + 1, I)

Fig. 1. Phase
differences on
a cartesian
grid.

_____~ (k+l,/)
~ u 4>( k, I)

(k, I) L-.-.- _

Fright and Bates (1982) suggested several methods for choosing the interpolation
weight W, for example that W be kept constant within a region and chosen so as
to minimize an error measure within that region. The region may vary in size from
a few points to the entire u-v plane. Alternative arguments, based on differential
calculus, would imply that linear interpolation (i.e. W = O' 5) would be the best choice.

We define the phase differences in the u and v directions as

Au¢(k,/) = ¢(k+1,/)-¢(k,/), Av¢(k,/) = ¢(k,I+1)-¢(k,/),

respectively. The absolute values of these phase differences are estimated by taking
an inverse cosine of the cosine estimates of equation (11) (note that the cosine function
loses the sign and only the absolute value is retrievable). To retrieve the sign, we
consider the four phase differences around a square (see Fig. 1).
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The sum of phase differences around a closed path must be zero (modulo 2n).
If the sign of one phase difference is known, then the signs of the other three can
be chosen so as to minimize the deviation from zero (modulo 2n) of the sum of the
phase differences around the path. There will generally be some discrepancy, which
we call the phase mismatch (it will be used as an error measure later). We call
this the 'one-sign method' for estimating the sign of differences.

The algorithm is a bootstrap one. If the sign of one phase difference is known,
three others can be estimated. The procedure is started by arbitrarily choosing a
sign for the first phase difference, a choice which is a manifestation of the ambiguity
between the image and its conjugate mirror image. A natural phase difference to
choose is one involving the origin.

We note that if the signs of two phase differences around a path (rather than
just one) are known, then a similar procedure can be followed to estimate the signs
of the- remaining two differences. We call this the 'two-sign method' for estimating
the sign of differences. The algorithm can be programmed so that the 'one-sign
method' need be used only near the positive u and v axes. The 'two-sign method'
can be used for estimating all the other signs.

The algorithm is completed by estimating the phases from phase differences.
A least-squares method, similar to that analysed by Hunt (1979), could be used.
Fright and Bates (1982) used a much simpler technique whereby phases and phase
difference signs are determined simultaneously. They assumed that ¢(k, I) and
¢(k+ 1, I) and the signs of the three remaining differences (see Fig. 1) had been
determined. Then ideally, this gave

¢(k, 1+ 1) = ¢(k, I) +Av¢(k,l)

= ¢(k+1,1) +Av¢(k+1,1) -Au¢(k,l+l). (12)

Due to phase mismatch, these two phases will not generally be the same and so
¢(k, 1+ 1) is taken as the phase average of the two, and similarly for ¢(k+ 1, I).
To start the procedure, it is known that the phase at the origin is zero for positive
images. A neighbouring point, say (1,0), is then given the phase ±IAu ¢(O, 0) I (the
sign is again arbitrary). We call this the 'phase averaging method'.

5. Canterbury Algorithm-Computational Aspects

To investigate the properties of the Canterbury algorithm, a number of known
images were Fourier transformed, and their phases discarded. All images were
relatively simple, consisting of 1-5 gaussians, discs or delta functions. The images
were nonzero in a rectangle varying in size from 17 x 17 to 50 x 50 pixels. The images
were always zero-extended to allow various sampling rates in the visibility domain.
The zero-extended images were of sizes varying from 64 x 64 to 512 x 512 ·pixels.
No noise was modelled.

In our implementation of the Canterbury algorithm, the interpolation weight was
made constant throughout the u-v plane; usually it was set to 0· 5 (i.e. linear
interpolation). 'Phase averaging' to share the phase mismatch was performed (the
more sophisticated techniques of Hunt 1979 were not used). The 'one-sign method'
was used to determine phase difference signs near the positive u and v axes, while
the 'two-sign method' was used elsewhere.
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The image array output by the Canterbury algorithm is one-quarter the size of
the input magnitude array (if the input magnitude is N x N, the output image is
tNx tN). As it is convenient for the input and output arrays to be the same size,
two methods were chosen to extend the image to N x N. Firstly the image could be
zero-extended, using the assumption that the image is compact. The alternative is
to perform two-point interpolations on the visibility, before the Fourier transform,
using the same interpolation weight as used in the cosine rule. This is consistent
with the assumption that two-point interpolation is accurate. Edge effects in the
interpolation were handled so as to make the algorithm exact when reconstructing
a simple delta function. The two methods were found to give almost identical results.

Two error measures were chosen for analysis. These were the average phase
mismatch error Bp (the absolute value of the phase mismatch averaged over the u-v
plane) and the visibility magnitude error By, defined as

By = (L II F(k, I) I-I G(k, I) 112)t,
k,l

(13)

where F(k, I) is the measured visibility magnitude and G(k, I) is the estimate of the
visibility by the Canterbury algorithm, and ·the sum is over all measured points in
the u-v plane. Various aspects of the results are now discussed.
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Fig. 2. Variation of magnitude error (solid curve) and average phase mismatch (dashed curve)
with interpolation weight for an image shown in Fig. 3. The magnitude error has been normalized
by the object's energy.

(a) Effect of Varying the Interpolation Weight

Fig. 2 gives a plot of the magnitude error and the phase mismatch error against
interpolation weight, for one particular image, shown in Fig. 3. Fig. 4 gives four
reconstructions of this image for various interpolation weights. The phase mismatch
error is surprisingly large. Fright and Bates (1982) have suggested that a good choice
for W is that which minimizes the magnitude error By. For this case it is W = O·58,
while a subjective examination of the reconstructions would indicate that W = 0·52
is the 'best' weight for this image. Even for the 'best' interpolation weight, the
reconstruction is only approximate.
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Fig.4. Four Canterbury algorithm reconstructions of Fig. 3, using various interpolation weights W.
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(b) Variation of Imaqe Complexity

A sequence of four similar images were made, each consisting of a central
gaussian, surrounded by a number of smaller gaussians of half the size (the number
of smaller gaussians was varied from zero to three). The smaller gaussians were
arranged so that peaks in the autocorrelation function would not interfere. The
results of the sequence, shown in Figs 5 and 6, are very good for the simple images',
but there is an increasing failure of the algorithm as the image complexity increases.

o 0
•""-------

Fig. 5. Four original images, in order of increasing complexity.

Another class of images on which the algorithm was used consisted of a disc,
with features on top of the disc. The algorithm produced very poor reconstructions
for these images which looked, at times, like random noise (even when the magnitude
and phase mismatch errors were quite low). Clearly these images are quite complex.

Finally the algorithm was tried on images which Fiddy et ale (1983) have shown
to possess unique solutions. The uniqueness did not cause the algorithm to produce
better results.
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Fig. 6. Canterbury algorithm reconstructions of the corresponding images in Fig. 5. Note that the
algorithm fails to reconstruct the more complex images.
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Fig. 7. Variation of magnitude error with sampling rate. The curve follows a best-fit line through
the points.
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Fig. 8. Variation of average phase mismatch error with sampling rate. The curve follows a
best-fit line through the points.

(c) Effect of Increasing the Sampling Rate

Figs 7 and 8 show plots of the magnitude error and phase mismatch error
respectively for various sampling rates, for several images. It is encouraging that
different images display more or less the same error curves. It is also encouraging
that these error measures drop off as the sampling rate increases. This reduction in
error might suggest an improvement in the estimation process. However, the
reconstructed images did not reflect this improvement. Fig. 9 gives the original
(see Fig. 3) and three reconstructions (at different sampling rates) of one image.
The reconstructions are not particularly good. Examination of these suggests that
the image with the lowest sampling rate is the best reconstruction. Indeed, it was
found that the best reconstructions are never those carried out at the highest
sampling rates.

(d) Phase Difference Cosine Estimation

The estimates of the phase difference cosine, produced by equation (11), will not,
in general, be confined to the range [-1, 1] (which of course it should be !). These
bad cosine estimates then have to be clipped to this range. Typically the number
outside the range is about 30-50 % for an interpolation weight of O·5, with the
number increasing towards 100% for small weights, or decreasing towards 0% for
large weights. Fig. 10 gives a typical plot of the bad cosines against the interpolation
weight. Fig. 11 gives histograms of the estimated cosines, for the same image, for
various sampling rates.

We note that the number of bad cosine estimates greater than 1 is far larger than
those less than - 1. This is understandable as close sampling results in phase
differences close to zero, and consequently cosines close to 1. We note also that
while the percentage of bad cosine estimates was not found to decrease appreciably
with an increase in the sampling rate, the histograms do improve (i.e. the cosine
estimates cluster more in the range [- 1, 1]).
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Fig. 9. Original image and three Canterbury algorithm reconstructions of Fig. 3 at different
sampling rates.
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Fig. 10. Variation of cosine estimates outside [-1,1] with interpolation weight. The number of
bad cosines is normalized by the total number of cosines estimated. The dashed curve represents
cosines exceeding 1, while the solid curve represents the total outside the range [-1,1].
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Fig. 11. Histograms
of cosine
estimates at
different
sampling rates.
The estimates
cluster more
towards the
limits [-1,1]
as the sampling
rate is increased.
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This problem can be partially attributed to near zeros in the visibility magnitude,
which cause a near zero divide in the cosine equation. It was found that there was
a greater concentration of bad cosine estimates at higher visibility frequencies, where
the visibility is usually close to· zero. Indeed most cosine estimates outside the range
[- 5, 5] belonged to high-frequency visibilities.

(a)

Mean = 1·45

r.m.s. = 2·91

-5 -4 -3 -2 -1 o 4

(b)

Mean = 4·03

r.m.s. = 17·05

-5 -4 -3 -2 -1 0 1

Cosine estimates
4

Fig. 12. Histograms of cosine estimates, for different parts of the u-v plane, for the same
reconstruction as in Fig. IIa: (a) low frequencies: (b) high frequencies. The low-frequency
histogram is significantly better.

To examine the effect further, the u-v plane was divided into two equal regions,
one containing low-visibility frequencies, and the other containing high frequencies.
Fig. 12 shows the histograms of the cosine estimates in these regions. The histogram
of the cosine estimates at low frequencies (Fig. 12a) is significantly better. After
a delta function was added to the image, the histograms improved significantly, but
nevertheless there was no improvement in the quality of the reconstruction.

Fig. 13 gives density plots of (a) the estimated and (b) the actual phase difference
cosines. It can be seen that the gross structure is correct, but that the details are
not correct. Also there are large regions, at high frequencies, where the estimate
is completely wrong.



Phase Estimation from Visibility Magnitudes 22~

Fig. 13. Density plots of the phase difference cosines with the origin of the u-v plane in the
centre: (a) Canterbury algorithm estimate; (b) original image. The stips etc. at low frequencies
have been reasonably estimated, but most high-frequency estimates are poor.
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(e) Phase Difference Estimation

In the estimation of the phase difference from the cosine function, it should be
noted that the inverse cosine function has infinite slope at - 1 and 1. This results
in phase differences near 0 and TC being very sensitive to errors in the cosine estimate.

One problem with the technique of estimating signs is that it often .leads to
ambiguities, and near ambiguities (we recall the assumption that the sign of one
phase difference, around a square path, is known and the others are chosen so as
to minimize the phase mismatch), If the known phase difference is zero (or near zero),
there are two possible solutions, which are the opposite (negative) of each other,
with the same phase mismatch error. There is no clear method for choosing the
signs in this case.

As a specific example of this problem, we consider images, which Bates (1982)
calls 'quasi-localized', for which every second visibility point is a two-point inter­
polation of its neighbours. The Canterbury algorithm is expected to be (nearly)
exact for these images. For some quasi-localized images, this was indeed found to
be the case, but for others (even those without strict ambiguities) the algorithm
produced reconstructions which were appreciably in error. The latter images were
found to have some phase differences of the order of 0'1°. The computer rounding
error (23 bit mantissa used) and the sensitivity of the inverse cosine function
combined to result in a wrong sign being chosen.

Finally, one would hope that the average phase mismatch error tends to zero as
the sampling rate is increased. This was found to be the case, as can be seen by
Fig. 8, which gives a plot of the average phase mismatch for several images for
different rates of sampling. In addition it was found that the phase mismatch for
high-frequency visibilities was much larger, which is consistent with the poorness
of the cosine estimates at high frequencies.

(f) Estimation of Phase

If an incorrect sign is chosen for a phase difference, then clearly this error will
propagate outwards into the u-v plane. This results in the phase estimate becoming
inaccurate a number of sampling points away from the starting point. This effect
appears to mitigate any improvement that one might gain by increasing the sampling
rate. This is to say that, although the cosine estimates are better at higher sampling
rates and that the phase mismatch decreases, the manner of estimating the phase
tends to cause an avalanche of errors, so that higher sampling rates do not give
better results. '

An interesting class of images are those for which the phase is always 0 or TC

(called centrosymmetric images because of their symmetry). As there is no problem
in choosing the signs of the phase differences for these images, they should be
expected to give better results. Fright and Bates (1982) have shown how to include
this prior knowledge into the Canterbury algorithm, and it was found that the
reconstructions were much improved. In addition the reconstructions were not
found to degrade significantly as the sampling rate increased (as it did for most
images). Fig. 14 gives an example of a reconstruction of a centrosymmetric image
at various sampling rates.
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Fig. 14. Original centro symmetric image and three Canterbury algorithm reconstructions using
different sampling rates. The reconstructions do not degrade significantly as the sampling rate
increases.

6. Canterbury Algorithm-Conclusions
In summary, the Canterbury algorithm fails to reconstruct anything but the

simplest images. The algorithm also fails to estimate the phase differences accurately
at high spatial frequencies. The major shortcoming of the algorithm is in the
estimation of the sign of the phase difference and then combining the phase differences
to estimate the phase. If this step could be performed more accurately, the algorithm
should produce significantly better results, particularly as the sampling rate is
increased.

7. Fienup's Iterative Procedures-Theory
An entirely different approach to the phase problem has been taken by Fienup

(1978, 1982). His approach is to repeatedly Fourier transform an approximation
to the object between the image and visibility domains. In each domain the
approximation is modified to make it (or make it tend to be) more consistent with
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the known image constraints (positivity and compactness) and measured data.
There are several varients to his algorithm, but the two most successful are the
so-called error-reduction algorithm and the hybrid input/output algorithm. If
gi(m, n) and Gi(k, I) are the approximations of the object's image and visibility at
the ith iteration, then the algorithms can be expressed as follows. For the error­
reduction algorithm we have

g'(m, n) = » > {G'(k, I)},

gi(m, n) = g'(m,n) , (m, n) E y

= 0, (m,n) ¢ y,

Gi+1(k,/) = $P{gi(m,n)} ,

G'(k, I) = Gi(k, I) IF(k, I) 1/1 Gi+1(k, I) I.

Forthe hybrid input/output algorithm we have

(14a)

(14b)

(14c)

(14d)

g'(m,n) = $P{G'(k, I)} , (15a)

glm,n) = g'(m,n) , (m,n) E y

= gi-l(m,n) -f3g'(m,n) , (m,n) ¢ y, (15b)

Gi+1(k,/) = $P{gi(m,n)} , (15c)

G'(k, I) = G i +1(k, I) IF(k, I) 1/1 Gi+1(k, I) I. (15d)

Here y is the set of points where the image constraints are violated (i.e. the
approximation is negative or nonzero outside the known image extent) and f3 is a
step-size parameter, typically from 0·1 to 1 (an image-dependent parameter).

The error-reduction algorithm is closely related to the algorithm used by Gerchberg
and Saxton (1972) for the phase retrieval problem in electron microscopy, for which,
both the image and visibility are complex valued, and magnitude data are available
in both domains.

We define the visibility magnitude error s, as for the Canterbury algorithm
(equation 13), and the image constraint error (i.e. the amount that the image
constraints are violated) as

eo = (L {g(m,n)}2)t.
(m,n)E')'

(16)

It can be shown that for the error-reduction algorithm (if infinite precision arithmetic
is used), the magnitude and image constraint errors form the decreasing sequence

ey , i + 1 :::;; eo,i + 1 :::;; ey , i :::;; eo,i • (17)

Although similar, in some respects, to the non-expansive mapping reconstruction
algorithms (Schafer et al. 1981; Tom et al. 1981), the error-reduction mappings are
generally expansive. The proof that the error decreases does not even assume, or
prove, that a solution exists. It is possible that the error-reduction algorithm will
stagnate, with the error remaining constant. Indeed, if the initial image estimate
is centrosymmetric, or if no solution exists, then the error-reduction algorithm must
stagnate.
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In practice the error-reduction algorithm tends to be intolerably slow after the
first few iterations. In addition it was found that computer rounding errors can
cause the error to increase slightly, thus preventing convergence. This slowness
caused Fienup to attempt other techniques, such as the hybrid input/output algorithm.

Fienup has found that the best strategy for reconstruction is to alternate between
5-10 iterations of the error-reduction technique and 10-30 iterations of the hybrid
input/output technique. This is repeated until convergence (if it converges I). The
image is tidied up, when it has converged, with a few extra iterations of the error­
reduction algorithm.

Fienup et ale (1982) have determined a reliable method for estimating the size
(extent) of the image from its autocorrelation function (the size of the image is simply
half the size of the autocorrelation function). Fienup (1982) recommended using
a random image, which satisfies the positivity/compactness constraints, as the initial
estimate.

8. Fienup's Iterative Procedures-i-Computational Aspects

Following the methods of Fienup closely, we performed phase reconstructions
on the same images as those used in investigating the Canterbury algorithm. The
results and rate of convergence using a random initial image were similar to those
reported by Fienup, and will not be repeated here. Although the procedures did
not always converge, the resulting reconstructions were always found to be better
than those of the Canterbury algorithm. The procedures were found to perform
poorly when the visibility had a very large dynamic range.

100

lL
o

- -

20

---.._--.._-_.. _---

I I

40 60

Number of iterations
80 100

Fig. 15. Magnitude error (log scale) for various iterations of the error-reduction algorithm. The
initial image estimate was either the Canterbury algorithm reconstruction (dashed curve) or a random
image (solid curve). Both approach an error of about 4 %.

A variant of Fienup's procedures, suggested by Bates and Fright (1983), is to
start the iterations with the Canterbury algorithm reconstruction of the image, rather
than a random image. However, this was not found to improve convergence or
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the quality of the reconstruction significantly. In some cases starting with the
Canterbury image was marginally better, in other cases it was marginally worse.
A typical example of this is Fig. 15, which shows the magnitude errors using the
two methods of starting Fienup's procedures. It can be seen that, although initially
the magnitude error is much smaller when starting with the Canterbury reconstruction
(dashed curve), the errors (when using the random initial image) reduce quickly to
about the same level.

(d)

Fig. 16. Original image (a) and three reconstructions: (b) the random initial image of Fienup's
procedures; (c) the random image after 10 iterations; (d) the Canterbury algorithm. The image
of Fig. 16c produces a better reconstruction than the Canterbury algorithm.

Another example is shown in Fig. 16 of an original image and three reconstruc­
tions. The random image after 10 iterations (Fig. 16c) is a better reconstruction than
that for the Canterbury algorithm (Fig. 16d).

9. Conclusions

Two phase restoration techniques, the Canterbury algorithm and Fienup's
procedures, have been investigated. It was found that the Canterbury algorithm
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produces poor results for all but the simplest of images. The major inaccuracy in
the algorithm was found to be the estimation of the phase from the phase difference
cosines. There is scope for future investigation to determine whether this step in
the algorithm can be refined.

Results with Fienup's procedures indicate that in general there seems to be no
advantage in using the Canterbury algorithm to produce an initial estimate of the
image. A random initial image produces equally good results.
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