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Abstract 

We provide a theoretical investigation on the nonlinear instability of ion-cyclotron whistlers in 
the ionosphere. The threshold power of the unstable electromagnetic wave, the total attenuation 
and the generated magnetic field are calculated for a proton whistler. Finally, the variation 
of different ionospheric parameters due to nonlinear effects in the medium are shown both 
numerically and graphically. Possible applications of this investigation to space plasmas are also 
pointed out. 

1. Introduction 

Linear propagation of ion-cyclotron whistlers in the ionosphere has been studied 
by many workers both theoretically and experimentally and it has been used as a 
diagnostic tool of ionospheric parameters (Gurnett et al. 1965; Gurnett and Brice 
1966; Gurnett and Shawhan 1966; Singh et al. 1976; Das and Sur 1986; Das et al. 
1987; and others). But, when the power of the wave is large, its nonlinear interaction 
with the background plasma can no longer be ignored; many interesting phenomena 
then occur. These have been investigated by Matsumoto et al. (1980), Brinca (1981), 
Das (1983), Serra (1984), Murtaza and Shukla (1984), Nunn (1984) and others. 
Recently, Chakraborty et al. (1986) theoretically studied the nonlinear propagation 
of ion-cyclotron whistlers in the ionosphere, and calculated the group travel time 
of the wave. Paul et al. (1987) derived the wave number shift of the ion-cyclotron 
whistler from the nonlinear dispersion relation. However, due to nonlinear effects, the 
whistler waves can feed energy into other eigenmodes present in the plasma causing 
parametric instability (Murtaza and Shukla 1984). Computer studies of the nonlinear 
whistler instability have been made elsewhere (Denavit and Sudan 1975; Matsumoto 
and Yasuda 1976; Kumagi et al. 1980; Vomvoridis and Denavit 1980; and others). 
The parametric instability of the lower-hybrid ion-cyclotron waves is also of great 
interest in space plasmas where high power VLF signals are artificially injected into 
the Earth's ionosphere (Shawhan 1979). Murtaza and Shukla (1984) have shown 
that a finite amplitude whistler can nonlinearly excite a lower-hybrid and a short 
wavelength ion-cyclotron wave. They pointed out that the electron Landau damping 
of the lower-hybrid wave can cause electron heating, whereas the ion-cyclotron waves 
can heat the ions preferentially, i.e. both plasma species could gain energy at the 
expense of the whistler wave. 
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In the present paper, we derive the nonlinear change of the propagation vector 
of the ion-cyclotron whistler, following the dispersion relation by Chakraborty et al. 
(1986). Numerical estimations are made to find the minimum intensity of the electric 
field required for the instability of the ion-cyclotron whistler. The variation of the 
attenuation factor with ion density and power of the whistler wave are also investigated 
graphically. Application of our investigation to space plasmas is discussed. 

2. Nonlinear Dispersion Relation of Whistlers 

The ionospheric plasma is assumed to be cold, homogeneous, and collisionless, and 
both ions and electrons are assumed mobile. We further assume that the whistler 
is purely transverse and circularly polarised in the first order electric field El± = 
a(ei8 ± +ei8+), where O± = 4 z -wt, a is the amplitude of the electromagnetic 
wave, W the wave frequency and k the propagation vector. The upper and lower 
signs represent parameters for the LCP and RCP waves respectively. 

Thus, using the basic system of equations governing the plasma dynamics 
(Chakraborty et al. 1986; Sur et al. 1987, present issue p. 665), the nonlinear 
dispersion relations for the LCP and RCP waves are obtained as (where only first 
harmonic parts correct up to the third order electric field are considered) 
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where ns = eHolms c, the cyclotron frequency of the s-type particles, and wps = 
(4'IT "0 e2 I ms)1/2, the plasma frequency of the s-type particles; s = i, e where i and e 
represent ions and elf;ctrons. 
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Now under the condition W ;:::: I1j' the dispersion relations for the LCP and RCP 
waves are 
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where a = ea/mj we, the dimensionless amplitude of the electromagnetic wave. In 
(2) and (3) it is seen that both equations contain k+ and k_, and so it would be 
difficult to study the LCP and RCP waves separately. However, using the linear 
dispersion relation in these equations, nonlinear dispersion relations exclusively for 
the LCP or RCP waves can be obtained as follows. The relations (2) and (3) in the 
linear approximation (i.e. a = 0) become 
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and, using (5) and (4) in the right-hand sides of (2) and (3) respectively, we get 
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3. Nonlinear Instability, Total Attenuation and the Generated Magnetic Field 

To investigate the nonlinear instability of the LCP wave in the frequency limit 
W ~ il j , we assume that the LCP wave is unstable, i.e. k+ is complex. Therefore, 
writing k+ = "'-r+ +i k j+ in (6) and then evaluating the real and imaginary parts, 
we obtain 
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where Llw = il j - w. Similarly, to study the instability of the RCP wave, we assume 
that k = "'-r- +ikj_. Therefore, from (7) we get 
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It is seen from (9) and (11) that, for W ~ fli' ki+ is real and ki_ is imaginary. 
Therefore k + is complex and k _ is real, which indicates that the LCP wave is 
unstable and the RCP wave is stable in the frequency range w ~ fli due to nonlinear 
effects in the whistler. It is important to note that ky+ in (8) and ky_ in (10) exist 
only due to nonlinear effects. If nonlinear effects are not taken into accounts, i.e. for 
a = 0, ky+ = 0 = ky_, but /q+ and ki _ become imaginary, i.e. k+ and k_ are 
real. These results also follow from the linear dispersion relation. 

In order to obtain the total attenuation due to the damping of the ion-cyc1otron 
whistlers, we integrate the imaginary part ki+ over the propagation path h, following 
the work of Das and Sur (1986), and obtain the attenuation 
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where fl i( h) = fli(O) + hfl;(O), and where fl;(O) is the gradient of the ion-cyc1otron 
frequency and fli(O) the ion-cyc1otron frequency at the satellite. 

Integrating (12) and then substituting ~w(h) = TJ ~w(O), the total attentuation P 
is obtained approximately as 
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where TJ > 1, since ~w(h) > ~w(O) (Gurnett and Shawhan 1966). 
To find P in terms of the group travel time t(w), we use (4) and (5) in the 

right-hand side of (2) and then evaluate the group velocity Ug of the ion-cyclotron 
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whistler. Thus, equation (2) yields for the LCP wave 
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The group travel time is then given by 
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However, it may be easily seen that for the proton whistler 
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Therefore, after some simple algebra, equation (15) gives the following value where 
the higher order terms of a 2 have been neglected: 

t(w) = At'(W) , (16) 
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We note that the value of t'(w) was obtained by Gumett and Shawhan (1966) for the 
linearised approximation. 

Now, to find the variation of t(w) due to nonlinear effects on the whistler 
propagation, we use data on proton whistlers (see Section 4). Moreover, we make the 
following approximation: 
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The second term in (17) is the contribution due to nonlinear effects in the plasma. 
We define here the fractional contribution to the group travel time as 
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so that R (= tNL/ t) is then the rate of decrease of t( w) due to nonlinear effects. The 
variation of R could be obtained for ion-cyclotron whistlers in the ionosphere. 

Next we substitute the value of .:lw(O) from (18) into (13) and obtain the total 
attenuation in terms of t(w): 
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Following Das and Sur (1986), the generated magnetic field can then be obtained as 
a function of t(w): 
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Fig. 1. Variation of the rate of attenuation with electric field 
intensity for the two values of Ilw indicated. 
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Fig. 2. Variation of the rate of attenuation with number density 
for the three values of a indicated. 
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4. Results and Discussion 

To make quantitative estimations of the dependence of k;.+, {3 and B 1 on a, 
t( w) and other parameters, we consider the experimental data on proton whistlers 
recorded on January 11, 1963 by the Injun-3 satellite (Gumett and Brice 1966): 
ni(O) = 410·3 Hz, Aw(O) = 3·7 Hz and n(H+) = 12·5x103 cm- 3. The satellite 
observations were at 1308 km altitude where n;(O), the gradient of the proton 
gyrofrequency, is obtained from the geometry of the geomagnetic field variation as 
1·663xlO-6 Hzcm- 1 (Gumett and Brice 1966). 

2·0r-------------------------------------, 

1·6 

1·2 

f3 

0·8 

0·4 

T= 1000 K 
o 0=--- __ -0--- -0--

3 ' , I kJ 4 5 7Y 6 

t(w) (s) 

Fig. 3. Variation of the total attenuation with group travel time 
for the values of 1) and a indicated. The dashed line is from 
Singh et al. (1976) (see text). 

These data are used in equation (9) to study the a dependence of k;.+ for the 
proton whistler in the ionosphere; the relationship is shown in Fig. 1. It is found 
that the threshold value of the instability is for a = 0.664xlO- 2, and that it varies 
significantly with the intensity of the electric field. If we change the value of Aw(O) 
from 3·7 to 2 Hz, the threshold value is for a = 0·486xlO-2 • 

The effect of the number density variation of H+ on the instability is estimated 
from (9). A plot of ki+ against n(H+) in Fig. 2 for three values of a shows clearly 
the nature of the effect. 
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The variation of the total attenuation /3 from equation (19) as the proton whistler 
passes through is shown in Fig. 3. Here two values of 1) are considered for different 
values of a, and it can be seen that due to nonlinear effects the proton whistler is 
highly damped for high electric field intensity and that it also depends on ilw( h), i.e. 
on the wave frequency of the whistler at the source point. The dashed line is from 
Singh et al. (1976) for the same proton whistler data at the temperature 1000 K, 
where the damping of the whistler was assumed to be due to thermal effects. This 
estimate shows that the nonlinear effect has a significant role in the damping of the 
whistler. 
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Fig. 4. Variation of BI 
with t(w) for the 
values of 7] and a 
indicated, 

From (20) we observe that for small t( w) large values of the magnetic field are 
generated due to the nonlinear interaction. This is shown in Fig. 4 for the group 
travel time 4·8-5·0 s. 

5. Concluding Remarks 

Our work shows that ion-cyclotron whistlers may be used to estimate the generated 
magnetic field in the ionosphere through an estimation of damping phenomena. The 
damping rate due to nonlinear effects is sensitive to the variation of a, ilw(h), ilw(O) 
and the number density of the ions. The nonlinearity in the plasma, in comparison 
with other effects, is found to have a measurable contribution to the damping of 
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ion-cyclotron whistlers. In the present mechanism, the damping of the ion-cyclotron 
whistlers can heat ions in the plasma (i.e. the plasma species can gain energy at the 
expense of the ion-cyclotron whistler). The following extensions to our work are 
proposed: 

(i) Consideration of the thermal effect on the propagation of whistlers in the 
nonlinear plasma should give interesting results. 

(ii) Stream velocities of the plasma species and newly formed ion effects should be 
taken into account (Das and Sur 1986) in further study of whistler waves. 

(iii) Since the effect of negative ions on the propagation of whistlers (Smith 1965; 
Das et al. 1987; Sur et at. 1987) is not negligible, the nonlinear instability of 
whistlers in the presence of negative ions should be studied. 

(iv) Slow variation of the number density of the plasma species has an effect on 
whistler propagation. Since this has not been considered here in the dispersion 
relation, the problem of nonlinear modification of whistlers in inhomogeneous 
plasmas remains open to investigation. 
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