
Aust. J. Phys., 1986, 39, 881-90 

Kirkwood Theory of Shear Viscosity 
in a Simple Dense Fluid 

A. F. CollingsA and Denis J. EvansB 

A Division of Applied Physics, CSIRO, 
P.O. Box 218, Lindfie1d, N.S.W. 2070. 
B Research School of Chemistry, Australian National University, 
G.P.O. Box 4, Canberra, A.C.T. 2601. 

Abstract 

The molecular theory of momentum transport in dense fluids developed by Kirkwood is examined 
for the case of the Lennard-lones (12,6) fluid. The radial distribution functions and one-particle 
friction constants used are based on molecular dynamics studies. Shear viscosity coefficients 
calculated with elk = 120 K and 0' = 3.405x10- 10 m vary from one-third to two-thirds of 
comparable experimental data for argon. The significance of an approximate relationship between 
the pair friction tensor and the one-particle friction constant is discussed. 

1. Introduction 

While the 1970s witnessed substantial progress in the understanding of the 
equilibrium properties of dense fluids, advances in the understanding of transport 
properties have been relatively modest. The development of computer simulation, 
particularly of nonequilibrium molecular dynamics (NEMD) (Ashurst and Hoover 
1973, 1975; Evans 1983), and of the correlation function and linear response 
formalisms (Green 1954; Kubo 1958; Zwanzig 1964) has been a significant step 
forward. These latter approaches have had limited practical application because of the 
difficulty and computational expense in obtaining adequate 'experimental' information 
about the dynamics of a fluid. Even for the simplest case, the calculation of the 
self-diffusion coefficient of a model fluid from the velocity autocorrelation function, a 
large amount of computing time is required for reasonable accuracy. In the view of 
one experimentalist (Kestin 1983), molecular dynamics has not proved a supplement 
to measurement as had been hoped, but 'has taken on an independent life of its own'. 

In view of these difficulties, workers in the field will continue to seek an 
understanding or interpretation of the transport properties of dense fluids in terms of 
empirical models. One major contribution of the correlation function formalism may 
well be its capacity to demonstrate to the experimentalist why such crude models as 
those by Eyring et al. (1941) and Andrade (1934) have proved successful in some 
situations and inadequate in others. 

Of the older transport models, the friction constant theory of Kirkwood (1946) 
and its successors (Rice and Gray 1965) have generally been regarded as offering most 
promise (McLaughlin 1964; Croxton 1974). It is an approach that is still favoured 
for transport in polymeric liquids (Bird and Curtis 1984). Indeed, the agreement 
between experimental values for the shear viscosity and thermal conductivity of argon 
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and data calculated from the Rice-Allnatt theory was exceptional (Rice and Gray 
1965). However, the shortcomings of the friction constant model are well known. 
The various recipes for relating the friction constant to the intermolecular potential 
and the fluid structure have been shown to be inadequate (Collings 1967; Collings et 
al. 1971). The existence of a plateau value in the friction tensor, a prerequisite for 
the rigorous application of the Brownian motion analogy has been disproved (Fisher 
and Watts 1972; Smedley and Woodcock 1974). 

In the present work, we study the connection between the statistical mechanical 
theory of momentum transfer developed by Kirkwood and his colleagues (1949) and 
the theory of the friction constant (Kirkwood 1946). We assume that an effective 
friction constant exists, as implied by the general applicability of the Stokes-Einstein 
relationship in liquids, and that this friction constant may be obtained by computer 
simulation. However, we emphasise that the relationship between the one-particle 
friction constant and the pair friction tensor is both complicated and crucial. 

We make the first self-consistent test of theory using input data, structures and 
friction constants which correspond to the pair interaction. The quantities D and 
g(r) have been calculated for the Lennard-Jones (LJ) (12,6) fluid by the molecular 
dynamics technique (Verlet 1968; Levesque and Verlet 1970). In previous evaluations 
of the theory (Zwanzig et al. 1953; Rice and Gray 1965; Palyvos and Davis 1967), a 
hard-sphere modified LJ (12,6) potential was coupled with LJ (12,6) parameters, the 
Born-Green-Yvon approximation for g(r) (Kirkwood et al. 1952) and an experimental 
estimate of D for argon. Such a test of the Kirkwood theory was dubious. 

Comparison is also made with estimates derived from NEMD simulation (Ashurst 
and Hoover 1973) for the zero-shear-rate viscosity of liquid argon along the gas-liquid 
coexistence curve. 

2. Theory 

The friction constant is usually defined by the Einstein equation 

~ = kT/D, (1) 

where D is the coefficient of self-diffusion. In the limit of true Brownian motion, 
i.e. a heavy particle in a bath of light particles, the quantity defined in this way is 
equivalent to the friction constant in the Langevin equation (Mazo 1961; Resibois 
and Davis 1964): 

F(t) = -~v+ G(t), (2) 

where the total instantaneous force on the particle consists of a steady frictional force 
and a random fluctuating force, the long-time average of which is zero. 

The friction constant in the above equations is the single-particle one, whereas the 
following discussion largely involves the pair friction tensor ~(2). The relationship 
between ~ and ~(2) will be discussed later. 

The procedure used to derive the equations of hydrodynamics from classical 
statistical mechanics yields an expression for the stress tensor in terms of molecular 
variables (Kirkwood et al. 1949). This consists of two contributions, a Chapman­
Enskog type term involving the one-particle distribution function j<1), due to the 
stochastic migration of a 'faster' molecule to a slower moving region, and a term 
involving the two-particle distribution function j<2), which arises from energy or 
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momentum transfer via intermolecular interactions. The latter contribution becomes 
dominant in dense gases and condensed media (Kirkwood 1946; Kirkwood et al. 
1949). 

The intermolecular contribution to the stress tensor can be expressed in terms of 
the two-particle distribution function. The Newtonian form of the stress tensor is 

U' = - !P+(~7]-<j»\7. u) 1 +27] '[ , (3) 

where 7] and <j> are the coefficients of shear and bulk (volume) viscosity respectively, P 

is the equilibrium pressure, '[ the rate of strain and \7 . u the divergence of velocity. 
In molecular variables, the stress tensor can be expressed as (Rice and Gray 1965) 

U' = i J R12 \712 u(R12)j<2)(1,2)dR12 dP1 dP2' (4) 

where Ri and Pi are the configuration and momentum space coordinates respectively 
of the molecules. However, the velocity gradient causing momentum flux also perturbs 

the molecular configuration. It is assumed that, for small rates of strain ,[, this 
perturbation can be expressed as an expansion in spherical harmonics, 

{ 
y(2) 

g(2)(R) = g~2)(R) 1 + 6"'kT(\7. u)ljIo(R) 

+_"'~ .E. 1 
y(2) (R +t R 

2kT R2 -3\7. U)ljI2(R)} , (5) 

where g(2)(R) is the non-equilibrium pair distribution function, g~2)(R) is the 
equilibrium radial distribution function, ljIo(R) is the coefficient of the zero-order 
harmonic arising from the dilational component of the rate of strain and ljI2(R) is the 
second-order coefficient of surface harmonics arising from the shear component. 

The combination of equations (3)-(5) leads to the following expressions for the 
equilibrium fluid pressure P and the coefficient of shear viscosity 7]:' 

_ N kT _ 21T N 2 Joo R3 U'(R) g~2)(R) dR, 
P - V 3V2 0 

(6) 

7] = ':.:~~f~ + .~~:~{2~ J: R3U'(R)ljI2(R)g~2)(R)dR. (7) 

The coefficient ljI2(R) can be obtained from the equilibrium radial distribution function 
[which we now write as simply ~(R)] by solving 

d~( R2~(R) d~2~R») -6~(R)ljI2(R) = R3 d~~R), (8) 

using the boundary conditions for the excess probability current density in pair space 

lim R2 ~(R) dljl2(R) 
R--->O dR = 0, (9) 

lim 
R--->oo 

ljI2(R) = o. (10) 



884 A. F. Collings and D. J. Evans 

A direct numerical solution of (8)-(10) is possible, but we have used the method 
proposed by Zwanzig et al. (1953) which leads to 

ljJ2(X) = D(x) - 3A(x) B(x) + 3 C(x) 

where 

+6A(x) J: !kJ(s) ljJ2(S) ds - 6 J: A(s) !kJ(s) ljJ2(S) ds, (11) 

A(x) = J:! s2 !kJ(s) )-1 ds, (12) 

B(x) = J: S2! !kJ(s)-l) ds, (13) 

C(x) = J: s2!!kJ(s)-l)A(s) ds, 

D(x) = J: s[!!kJ(s»)-I-l1 ds. 

(14) 

(15) 

Given !kJ(R) for a specific pair potential U(R), equations (11)-(15) can be integrated 
numerically if ljJ2(R) is known for all R > x. Since !kJ(R) -+ 1 at high R, the 
differential equation has the limiting value 

ljJ2(X) = plx3 • (16) 

For any arbitrary value of p, the function ljJ2(x, p) can be constructed by analytical 
integration in the range x = Rmax to 00 [where !kJ(R) = 1 for all R > Rmaxl and 
then by stepwise numerical integration from x = Rmax to x = O. If the correct value 
of p is chosen, then ljJ2(x, p) satisfies the boundary condition at x = 0, which is 

J: !kJ(s) ljJ2(S) ds = -! J: S2! !kJ(s)-l) ds. (17) 

Since ljJ2(x, p) is linear in p, the left-hand side of (17) can be evaluated for two values 
of p, and the appropriate value equal to the right-hand side of (17) obtained by 
interpolation. This value of p is then confirmed. 

3. Calculations 

Theoretical equilibrium radial distribution functions have been determined for 25 
states of an LJ (12,6) system by the molecular dynamics technique (Verlet 1968). 
The reduced densities (p* = N cr3 I V) range from 0·45 to 0·88 and the reduced 
temperatures (T* = k TIE) from o· 591 to 3 ·669. For the present study, the 
computed distribution functions were interpolated to finer R space using a sixth-order 
Lagrangian fit to the functional 

h(R) = R!kJ(R) exp! - U(R»). (18) 

For all save the lowest densities, computed values of the !kJ(R) were still oscillating 
at the upper limit of rlcr = 5 ·0. We chose to extrapolate these functions until 
the amplitude of the oscillations was less than 1 x 10-6, using the Omstein-Zemicke 
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relationship (Green 1960) 

9o(R) ex: exp{ - U(R)JI R, (19) 

which was modified by a term cos(kR) to reproduce the oscillatory behaviour. 
The frequency of oscillations in 9o(R) for R > 5 was assumed to be the same as 

for R < 5, and for each state agreed closely with that predicted from the exact PY 
solution for hard spheres (Perry and Throop 1972). 

Table 1. Viscosity of argon calculated from the Kirkwood theory 

Temp. V 
(l0-6 m3 mole-l) 

Viscosity (10- 6 N sm -2) 
(K) Kinetic Intermolecular 

131·2 27·02 0·018 1·772 
112·1 0·015 1·762 
70·8 0·007 2·096 

346·0 27·97 0·064 1·397 
263·8 0·048 1·460 
152·5 0·026 1·586 
135·0 0·022 1·515 
105·4 0·017 1·641 
94·2 0·014 1·601 
86·1 0·013 1·643 
78·8 0·011 1·644 
98·2 28·86 0·018 1·406 

340·8 31·70 0·079 0·817 
156·2 0·038 0·875 
128·1 0·032 0·887 
99·1 0·025 0·907 

439·5 36·58 0·122 0·426 
218·9 0·065 0·467 
189·8 0·057 0·474 
124·1 0·040 0·470 
107·8 0·036 0·462 
162·9 47·55 0·068 0·160 
351·5 52·84 0·145 0·079 
204·9 0·090 0·076 
185·9 0·083 0·074 

The consistency of solution was subject to the following tests: 
(1) different techniques of integration; 
(2) convergence; and 

Total 

1·790 
1·776 
2·102 
1·461 
1·507 
1·612 
1·537 
1·658 
1·616 
1·656 
1·656 
1·424 
0·896 
0·913 
0·919 
0·932 
0·547 
0·531 
0·531 
0·510 
0·498 
0·227 
0·223 
0·166 
0·157 

(3) insensitivity to the treatment of 9o(R), including (i) variation in the cut-off 
of 9o(R) and therefore of the remnant oscillation, (ii) modification of the first 
peak in 9o(R) and of the net correlation function !AJ(R)-1 by ± 1%, and (iii) 
an alternative extrapolation procedure in which the oscillations were arbitrarily 
damped by 1/ R. 

From these tests we conclude that negligible errors exist in calculations which 
adopt a step-length in riO' of 0·01 and a final oscillation in !AJ(R) less than 10-.5. 

The calculations reported here satisfy these requirements. 
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The friction constants employed here are based on an empirical relationship fitted 
to self-diffusion coefficients for an LJ (12,6) fluid calculated by molecular dynamics 
(Levesque and Verlet 1970): 

D* = 0·006423 T*/p* +0·0222 -0.0280p*, (20) 

where the asterisk implies a reduced parameter. Equation (20) was recommended for 
use at reduced densities of 0·65 and larger, but we have employed this relationship for 
the four lowest density points in Table 1 (p* = 0.456-0·506) accepting any attendant 
error which may cause D to be overestimated by as much as 20%. 

4. Discussion 

To compare the theoretical results from equation (7) with actual experimental 
viscosities, the reduced parameters must be transformed into real molecular properties 
using appropriate LJ (12,6) values for cr and E/ k. Since we compare our calculations 
with experimental values for argon, we have used the recommended values (Hirschfelder 
et af. 1954) of cr = 3·405 X 10- 10 m and E/ k = 119·8 K. Values must also be supplied 
for ~(1), the singlet friction constant, and ~(2), but the choice for ~(2) is a matter of 
contention. 

The reduced coefficient of self-diffusion given by (20) is readily converted to an 
actual coefficient since 

I 

D = (E/m)2crD*. (21) 

Equation (1) is the obvious source for ~(1) because the coefficient of self-diffusion 
and the mass current density are related to the one-particle distribution function. 
Three different approximations for relating ~(2) to ~(I) have been proposed. The first 
evaluation of the Kirkwood theory (Kirkwood et af. 1949) assumed that 

Z(2) = (;, (22) 

but in later work (Zwanzig et af. 1953, 1954), the preferred approximation was 

Z (2) = (; I + ~ 1 2 ' (23) 

.... 
where ~ is the scalar one-particle friction constant and II and 1 2 are unit dyads 
in rl' r 2 space. Equation (23) therefore neglects the dependence of the pair friction 
tensor on momenta and on the relative configuration of pairs of molecules (Zwanzig 
et al. 1954). Rice and Kirkwood (1959) subsequently proposed that 

1)(2) = Dl l +D1 2 , (24) 

i.e. the pair diffusion tensor was the direct sum of the one-particle diffusion tensors. 
When the molecules constituting the pair are well separated, either (23) or (24) is 

justified. However, at close separations, the assumption of independent movement of 
the molecules must break down. In any event, in the three evaluations of the shear 
viscosity coefficient of liquid argon cited above, the form of the pair friction tensor 



Kirkwood Theory of Shear Viscosity 887 

ultimately employed was 

,(2) = k T / Dexp , (25) 

which is compatible only with the use of (22). 
We believe that the approximation which is most consistent with the Kirkwood 

theory is (23). It should be noted that this is our interpretation only, based on a 
careful reading of the original Kirkwood papers, which are indefinite on this point. In 
calculating the results in Table 1, we have employed ,(2) = 2k T / D exp, where Dexp 

is based on (20), the self-diffusion coefficient of the LJ (12,6) fluid. In the range of 
states corresponding to the real liquid region, the kinetic contribution to momentum 
transfer predicted by the theory varies from 8% of the intermolecular contribution 
to less than 0·5% at the most 'solid-like' state. The kinetic contribution reaches 
a maximum of 65% of the total shear viscosity for T* = 2·934 and p* = 0.450, 
which is well into the dense gas region. 

In Fig. 1, the total viscosities (dashed curves) in Table 1 have been compared with 
experimental data (solid curves) for argon (Michels et af. 1954; Hanley et af. 1974). 
The quantitative agreement between theory and experiment is seen to be better at 
high densities, being of the order of 65% for V = 28·0xlO- 6 m3 mole- l . However, 
at the lowest density (V = 52·8xlO-6 m3 mole- I ), the theoretical values are only 
one-third of the experimental. One can also see that, in the high density region, the 
predicted temperature dependence is weaker than indicated by experiment. 

NEMD simulations of the shear viscosity must employ shear rates which are so 
high that even liquid argon is non-Newtonian. To afford comparison with experiment 
or theory, high shear rate viscosities must be extrapolated to zero shear. This 
process introduces some uncertainty in the comparison of simulated and other values, 
and emphasises why there are fewer data available for comparison than might be 
realised. In Fig. 2, simulated (open circles), calculated (squares) and experimental 
(solid circles) data for the zero-shear-rate viscosity of liquid argon along the gas-liquid 
coexistence curve are compared. NEMD estimates (Ashurst and Hoover 1973) of the 
zero-shear-rate viscosity are 10-20% higher than the best experimental data (Haynes 
1973). The Kirkwood theory estimates of the viscosity, based on the results in 
Table 1, are approximately one-half the experimental values. 

It can be argued that the comparison with experiment reinforces the point that the 
Kirkwood theory is specifically applicable to liquids, and not to dense gases where 
the Brownian analogy is less apt because of the increased mobility of the molecules. 
It is likely that the temperature dependence and the quantitative agreement would be 
improved in the liquid region if one could account for the increase in the pair friction 
tensor at close separations. While there is no correlation of movement between two 
molecules that are well separated, it is clear that the relative diffusion is much reduced 
when they are close together. An estimate of the effect of the separation on the pair 
friction tensor can be obtained by assuming that 

,(2) = 2,(1) g( r), (26) 

where we have reasoned that the enhancement of friction will display similar spatial 
dependence to the radial distribution function. Indeed, the predicted viscosity for the 
most 'solid-like' case is increased by 30% when this approximation is employed. 
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Fig. 1. Temperature dependence of the shear vi.sliosity coefficient for argon at diffe'rent molar 
volumes (in 10-6 m3 mole- 1): solid curves, experimental values (Michels et al. 1954; Hanley et 
al. 1974); dashed curves and open circles, calculated values. 
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Fig. 2. Comparison of experimental data with Kirkwood and NEMD simulation estimates of the 
viscosity of liquid argon along the coexistence curve: solid circles, experimental values (Haynes 
1973); open circles, NEMD (Ashurst and Hoover 1973); and squares, the Kirkwood theory 
(present work). 
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One attempt to quantify the relationship between the singlet and pair diffusion 
coefficients has been made in a two-dimensional molecular dynamics study by Fehder 
et af. (1971). They estimated that the relative two-dimensional diffusion coefficient at 
close separations was depressed by about 40%. However, their results also suggest that 
in the asymptotic limit, equation (24) is more appropriate than (23). The consequence 
of this result is that the intermolecular contributions to the shear viscosity coefficient 
in Table 1 for the Kirkwood theory have been overestimated. 

Our results do confirm the conclusion of Mazo (1967) that the validation of the 
Kirkwood and related, theories can be achieved only when the relationship between 
the one- and two-particle friction constants has been determined. This relationship 
can, in principle, be established by molecular dynamics calculations. 
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