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Abstract 
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A semi-analytic method is used to solve the Grad-Shafranov equation for a range of compact 
torus plasma configurations which have ellipsoidal separatrices, zero toroidal magnetic field and 
pressure P proportional to the square of the poloidal flux function 1[1. The equilibria are compared 
with the analytic solutions of the Solov'ev model, for which P ex 1[1. 

1. Introduction 

The rotamak is a compact torus plasma configuration in which the toroidal current 
is driven by means of an externally generated rotating magnetic field (Hugrass et al. 
1980). In this paper we ignore confining effects due to the oscillating fields and analyse 
the magnetohydrodynamic (MHD) equilibrium of the steady-state configuration, 
which has the form of a field reversed mirror. Also, we confine our analysis to the 
case of zero toroidal magnetic field, which covers the majority of experiments so far 
conducted (e.g. Durance and Jones 1986; Durance et al. 1987). 

To calculate the energy loss processes which determine the plasma temperature, it is 
necessary to have an equilibrium model which gives the plasma density, temperature 
and magnetic field profiles. These can be obtained (Storer 1982) using MHD 
equilibrium codes such as PEST (Grimm et al. 1976). However, we wish to survey 
the dependence of these parameters on the plasma size and shape, on the power input 
and on the rotating field frequency; such calculations using PEST would be very time 
consuming. An analytic equilibrium model (Solov'ev 1975), in which the plasma 
pressure P is proportional to the poloidal flux function 1[1, can be used. However, it 
predicts a (non-realistic) constant density distribution when coupled with the rotating 
magnetic field current drive condition that the electron fluid has a rigid-body rotation 
(Jones and Hugrass 1981). In this paper we develop a semi-analytic method to 
calculate equilibria for a model with P 0:: 1[12. This model predicts density and 
temperature profiles which are realistic for warm to hot plasmas. The equilibria 
are analysed as a function of the plasma size and shape, and comparisons with the 
Solov'ev equilibria are made. The P 0:: 1[12 equilibria determined here have been 
used as a basis for the calculation of energy transfer rates in a range of rotamak 
configurations (Donnelly, Rose and Cook 1987; henceforth referred to as DRC). 

0004-9506/87/020175$02.00 



176 I. J. Donnelly et af. 

In Section 2 the numerical methods used to solve the P a: 1f/2 equilibrium equations 
are described. The dependence and scaling of various parameters on the shape and 
size of the plasma are given in Section 3, and comparisons are made with the Solov'ev 
model results. 

2. Calculation of the Flux Function when P a: 1f/2 

In cylindrical (r, </>, z) coordinates the Grad-Shafranov equation for an axisymmetric 
plasma with zero BJ;> is 

r~(~ alf/) + llf/ = -J.Lo r2 dP, 
ar r ar az2 d If/ 

(1) 

where P is the plasma pressure and the flux function If/ is defined as 

If/(r, z) = f~ Bz<r', z)r' dr'. (2) 

The condition that If/( r, z) is constant defines a flux surface. 
We consider the case in which P a: 1f/2 (henceforth called the 1f/2 model) and 

solve equation (1) for a plasma configuration confined inside an ellipsoidal separatrix 
defined by 

X 2+(Z/02 = 1, (3) 

where ~ determines the ellipticity of the separatrix, R is the separatrix radius at 
z = 0, and where X = r/ Rand Z = z/ R. It is convenient to write 

If/(X, Z) = ljJo ljJ(X, Z), (4) 

where ljJ is normalised to a maximum value of 1, which occurs at the magnetic axis, 
and ljJo is the maximum value of If/. For A defined by 

P = (2A 2/ J.Lo R4) 1f/2 , (5) 

equation (1) becomes 

X ~(~ aljJ) a2ljJ ax X ax + aZ2 = _4A2 X2ljJ. (6) 

The solution of this homogeneous partial differential equation is subject to the 
boundary conditions that ljJ = ° on both the separatrix and the z-axis. There is an 
infinite number of eigenvalues A for which a solution can be obtained; here we are 
only interested in the smallest (non-zero) A, which gives non-negative ljJ. As is to be 
expected, A is a function of ~. 

Berk et af. (1981) have found a solution of equation (6), regular at X = 0, which 
we express in the un-normalised form 

ljJ(X, Z) = Fo(TJn' p) cos(kn Z), (7) 
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where Po is the Coulomb wavefunction (Abramowitz and Stegun 1965), TJn = k~/8A, 
P = AX2 and kn is an arbitrary constant. To obtain a solution for equation (6) which 
satisfies the boundary conditions, we use a Fourier expansion in the z direction and 
write 

N 

lJi(X, Z) = ~ wn Po(TJn' p) cos(kn Z), 
n=O 

(8) 

with kn = mr / M~. Accurate solutions can be obtained for a range of Nand M. 
In deriving the results presented here we have used N = 8, with M = 4/~ when 
~ < 4 and M = 1 when ~ > 4. The weighting constants wn and the eigenvalue A are 
determined as follows: 

(i) For any fixed cP coordinate, the separatrix is divided into N + 1 equal segments 
between (X = 0, Z = n and (X = 1, Z = 0). We require lJi = ° at the 
N + 2 equally spaced end-points of these segments. 

(ii) As equation (6) is linear and homogeneous, the condition Ub = 1 is initially 
used to determine the amplitude of the solution. 

(iii) A value is assigned to A, and wI' ... , WN are determined by requiring lJi = Oat 
all end-points except the first (X = 0, Z = ~), where equation (8) guarantees 
lJi = 0, and the last (X = 1, Z = 0). 

(iv) The solution is normalised to a maximum value of 1. 

(v) The value of lJi(1, 0) is calculated. 

(vi) The process (ii)-(v) is iterated on A until IlJi(l, 0) I < E, where E is typically 
< 10- 3. These final values of A and lJi are the solutions for the given ~. 

The sensitivity of A and lJi to the parameter N has been investigated for ~ = 0·25, 
1 and 4. For ~ = 1, a converged eigenvalue (accurate to five figures) and an excellent 
fit to the separatrix position is obtained for N as low as 4. Comparable accuracies 
are obtained for ~ = 4 with N = 6, and for ~ = 0·25 with N = 8. Examination 
of the case ~ = 1 has shown that the eigenvalues and flux contours predicted with 
4 < N < 15 are virtually identical. However, when N > 15 we have found that 
errors become evident in the flux contours and the eigenvalues because of numerical 
problems which arise from the rapid increase of the Coulomb wavefunction with 
X when TJ n is large [Po(TJn' p) ex:: X1I2 exp(kn X) when TJn > pl. Similar problems 
prevented us from obtaining converged solutions for ~ < 0· 1. It appears possible to 
overcome this difficulty by changing our Coulomb wavefunction routine, but this has 
not been pursued because the small ~ configurations are not of interest. 

Using kn = mr/ M~ means that the flux function (8) has a periodic length M~R 
in the z direction. The dependence of the solutions on the parameter M has also been 
investigated. If M~ is large then TJn is small for n small, Po(TJn' p) is also independent 
of n, and the solution fails due to round-off error problems (even though double 
precision arithmetic is used). if M~ is small we encounter the already mentioned 
problem associated with the calculation of Po( TJ n' p) for large TJ n' Therefore, we have 
chosen M = 4/~ when ~ < 4 and M = 1 when ~ > 4 (periodicity constraints do 
not allow M < 1). Using N = 8 and the above prescription for M gives accurate 
eigenvalues and flux contours for 0·25 < ~ < 4. Converged eigenvalues have also 
been obtained for ~ = 10; however, the separatrix contour exhibits indentations in 
the region X ::::::: 0, I Z I ::::::: ~. This arises because, for large ~, lJi is very small when 
I ZI > ~1I2, and small errors in the individual terms in (8) can lead to large percentage 



178 I. J. Donnelly et al. 

errors in tjJ and in the derived fields. Therefore, we restrict the presentation of our 
results to the range 0·25 ,.;; , ,.;; 4. * 

It is interesting to observe that, because the individual terms in equation (8) all 
satisfy equation (6), it is possible to determine, for an arbitrary A, a set of wn so that 
tjJ = 0 at N + 1 equally spaced points around the separatrix from (X = 0, Z = 0 to 
(X = 1, Z = 0) inclusive. However, unless A is close to an eigenvalue, this results 
in severe distortions of the flux surfaces, both internally and around the separatrix 
between the mesh-points. 

It is, of course, possible to solve equation (6) using a completely numerical partial 
differential equation solver, and accurate solutions could (presumably) be obtained for 
arbitrary'. The advantage of the semi-analytic method is that it allows straightforward 
evaluation of both the volume integrals of the various functions and the derivatives 
of tjJ which are required for the power balance calculations in DRC. 

Table 1. Dependence of equilibrium parameters on , 

, A ljJoW IjJ~W I<f>W I~W 
ljJo(1) 1jJ~(1) 1<f>(I) 1~(1) 

0·25 7·60 0·50 0·50 0·49 0·50 
0·5 4·85 0·78 0·79 0·68 0·62 
0·75 4-11 0·93 0·93 0·84 0·81 
1·0 3·81 1·00 1·00 1·00 1·00 
1·25 3·648 1·04 1·04 1·15 1·20 
1· 5 3·547 1·07 1·06 1·28 1·41 
1· 75 3·482 1·09 1·08 1·41 1·63 
2·0 3·435 1·11 1·08 1·51 1·84 
4·0 3·2825 1·16 1·11 2·22 3·61 
>1 7T 1·21 1·12 0·89, 

3. Dependence of Equilibrium Fields on , 

We analyse the equilibrium configuration for 0·25 ,.;; , ,.;; 4 and in the limit of 
, = 00. In the latter case, the plasma is infinite in the z direction with 

tjJ{X, Z) = sin{7T X2). (9) 

In Table 1, A is shown to be a decreasing function of, which tends asymptotically 
to 7T as , tends to 00. The listed values of A contain the number of significant figures 
that are needed to obtain an accurate fit to the separatrix. 

Fig. 1 a shows the variation of tjJ{X, 0) with X for' = 0·5, 1 and 2; this function is 
almost independent of ,. Also shown is the Solov'ev function tjJs(X, 0) (defined in the 
Appendix) which is independent of , (the superscript S is used to denote the 

* In a previous version of this paper we calculated IjJ using the prescription kn = n7T / N'. With 
N = 7 this method gives accurate results when 0·25 .;; , .;; 2, but it breaks down for N > 8 
and , outside this range because of the numerical problems which arise when k n is small or 
large. The Fourier expansion formulation, which we originally discarded because we expected 
numerical problems associated with large k m was re-examined following comments by a referee, 
and has proven to be superior. 
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----- ,=0·5 ---------- ,= 1·0 
---- ,=2·0 
--- - - Solov'ev model 

Fig.1. Profiles of (a) IjJ(X, 0), (b) ~R2J<p(X,0)/ [<p' (c) BiX, 0) and (d) BiO, Z) for the ,/,2 
model (~ = 0· 5, 1· ° and 2·0) and for the Solov' ev model. 

Solov'ev model whenever a comparison with the 1[/2 model is made). It is apparent 
that the position of the magnetic axis (where 1jJ = 1) is very close to X = V ~ for all 
cases. 

The magnetic field components are given by 

ljJo 1 aljJ and 
Br = - R2 X az 

ljJo 1 aljJ 
Bz = R2 X ax' (lOa, b) 

Fig. 1 c shows BiX, 0) for ljJol R2 = 1 and, = 0·5, 1 and 2; also shown is B~. 
For the same parameters, Fig. 1 d shows BiO, Z) as a function of ZI'. From Fig. 1 c 
it is apparent that BiX,O) has a similar dependence on X for both the 1[/2 and 
Solov'ev models, except for configurations with small, which have I BzCX, 0) I small 
at X z 0 and X z 1. As' becomes smaller than 1, the position of the maximum 
values of I BiX, 0) I moves in from X = 0 and 1 towards the magnetic axis. 
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Fig. 2. Comparison of flux surface contours for the 1/12 (top) and Solov'ev (bottom) models. 
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The global form of the magnetic fields can be deduced from the contours of constant 
ljJ which are compared in Fig. 2 for the If/2 and Solov'ev models with, = O· 75, 
1·0 and 1·5; the contour spacing is LlljJ = 0·1. Note that, relative to the Solov'ev 
values, the If/2 model contours are less 'D-shaped' and more concentrated around the 
magnetic axis. For all prolate configurations considered (1 < , .;; 10), the ljJ = 0·1 
contour lies in the region I ZI < ,112; this indicates that, in the regions I ZI > ,112, 
the magnetic field of the If/2 model is much smaller than that of the Solov'ev model, 
especially near the separatrix. The plots of BiO, Z) shown in Fig. 1 d illustrate this 
point. 

To see how the magnitude of the flux function depends on " we write 

P = Po ljJ2 (11) 

and normalise the equilibrium to the same value of Po and R for each ,. Equations 
(5) and (11) then give 

r 4 I 
ljJo(~) = (0. SILo R PO)'i/AW· (12) 

The' dependence of ljJoW/ljJo(1) [=A(1)/AW1 is compared with the Solov'ev model 
prediction in Table 1. 

The current density is 

JifJ = rdP/dlf/ = (4A2ljJO/ILo R3)XljJ, (13) 

and the total current is 

IifJ = (2A2ljJohTlLo R)J 12' (14) 

where 

I~ IX' J 12 = 47T 0 dZ 0 XljJ dX, (15) 

with X' = (l_(Z/02J 1I2. Fig. 1 b shows ,R2 JifJ(X, O)/IifJ for, = O· 5, 1 and 2; 
for the Solov'ev model this function is independent of ,. The current density JifJ is 
obviously more concentrated than J~ around the magnetic axis. This leads to the 
differences in the magnetic field shapes predicted by the two models. From equations 
(12) and (14), we get 

IifJa)l IifJ(1) = AWJ 12a)/A(1)J d 1). (16) 

The variation of this term with, is compared with the Solov'ev model prediction in 
Table 1. 

We note that IifJ is proportional to ljJo for both the If/2 and Solov'ev models. 
Therefore, the magnetic field and the current distribution have a fixed shape (which 
depends only on 0, and an amplitude which is proportional to the current in the 
external field coils IF' Hence the linear increase of IifJ with IF' which has been 
observed experimentally by Durance et al. (1987), implies that the shape of their 
plasma configuration remains almost constant as IF is changed, and the plasma 
pressure increases as I~. 



182 1. J. Donnelly et af. 

Equilibrium models determine the plasma pressure distribution, but extra 
information is needed to obtain the plasma density and temperature profiles. The 
theory of the rotating magnetic field current drive (Jones and Hugrass 1981) indicates 
that, given full penetration of the rotating field into the plasma, the electron fluid 
rotates with a constant angular frequency. When this is combined with expression 
(13) for the current density, the number density n and the sum of the electron and 
ion temperatures T are both proportional to lji. In contrast, the Solov'ev model has 
nS = constant and T S ex: ljis. The more realistic expression for n, which is obtained 
with the 1/12 model, is the major reason for our analysis of this model and its use in 
the power balance studies in DRC. 

4. Conclusions 

The Grad-Shafranov equation has been solved for the case P ex: 1/12 , subject 
to the boundary condition that the separatrix is ellipsoidal. The solution method 
is effective provided the configuration is not too prolate (i.e. provided that ~ ..;; 4). 
The equilibria have been compared with the analytic solution of the Solov'ev model 
(P ex: 1/1). Although there are many similarities, some differences have been identified; 
in particular, when ~ > 1 the 1/12 model has a significantly lower magnetic field on 
the separatrix in the regions I Z I > ~ 1/2. 

When combined with the rotamak condition of a rigid-body rotation of the electron 
fluid, the 1/12 model has a more realistic density distribution than that of the Solov'ev 
model, and is therefore more useful for the power balance calculations presented by 
DRC. 
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Appendix. Solov'ev Model Equilibria 

Analytic solutions of the Grad-Shafranov equation can be found when P ex: IJI 
(Solov'ev 1975). In this case, equation (1) is a linear inhomogeneous partial differential 
equation. With the notation defined in Sections 2 and 3, the following relations hold: 

\fi(X, Z) = 4X2{1_X2_(Z/'iJ, 

8(4,2 + 1)\fio X, 
'4> = 1-'-0,2 R3 

8% XZ, 
Br = '2R2 

_(I-'-0'2R4PO)~, (AI) 
% - 8(4'2 + 1) 

16(4,2 + 1)% (A2) I - , 
4>- 31-'-0,R 

- 8% {1-2X2-(Z/,)2J. (A3) Bz - R2 
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