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Abstract 

Energy transfer processes are calculated for a range of rotamak plasmas which are modelled by 
equilibria with plasma pressure proportional to either the poloidal flux function or the square 
of this function. The latter case is more realistic, so it is used to study the conditions for 
which global power balance can be obtained for both the electrons and the ions. The absence 
of a toroidal magnetic field means that there is no neo-classical transport. Provided that the 
particle and energy diffusion remains classical when the plasma temperature increases, the energy 
confinement time is predicted to scale as n3/2 R8, where n is the density and R is the radius of 
the separatrix. As the plasma temperature increases, the dominant energy loss process changes 
from plasma recycling to electron thermal conductivity and then to ion thermal conductivity. 

1. Introduction 

The rotamak is a compact torus plasma configuration in which the toroidal current 
is driven by means of an externally generated rotating magnetic field (Hugrass et al. 
1980). In this paper, we derive expressions for the various processes which contribute 
to the power flow in typical rotamak plasmas. The conditions imposed by (i) the 
magnetohydrodynamic (MHD) equilibrium, (ii) the current drive mechanism and (iii) 
the global power balance constraints lead to a complete determination of the density 
and the electron and ion temperature distributions. Therefore, the power flow terms 
can be evaluated and the dominant ones identified. This knowledge is useful for the 
interpretation of present experiments and for the planning of future ones. 

Since most rotamak experiments have been performed without a toroidal magnetic 
field, we confine our analysis to this case. This simplifies the calculation of particle and 
energy diffusion by eliminating neo-classical effects. The oscillating fields associated 
with the rotating magnetic field (RMF) are expected to affect the plasma equilibrium 
and the energy transfer processes. The calculation of such effects is difficult, and they 
are neglected in this paper. In the models considered here the sole effect of the RMF 
is to drive a rigid-body rotation of the electron fluid, thus giving rise to a toroidal 
current (Jones and Hugrass 1981). 

The plasma configurations studied are the MHD equilibria described by Donnelly, 
Rose and Cook (1987) (henceforth referred to as DRC). Two types of equilibria are 
considered, the analytic Solov'ev (1975) model in which the plasma pressure P is 
proportional to the poloidal flux function 1[/, and the 1[/2 model for which P ex: 1[/2. 
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When coupled with the condition that the electron fluid has a rigid-body rotation, 
the Solov'ev model predicts the plasma density n to be spatially constant, and the 
temperature T to be proportional to '/I. In contrast, the '/12 model predicts both n 
and T to be proportional to '/I; when the plasma temperature is medium or high, 
this density distribution is more realistic than the Solov'ev model prediction. Both 
the '/12 and the Solov'ev models are used to evaluate the energy transfer rates, so 
that their sensitivity to the density configuration can be assessed. However, only the 
'/12 model is used for the volume-averaged power balance calculations because the 
Solov'ev model predicts infinite ohmic heating power at the plasma edge. 

Calculations of the thermal energy and particle loss rates for Solov'ev models of 
compact torus configurations have also been made by Auerbach and Condit (1981) 
and by Nguyen and Kammash (1982). However, their results and ours cannot be 
directly compared because of the different density and temperature distributions used. 
Also of interest is the paper of McKenna et af. (1983), who analysed the evolution in 
time of the energy flows in a cylindrical plasma with a rigid-rotor current distribution. 
The relevant predictions of this work are in qualitative agreement with our results. 

The plan of this paper is as follows. In Section 2, the equilibrium and current-drive 
conditions are considered. The classical theory of particle diffusion and thermal 
conduction is presented in Section 3. Expressions for the energy transfer rates are 
given in Sections 4 and 5. The Solov'ev and '/12 models are compared in Section 6, 
and scaling laws derived using the '/12 model are presented in Section 7. Sections 8 
and 9 describe the power balance studies. The main results and some limitations of 
the model are discussed in Section 10. 

2. The 1JF2 Model Equilibrium 

The Solov'ev and the '/12 model equilibria have been analysed by DRC. We 
denote the former by the superscript S when they are compared. In this section we 
summarise relationships between various plasma parameters for the case of the 1JF2 
model equilibrium. 

Elsewhere, DRC have solved the Grad-Shafranov equation for a plasma 
configuration inside an ellipsoidal separatrix defined (in cylindrical geometry) by 

X 2+(Z/02 = 1, (1) 

where X = r/ R, Z = z/ R, R is the separatrix radius and ~ determines the separatrix 
shape. We have '/I = 0 on the separatrix. The pressure distribution is given by 

P = (2A? / /-to R4) '/12 , (2) 

where A is defined in DRC. For convenience we write 

'/I(X, Z) = \jJo \jJ(X, Z), (3) 

with \jJ normalised to a maximum value of 1. 
To evaluate the energy transfer processes, both the number density and the 

temperature profiles are needed. We consider a hydrogen plasma with n = ne = 1l;. 

The equilibrium equations define the pressure (P = nkT with T = Te+ Ii), and 
two extra relations are required to determine n, Te and Ii. The 'rotamak condition' 
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that the electron fluid rotates as a rigid body is used to obtain nand T from P. The 
values of 1'e and 1j can be derived from T by requiring steady-state power balance; 
we assume that 1'e and 1j have the same spatial variation. 

In the rotamak, the current is driven by an RMF (with frequency w) which, in the 
ideal case, entrains the electron fluid which then rotates as a rigid body (Jones and 
Hugrass 1981). In low temperature plasmas there is generally some 'slip' between the 
rotating field and the electron fluid, with the result that· the latter rotates at a lower 
frequency which may vary with position. Here we assume rigid-body rotation at the 
constant frequency w. The magnitude of the current density is therefore 

Jcj> = neRwX. (4) 

Equation (13) in DRC and (4) here give 

n = "0 l/J , with "0 = 4A.2l/JO/ /-to e R4 w . (5) 

If we express Tin eV (T*), the equality P = neT* and equation (13) in DRC give 

T* = T~ l/J, with T~ = o· 5wl/J0 . (6) 

Thus, both nand T have the same spatial dependence as l/J. We also note that, for a 
given equilibrium configuration with a fixed toroidal current, "0 scales inversely and 
10 linearly with w. 

3. Particle and Thermal Energy Fluxes 

The evaluation of some energy transfer processes requires a knowledge of the 
particle loss rate. This is examined together with the related problem of the thermal 
energy flux. The 1[/2 model is considered here, and the Solov'ev model is treated in 
the Appendix. 

We use expressions derived from classical particle and energy transport theory 
(Hinton 1983). Because Bcj> = 0, neo-classical effects do not arise. As our main 
concern is low temperature plasmas, the Coulomb logarithm is assigned the value 10. 
Unless otherwise specified, we consider a hydrogen plasma (~ = 1). 

The electron and ion particle fluxes perpendicular to a flux surface are related by 
re = ~ri = r, with 

r = -(\1 P -1.5ne kV 1'e)/me D~ Tei' (7) 

where De = eB/me' Note that the gradient terms are all perpendicular to the local 
flux surface. The electron-ion and ion-ion collision times are (Braginskii 1965) 

T· = 3.5xlO- 1O(T*)!(n*)-1 el e e , 

Til = 2.1xlO-8(Tr>~(n:)-1, 

where the units of n: are 1020 m-3• 

The particle flux through the flux surface l/J is 

rt(l/J) = fiji r.dS. 

(8) 

(9) 

(10) 
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Using the Solov'ev model, Auerbach and Condit (1981) have found rt(tjJ) as a 
function of tjJ. The evaluation of r t(tjJ) is difficult for the 1[/2 model because the 
flux surfaces and the integrals must be determined numerically. We have, therefore, 
taken the integral in equation (10) over the surface defined by the separatrix, using 
the values of \ltjJ and B at the separatrix but the values of density and temperature 
on some flux surface tjJ. Making use of equation (12) in DRC and 

l\ltjJl = ~{(:~r +(:~rr = RXBtjJ(j1 (11) 

gives 

r t = 1·62x 1023 tjJh2 n6(0.5 T~o+2 rro)(T6)-I(T~o)-!RJtf' (12) 

where 

Jtr=47T f X3{(:~r+(:~r}-~dl' (13) 

and the line integral around the separatrix goes from (X, Z) = (O,~) to (1,0). It is 
apparent from equation (12) that r t depends only weakly on tjJ, except near tjJ = O. 

We define the particle confinement time to be 

7p=Nlrl' (14) 

where the total number of electrons in the plasma is 

N = 102on6 R 3J 12 . (15) 

The generalised integral J mn is defined in equation (26) below. 
The thermal energy flux is a sum of thermal conduction and energy convection 

terms: 

Qa q a + 2 . 5 e T~ r a , a = e,i. (16) 

In the direction perpendicular to the flux surface we have 

qe = -(ne e T~I me n~ 7 ej)(4. 664e\l T~ -1· 5 n;1 \l P), (17) 

qj = -(2nj e2 Ttlmj n~ 7 ii)\l rr. (18) 

The electron thermal conduction and convection terms are of the same order, whereas 
the ion energy flux is dominated by conduction. 

Defining the thermal energy flux through the flux surface tjJ by 

Pta = fiji Qa·dS, 

and using the reasoning that led to equation (12) gives 

Pte = 7· 6x 104tjJh,2 n6( T~o)-~ RJ tf' 

Ptj = 1·6 X 106tjJh? n6( Tto)~ (T6) -I RJ tr . 

(19) 

(20) 

(21) 
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The contribution to Pti of the convection process has been omitted as it is negligible. 
The approximation (T:o + 0·69 Tro)l( T:o + Tit) :::: 1 has been used to simplify 
expression (20). Note that Pta is more sensitive to the value of l.jJ than is rt. 

The thermal energy content of the plasma is 

Ea = 24n~ T~o R3f 14 , (22) 

and we define the thermal energy confinement times to be 

T ta = Ea l Pta· (23) 

A question arises concerning the validity of the expressions (7), (17) and (18) 
near the neutral point, where B :::: o. These expressions are valid provided that 
l1a T ai ;;;. 3, otherwise they give values which are too large. In the Appendix we use 
the Solov'ev model to show that the contribution to f tr coming from the neutral 
point is negligible; we have confirmed this numerically for the 1[/2 model. Therefore, 
our expressions for r t and Pta are not rendered incorrect by the overestimation of 
the very small losses in the vicinity of the neutral point. 

The values ofl.jJ to be used in equations (12), (20) and (21) are yet to be determined. 
Assuming edge densities and temperatures which are about 10% of the central values, 
l.jJ = 0·1 appears to be a reasonable choice if the losses are classical. However, the 
experience in tokamaks is that both T p and T te are anomalously small, and that they 
are related by T P :::: T te to 5Tte (Hugill 1983). The substitution in equations (12) and 
(20) of l/J = o· 5 (corresponding to an 'average' density and temperature) is probably 
more realistic than l/J = o· 1 because it gives T p :::: 1· 5T te (for lio = O· 5 TeO) and 
leads to enhanced particle and electron thermal energy losses. We do not expect the 
ion thermal loss rate to differ markedly from the classical value, so equation (21) is 
evaluated using l/J = o· 1. The choice of l/J = o· 1 in equation (21) and l/J = O· 5 
in (12) gives T plTti :::: 1, which is in reasonable agreement with measurements on 
field-reversed configurations (Hoffman et al. 1984). 

Henceforth, we evaluate equations (12) and (20) using l/J = O· 5 and (21) using 
l/J = o· 1. This corresponds to an 'enhanced classical' evaluation of the particle 
diffusion and the electron thermal energy transport, and a classical evaluation of the 
ion thermal energy transport. 

4. Energy Transfer Processes 

The volume-integrated power balance equations for the electron and ion components 
of the plasma are written as 

a II *-- ·5 ne e Ted V - lh - Pei - Pte - Pne - Phr - Pee - ~r ' at 

~ I 1. 5ni eTr d V = Pei-Pti-Pex· at 

(24) 

(25) 

We consider only the steady-state case, so that the LHS terms are zero. The source 
terms for electron and ion energy balance are ohmic heating ~l and the equilibration 
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term Pei respectively. The other terms represent energy loss processes. Given a 
specified plasma equilibrium and defined expressions for each term on the RHS 
of (24) and (25), the only free parameter that can be changed to satisfy energy 
balance is TeO which (since TeO + 110 = 10 and 110 < TeO) is restricted to the range 
0.5To < TeO < To. In general, an extra free parameter is needed to allow both 
electron and ion power balance to be obtained. This requirement has led us to modify 
both the electron thermal energy flux and the particle loss rate, as discussed below in 
Sections 4c, 4d and 8. 

The evaluation of the energy transfer processes requires volume integrations of 
functions which depend on density, temperature and position. Many of these integrals 
can be reduced to the form 

~ X' 

f mn = 47T fo dZ fo xmljinl2 dX, (26) 

where X' = ! 1-(Z/{)2 J 112. All the 1f/2 model energy transfer integrals are evaluated 
in Section 5. 

For the 1f/2 model, the RHS terms of (24) and (25) are given by the following 
expressions. The Solov'ev model is treated in the Appendix. 

(a) Ohmic Heating 

Writing the (perpendicular) resistivity as 

11 = 1.05xlO~3(T:)~~, (27) 

gives the ohmic heating power as 

~l = f 1IJ~dV = !4.15xlO~2(T:o)~~f31IRfi2JI~. (28) 

(b) Electron~Ion Energy Transfer 

The energy equilibration is (Braginskii 1965) 

Pei = f 3(me1mi)ne Tci 1 e(T:- Tn d v 

= 7 ·47x 107(n~)2(T:o)~~(T:o- Tto)R3 f 13 . (29) 

(c) Electron Thermal Energy Loss 

The thermal energy loss Pte is derived from equation (20) with lji = 0·5. We also 
introduce a scaling factor a into the expression for Pte' so that both electron and ion 
power balance can be satisfied: 

Pte = 2· 7x 104a",z n~( T:o)~~ Rf tf' (30) 

The method for evaluating a is discussed in Section 8. 
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(d) Electron Energy Used to Ionise Neutral Particles 

For plasmas in thermal equilibrium, the energy associated with ionisation and 
recombination is negligible for plasma temperatures greater than a few eV. However, 
equation (14) indicates that the particle confinement time can be very short « 100 Ils) 
for low temperature plasmas, so the observation that the density remains fairly 
constant during rotamak discharges, which typically have duration times of 10 ms 
(Durance et al. 1987), implies that the plasma is continually refuelled by an influx of 
neutral particles which are ionised at a rate equal to Ft. These neutrals are probably 
H atoms and H2 molecules which are formed by recombination at the vessel wall, 
so we assume that the bulk of the neutrals have energies well below 1 eV because 
of wall effects. Relaxation of this assumption would not change the loss given in 
equation (31) below by more than -50%. There are many competing processes 
involved in the ionisation of Hand H2. Using the cross sections referenced by Dolan 
(1982) we estimate that, for the low temperature plasma configurations considered 
here, low energy neutrals penetrate (on average) to where the plasma temperature is 
about 10 eV before they are ionised. Before ionisation, the neutrals are excited by 
electron collisions and radiate a quantity of energy which is dependent on the plasma 
density and the electron temperature (Harrison 1984). We estimate that, for cases 
in which this energy loss channel is important, the electron energy lost through line 
radiation and ionisation of the incoming neutrals is about 50 eV per ionisation, so 
that the total energy loss is 

Pne = 50eFt • (31) 

For future reference, we define the number density of H atoms to be ~, equate the 
total ionisation rate to F t and use the fact that the ionisation rate at T:o ::::: 10 eV is 
<veO'"ion>::::: 2xlO- 14 m3 s- 1 to derive 

J ne ~ d V::::: 5x 1013 Ft· (32) 

We derive F t from equation (12) with l/J = 0·5, and with the scaling factor a 
included so that the ratio of T p to T te remains constant: 

F t = 1'}5x 1023aA? n~(O. 5 T:o+2 Tro)( T~)-l( T:o)-~ Rf" tr' (33) 

(e) Bremsstrahlung 

A volume integration of the expression given by Dolan (1982) for power radiated 
as bremsstrahlung gives 

Pbr = 150 Zeff( n~)2( T:o}~ R3 f 15 • (34) 

In all calculations we take Zeff = 1. 
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(f) Electron Cyclotron Radiation 

By assuming an optically thin plasma and no wall reflection, the electron cyclotron 
radiation power is given by (Miyamoto 1980) 

Pee = 6·2 S B2 n: T: d V = 6·2x 10-5;>.. -2(n~)2 T:o T~ R3 f ee' (35) 

where 

fee = 47T S>Z S:' X-l{(:~y +(:~y}~2 dX. (36) 

For the configurations considered here, B2 is small where nT is large and vice versa, 
which decreases the cyclotron radiation, compared with the case of nearly constant 
magnetic field. 

(g) Line Radiation 

We consider the line radiation from an oxygen impurity with number density 
nox 0: ne' With a corona equilibrium model the line radiation power is 

~r = 1040 fox (n~)2 R3 f IT' (37) 

where 

fox noxlne' 

{ x' 

flr(TeO'~) = 47T So dZ So XRox(Teo~)~2 dX, (38) 

and Rox is the radiation power function which we derive from Post et al. (1977). In 
all calculations we take fox = 0·03, unless otherwise stated. The only appreciable 
line radiation from hydrogen is that associated with the incoming neutrals; this is 
already included in (31). 

(h) Ion Thermal Energy Loss 

The ion thermal energy loss Pti is given by equation (21) with ~ = O· 1. 

m Charge Exchange Losses 

By assuming thermal neutrons and no re-ionisation of the charge exchange neutrals, 
the power loss due to this process is 

Pex = S e Tr ne nn< vi'O" exCIi» d V. (39) 

For atomic hydrogen, we have <Vi O"ex> ::::: 1O- 1\TnI!4 m3 S-1 when 1 < Tr < 104 

(Dolan 1982). The evaluation of (39) requires a knowledge of the distribution of 
neutrals throughout the plasma. This is not known, so we note the discussion in 
Section 4d and assume an average value for Tr of (Trol T:o)min(lO, T:o)' Thence, 
use of equation (32) gives 

Pex = e( Trol T:o)min( 10, T:o) r t • (40) 
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This formulation probably underestimates the charge exchange losses from hot 
plasmas. A comparison of equations (40) and (16) shows that Pcx < Pti ; therefore, 
the charge exchange losses are negligible. 
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Fig. 1. Oxygen line radiation power 
integral against the electron 
temperature for the 1[12 and Solov'ev 
models. 
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5. Power Transfer Integrals 

In Section 4 the energy transfer rates have been expressed in terms of dimensionless 
volume and surface integrals which are functions of r For 0·5 <: ~ <: 2, the transfer 
integrals are given accurately by functions of the form 

f(~) = f(I)~a-bln{. (41) 

The coefficients f(I), a and b are listed in Table l. 
The line radiation fir is a function of both ~ and TeO; to a good approximation 

(errors near the peak values are < 10%) we write 

f Ir(~' TeO) = f Ir( TeO)~ a- bin { . (42) 

A tenth order polynomial in In( TeO) is fitted to In [ f Ir( TeO) J over the range 1 <: 
TeO <: I MeV, and this is used in the power balance calculations. A plot of J- Ir versus 
TeO is shown in Fig. 1. Note that the peak value occurs when TeO = 23 eV, which is 
only slightly above the temperature at which Rox( TeO) is a maximum. 
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6. Comparison of the Solov'ev and 1//2 Model Power Terms 

The major difference between the particular Solov'ev and 1[/2 model equilibria 
considered in this paper is that the former has constant n, whereas the latter has 
n ex: tJi. This can lead to a considerable difference in individual power densities 
near the plasma edge. However, in many cases the volume integral of the power is 
dominated by the contribution from the region around the magnetic axis, so both 
models predict similar values. Notable exceptions are ~l which is infinite in the 
Solov'ev model, and the particle and thermal energy fluxes which have different 
dependences on the particular tJi used for their evaluation. If tJi = 0·5, the two 
models give similar values for Pte and for r t (provided that Te .;;; Tj). In contrast, 
we have P~i ;::: 100 Pti , if W = O· 1 is used. --

The integral .f tr increases more strongly with ~ than does J~r' This occurs 
because, for ~ > 1, the 1[/2 model magnetic field on the separatrix is considerably 
smaller than BS when I Z I > ~1/2 (DRC). We note that the contribution to J tr from 
the region of small X is negligible, although its percentage value is larger than for 
.f;r. A comparison of the flux contours in Fig. 2 of DRC indicates that, inside and 
on the tJi = 0·1 contour, the '\ltJi and '\ltJis fields are alike. Therefore, we expect that 
.f tr and J~r would have similar values, and a similar dependence on ~, if evaluated 
around the tJi = O· 1 contour. We conclude that our method of evaluating J tr for 
the 1[/2 model leads to an overestimate of the transport losses when ~ > 1. 

The oxygen line radiation predicted by the two models is compared in Fig. 1. The 
Solov'ev model gives a broader peak as expected from a comparison of equations (38) 
and (All). 

From these comparisons we conclude that, given the condition that the electron fluid 
has a rigid-body rotation, the 1//2 model gives a better description than the Solov'ev 
model of the plasma density and, therefore, of many of the energy transfer processes. 
Therefore, we use the 1[/2 model for the following power balance calculations. 

We note that, if the rigid-rotor constraint is removed, the density and temperature 
in the Solov'ev model can be of the form n = 110 tJio and T = To tJi1-o (0.;;; [) .;;; 1); 
Auerbach and Condit (1981) and Nguyen and Kammash (1982) have used this general 
form to analyse some of the energy transfer processes. The formulation developed in 
the Appendix is easily extended to this more general equilibrium. 

7. Analytic Scaling Relations 

In experiments there is a certain amount of control over the values of wand 110, 
so it is useful to express other quantities as functions of these parameters. Using 
expressions given in DRC and in Section 4, we find that 

T~ = 2.5xlO-6w2n~R4A-2, 

14> = 2· 5w n~ R3 J 12' 

tJiol R2 = 5.0xlO-6wn~R2A-2, 

Po = 6· 8x 107 w-1(n~)t( T~I T:o)~ R- 1A3 J 31 . 

(43) 

(44) 

(45) 

(46) 

The term wol R2 is the factor which scales the normalised magnetic field shown in 
Fig. 1 of DRC. 
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We define an energy confinement time TE which is based on the assumption that 
the total energy losses are balanced by the ohmic heating power: 

TE = (Ee+ EJj Fr.! 

= 8· 9x 1O-13Ctl\n~)~( TeO/ 1O)~ R 8(f 14/A.5f 31)' (47) 

We have found that, in most cases, the ohmic heating is sufficient to balance the 
energy loss processes considered in this paper. If large 'anomalous' losses occur, the 
actual energy confinement time is less than expression (47) and the configurations 
considered here could only be achieved with additional heating. 

The scaling of the above terms with Ctl, "0 and R is obvious. In particular we note 
the strong dependence of TE on R. The term f14/A.5f31 has the values 3.5x 10-4 , 

1· 1 x 10-3 and 1· 7 x 10-3 when, = 0·5, 1 and 2 respectively; this demonstrates the 
weak dependence of TE on " especially when, > 1. 

We anticipate the results obtained in Sections 8 and 9 by observing that, in general, 
Pte and Pei dominate the electron energy loss. It is therefore of interest to consider 
the ratios 

Pte/Po. = 0.25a(TeO/1O)(.JI't/.JI'31) , (48) 

Pe/ Po. = 7 ·Ox 102 n~ {( TeO - Iio)llO) R2(.JI' 13/1..2 f 31)' (49) 

Note the remarkable result that, apart from the factor TeO/1O, Pte/Fr.! is independent 
of Ctl, "0 and R. Thus the 'enhanced classical' electron thermal energy loss rate and 
the ohmic heating power are always of similar magnitude. The same conclusion holds 
for Pti and Fr., when Ii ~ Te' The tp2 model predicts that the term .JI' tr/ f 31 has a 
strong , dependence, so that a also has a strong dependence on , in those cases for 
which Pte::::: Fr.,. 

Equation (49) indicates that Pe/ Fr., is proportional to n~ R2 when this parameter 
is small. As Pei < Po.' it is evident that Ii -- Te when "0 R2 becomes large. Also, 
Pe/ Po. has only a weak dependence on ,. 

8. Power Balance Survey 

The interpretation of many of the results presented in this section is aided by 
observing that, for given Ctl, Rand " both I", and 10 are proportional to "0. 

For a given configuration, the equilibrium and current-drive constraints fix all 
parameters except TeO' which lies in the range 0.510 < TeO < 10· Since Pcx < Pti in 
all cases considered, the ion power balance equation becomes Pei = Pti , from which 
TeO can be found. To achieve electron power balance we have scaled the electron 
thermal flux and the particle flux by the required factor a, which is incorporated in 
the expressions for Pte and Pne in Section 4. We have adjusted Pte and Pne because the 
expressions for these terms have the greatest uncertainty. Also, Pte and Pne depend 
on the values of '1 Te and '1 n near the plasma edge, and a indicates the changes in 
these terms needed to give electron power balance. 

Figs 2-6 show the dependence on density of a and TeO for a range of Ctl, Rand , 
values. For the majority of cases we have 0·3 < a < 1. In these cases the unadjusted 
(a = 1) expressions (30) and (31) give electron thermal energy loss rates and particle 
loss rates which are of the correct order of magnitude needed to satisfy power balance. 
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However, using Figs 2-6 and other results, we have identified four parameter regions 
for which a is small: 

(i) When T:o < 20 the energy loss is dominated by plasma recycling (Pne). The 
fact that the expression for r t given in equation (12) has to be multiplied by 
the small factor a to obtain Pne ::::: Po probably indicates that, for these low 
temperature cases, the density gradient at the separatrix is not as large as the 
1/12 model prediction. 

(ii) When 20 < T:o < 50, the line radiation power from a 3% level of oxygen 
impurity can be similar to or larger than Ps-l' in which case a < o. This is 
illustrated by comparing Figs 2 and 3 with Fig. 4. 

(iii) When T:o > 104 the electron cyclotron power loss exceeds Ps-l' and a < 0 (see 
Fig. 3). However, it should be remembered that (35) does not include any 
reabsorption of the electron cyclotron radiation by the plasma. 
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(iv) Figs 5 and 6 show that a decreases and becomes negative as , increases. This 
is because of the rapid increase of J tr with ,. Equations (30), (31) and (33) 
show that an increasing J tf can be compensated for by a decreasing but finite 
a as far as Pte and Pne are concerned. Negative values of a arise because P ti 

increases with J tf' and this leads to lower 1i and larger values of P ei 
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which exceed Po. As dis.cussed in Section 6, a more sophisticated evaluation of 
f tr would probably predict f tr ex: ,; a would then be relatively independent 
of ,. 

For those cases in which a becomes small or negative, additional heating would 
have to be added to the plasma to enable power balance to be obtained for plasma 
configurations given by the tp2 model. . 
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In Figs 7 and 8 we show, for , = 1 and different wand R values, the plasma 
temperatures, the dominant power terms and the confinement times. Also shown is 
the magnetic field scaling factor lJ101 R2, which is given in equation (45). In all cases 
considered, we have found that Pti dominates the ion energy loss, so that Pti and Pei 

are virtually identical. The following observations can be made: 

(a) At low densities the ion temperatures are very low. This occurs because Pei is 
small, and because the small magnetic field allows large ion thermal energy losses. It 
is obvious that our model of a peaked ion temperature profile is nonphysical in these 
cases, and a more realistic model would have an almost constant ion temperature 
profile. At higher densities, Pei is comparable with Prl and the larger magnetic fields 
reduce the ion thermal conductivity, which results in Ii ---+ Te . 

(b) When T!o < 20, the dominant energy loss mechanism comes from plasma 
recycling (Pne ). The electron thermal energy loss generally dominates when 20 < 
T!o < 100, and ion thermal energy loss (Pti ;::: Pei ) dominates at higher temperatures. 

(c) For given wand R, the particle confinement times increase with density 
as ng with 1 < {) < 1·5. For the small and cool plasmas, the confinement times 
appear reasonable when compared with the experimental values (Durance et al. 1987). 
However, when T!o > 103 , the predicted confinement times are quite large when 
compared with values obtained on devices such as tokamaks. It is possible that 
turbulent effects, for example the lower hybrid drift instability (Hoffman et al. 1984), 
will occur at these high temperatures and lead to loss rates greater than the 'enhanced 
classical' values of Pte and r t used here. In such cases, additional heating would be 
needed to obtain the high temperature plasmas unless the turbulence also causes an 
anomalous resistivity and a sufficient increase in Prl. 

9. Analysis of Small Plasmas 

Durance et al. (1987) have reported detailed measurements of a particular rotamak 
discharge in a spherical vessel with a 14 cm radius. The experimental density and 
temperature are much less peaked in the region of the magnetic axis than predicted by 
the 1[/2 model. Nevertheless, using the l10 and 1¢> values measured in the experiment, 
the 1[/2 model predicts TE ;::: 10 J.Ls which is in surprisingly good agreement with the 
measured value of about 5 J.Ls. We calculate that the dominant energy loss term is 
Pne · 

It is desirable to ascertain which configuration of the plasma optimises TE subject 
to the constraint that the separatrix is confined within a spherical vessel of radius Re. 
Therefore, the variation with, of TE and other terms of interest is shown in Fig. 9 
for Re = 0·14 and 0·20 m. The separatrix radius is given by 

R = Re , when, <: 1 

= RefL when ,> 1 . 

Most terms vary only weakly with, for, < 1, but change markedly when, > 1. The 
optimum shape in this case is a spherical one. The degradation of confinement for the 
prolate configurations occurs because 1¢>, 10 and the magnetic field at the separatrix 
all decrease as , increases above 1. Fig. 9 also shows that significant increases in 
T E and 10 can be achieved by enlarging Re from O· 14 to 0·20 m, and that this 
is accompanied by a lowering of Po. We remark that, for both radii and the 
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range of 110 and w values considered, a typically decreases slowly as , increases from 
0·5 to 1 and then decreases rapidly by a factor - 10 as , goes from 1 to 2. These 
calculations have been repeated with R = Rc for all ,. In this case we find that most 
terms have only a small dependence on , when 1 .;;; , .;;; 2. In particular, both ~l and 
T E increase by about 50% as , goes from 1 to 2. The , dependence of a and TeO is 
indicated in Figs 5 and 6. 



410 I. J. Donnelly et al. 

10. Discussion 

For medium size plasmas with electron and ion temperatures around 100 eV and 
with fully penetrating low amplitude RMFs, we expect to obtain energy transfer rates 
that would be in reasonable agreement with experimental values, with the possible 
exception of the electron thermal conduction. However, in the lower temperature 
experiments that have been conducted (e.g. Durance et al. 1987) the following effects 
merit consideration: 

(i) The RMFs are of similar amplitude to the steady fields. This could lead to 
a modified thermal conductivity. Such an effect is not necessarily deleterious 
because some preliminary theoretical work indicates that RMF current drive 
actually reduces particle diffusion (I. R. Jones, personal communication). 

(ii) When the RMF does not fully penetrate the plasma, the frequency of the 
electron fluid rotation is less than C.rJ. This 'slip' between the RMF and the 
electrons leads to a transfer of energy to the plasma at a rate larger than Po 
(Hugrass 1984). 

(iii) Measured density and temperature profiles are not as peaked as those given by 
the 1/12 model. Also, considerable plasma current exists outside the separatrix 
in some experiments. 

(iv) The corona model may not accurately predict line radiation from impurities 
in experiments of short duration or with large particle fluxes. 

Despite the fact that the, 1/12 model describes existing experiments only 
approximately, it can be used to estimate the dominant energy loss terms for these 
and for projected experiments. Our main conclusions can be summarised as follows: 

(a) As the plasma temperature increases, the dominant energy loss mechanism 
changes from plasma recycling to electron thermal conduction to ion thermal 
conduction. The presence of a 3% level of oxygen impurity can lead to domination 
of the energy loss by line radiation when TeO - 30 eV. 

(b) The prediction that TE ex: R8 indicates that significant improvement in plasma 
confinement can be obtained by increasing the plasma size provided that the thermal 
energy transport remains classical. 

(c) If a spherical discharge vessel is used, the optimum plasma shape is also 
spherical. However, if the vessel is cylindrical with its axis larger than its diameter, 
prolate configurations may give slightly better TE values than spherical ones. 

(d) In low current plasmas the small magnetic fields allow rapid loss of the ion 
thermal energy, and the electron-ion energy equilibration term is small. Consequently, 
we have 1i .( Te and we expect the ion temperature profile to be fairly flat. 
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Appendix. Solov'ev Model Energy Transfer 

The Solov'ev model equilibrium discussed in ORe is now used to evaluate the 
particle flux and the power terms which are defined in Sections 3 and 4 (~l is infinite 
because of the infinite ohmic heating power density at the separatrix): 

r t = 6.Sx1023tJi-~(4+,-2)n~(no-O.ST:0)(T~)-1 

3 

X (T:o)-'i R,F tr' 

Pei = 7.Sx107(n~)2(T:o)-~(T:o- Tto)R3,F1,_I' 

Pte = 2x105tJi-4(4+,-2)n~(T:o)-4R,Fto 

Pbr = ISOZerr<n~)2(T:o)4R3,Fll' 

P = 1.6x1O-5(4+ r - 2)-I(n*)2T* T*R3,F 
ec '" 0 eO 0 ec' 

~r = 1040 fox (n~)2 R3,F 10 

Pti = 6·4x 106tJi-4(4+,-2)n~(Tto)4(T~)-1 Rf tr , 

and Pne and Pcx can be obtained using (AI). 

(AI) 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

(A7) 
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The integrals fmn' defined in equation (26), have the values 

'Ymn = 22n+I7TB(n+2, n+2)B(m+n+1 n+3) 
2 2 2' 2 L 

(AS) 

where B(x, y) are the beta functions (Abramowitz and Stegun 1965). Specifically, we 
have 

fl._I = 9·S7L fll = 2.63L f12 = l·92L (A9) 

fee = 47T f>z f:' X-1{(:tr +(:~r}~dX 
= 19.5,+5.0,-I; (A 10) 

1 x' 

f1r(TeO ) = 47T' fo dZ fo X Rox(TeO~) dX, (All) 

where the integral is evaluated using ~ with' = 1. 
We define 

fl(X) {( a~)2 (a~ )2}_l 
f;r(X) = 47T 0 x 3 ax + az 2 dl 

= 0.57TP-(1-X2)4JL (A12) 

and therefore 

f tr = f;r(1) = 0·57T'. (A 13) 

Also, the contribution to fIr from the region X < 0·5 is proportional to X 2 and is 
small. 

Because n is constant in this model, the dependence on ~ of the particle and 
thermal energy transport terms is quite different from that of the p2 model. Also, 
we note that (AI) predicts a negative r l if TeO> 21io. 
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