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Abstract 

Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological models are derived in Lyra's 
manifold assuming a time dependent displacement field. The models obtained solve the 
singularity, entropy and horizon problems which exist in the standard models of cosmology based 
on Riemannian geometry. The asymptotic behaviour of the models is also examined. 

1. Introduction 

In 1918, shortly after Einstein's theory of general relativity, Weyl (1918»)ntroduced 
a generalisation of Riemannian geometry in an attempt to unify gravitation and 
electromagnetism. Weyl's theory was not taken seriously because the electromagnetic 
field implies a nonintegrable length. This in turn means that different atoms should 
not be emitting radiation at the same frequency since they have different histories. 
This is in contradiction with the well-known observational result that sharp spectral 
lines are observed even in the presence of an electromagnetic field. 

Lyra (1951) (see also Scheibe 1952) proposed a modification of Riemannian 
geometry which bears a close resemblance to Weyl's geometry. However, in contrast 
to Weyl's geometry, in Lyra's geometry the connection is metric preserving as in 
Riemannian geometry, and length transfers are integrable. Lyra introduced a gauge 
function into the structureless manifold, as a result of which a displacement field 
arises naturally. 

Historically, Einstein introduced the cosmological constant in an ad hoc fashion 
into his field equations in order to obtain a static model of the universe since, as 
is well known, his equations without the cosmological term admit only nonstatic 
cosmological models for a nonzero energy density. After the discovery of the 
redshift of the galaxies and its interpretation as being due to the expansion of the 
universe, Einstein regretted the introduction of the constant. In Lyra's geometry 
the displacement field arises naturally and several authors (Sen 1957; Bhamra 1974; 
Kalyanshetti and Waghmode 1982; Reddy and Innaiah 1985; Beesham 1986a, 1986b, 
1986c; Reddy and Venkateswarlu 1987) have studied cosmology in Lyra's geometry 
with a constant displacement field which plays the same role as the cosmological 
constant in the normal treatment. The fact that the field arises naturally from 
the geometry was regarded as an advantage (Sen 1957; Halford 1970). Sen (1957) 
constructed a static model similar to the static Einstein universe, but a significant 
difference was that the model exhibited redshift and had finite density. 
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In general relativity Einstein succeeded in geometrising gravitation by identifying 
the metric tensor with the gravitational potentials. In the scalar tensor theory of 
Brans-Dicke on the other hand, the scalar field remains alien to the geometry. Lyra's 
geometry is more in keeping with the spirit of Einstein's principle of geometrisation 
since both the scalar and tensor fields have more or less intrinsic geometrical 
significance. Furthermore, the present theory predicts the same effects, within 
observational limits, as far as the classical Solar System tests are concerned, as well as 
tests based on the linearised form of the field equations (Halford 1972). For further 
physical motivation, we refer to some excellent references (Sen 1960: Sen and Dunn 
1971: Manoukian 1972: Sen and Vanstone 1972: Hudgin 1973). 

As we have already mentioned, several authors have studied cosmology in Lyra's 
geometry with a constant displacement field. However, this restriction of the 
displacement field to be constant is merely one of convenience and there is no a 
priori reason for it. Halford (1970) suggested that this assumption could be relaxed 
but the suggestion does not seem to have been followed up. As a first step in 
this direction, we allow the displacement field to be time dependent and derive 
the Friedmann-Lemaitre-Robertson-Walker (FLRW) models. The models have the 
k = - 1 geometry, are free of the big-bang singularity and solve the entropy and 
horizon problems which beset the standard models based on Riemannian geometry. 

In Section 2 we outline the main features of Lyra's geometry: Section 3 deals 
with the vacuum FLRW models. The nonempty FLRW models are derived and 
considered 'in Section 4, while Section 5 concerns the asymptotic behaviour. Our 
conclusions are discussed in Section 6. 

2. Lyra's Geometry 

In this section we give a very brief outline of Lyra's geometry, which is a 
modification of Riemannian geometry, and which bears a close similarity to Weyl's 
geometry. For further details we refer to the literature (Lyra 1951: Scheibe 1952: Sen 
1957, 1960; Halford 1970: Sen and Dunn 1971: Manoukian 1972: Sen and Vanstone 
1972; Hudgin 1973). 

(1) The displacement vector between two neighbouring points x a and xa+dxa 
is defined by its components tfJ dxa, where tfJ = tfJ(xO) is a gauge function. The 
coordinate system x a and the gauge function tfJ together form a reference system 
(tfJ, xO). Transformation to a new reference system (tfJ', x a') is given by 

tfJ' = tfJ' (tfJ, xo) , x a' = xa,(xO), (1) 

where 

ih/J'Iih/J ;/::. 0, detlaxa'/axal ;/::. o. 

(2) The connections • ri,c are given by 

(2) 

where the ri,c are defined in terms of the metric tensor gab as in Riemannian 
geometry and cf>a is a displacement vector field. Lyra (1951) and Sen (1957) have 
shown that in any general reference system the vector field quantities cf> a arise as a 
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natural consequence of the introduction of the gauge function l/J into the structureless 
manifold. The • rzc are symmetric in their lower two indices. 

(3) The metric is given by 

and is invariant under both coordinate and gauge transformations. 
(4) Parallel transport of a vector ga is given by 

where 

r- a - .ra l~aA.. 
bc - bc -2'u b'l'c· 

(3) 

(4) 

(5) 

The rzc are not symmetric in b and c. The length of a vector does not change under 
parallel transport unlike in Weyl's geometry. 

A curvature tensor is defined by means of parallel transport of a vector along a 
closed curve: 

where the rzc are as given in equation (5). Contraction of (6) leads to the curvature 
scalar 

(7) 

where R is the Riemann curvature scalar and the semicolon denotes covariant 
differentiation with respect to the Christoffel symbols of the second kind in the 
Riemannian sense. 

(5) The invariant volume integral is given by 

1= f L(_g)!l/J4 d4x, (8) 

where d4 x is the volume element and L is a scalar. 
(6) The normal gauge used is (Sen 1957) l/J = 1, and we put (Halford 1970) 

L = • R in equation (8). Putting l/J = 1 in (7) leads to 

The field equations are obtained from the variational principle 

a(/ +J) = 0, (10) 

where I is given by (8) and J is related to the Lagrangian density 2' of matter by 
the usual equation 

(II) 
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The field equations are thus 

where we are using units in which c = S'lT G = 1. 

3. Vacuum FLRW Models 

We let </> a be the time-like vector 

</> a = (13, 0, 0, 0) , 

where f3 is a function of time alone. For the Robertson-Walker metric, 

the field equations (12) become, in the vacuum case, 

3(R;R)2 +3k/R2 -!f32(t) = 0, 

2R/R +(R;Ri +k/R2 +!f32(t) = 0. 

From these we derive an equation that is independent of f3: 

This equation may be written as 

which may readily be integrated to yield 

where A is a constant of integration. 
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(12) 

(13) 

(15) 

(16) 

(17) 

(IS) 

(19) 

We now give the solutions to (19) for the various values of k. For k = 0, we 
obtain 

1 1 
R = A6(3t)3, f3 = 2/3t. (20,21) 

For k = + 1, it is convenient to make the substitution 

dT = Rdt, (22) 

so that (19) becomes 

(23) 
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For k = -1, the solution is 

(24,25) 

whereas for k = + 1, we obtain 

(26,27) 

In each of the solutions (20), (24) and (26), we have chosen a constant of integration 
to be zero. 

4. Nonempty FLRW Models 

We assume a perfect fluid form for the energy-momentum tensor: 

(28) 

The field equations (12) become, for the Robertson-Walker metric (14), the perfect 
fluid form (28), and field (13), 

3(R;R)2 +3k1R2 -ip2(t) = IL, (29) 

(30) 

We first demonstrate how a big bang singularity may be averted. From (29) and 
(30), we derive the following Raychaudhuri-type equation: 

(31) 

Now in the case of Riemannian geometry without a cosmological constant, we have 
RI R < 0 always as IL+3p is generally assumed to be positive (Hawking and Ellis 
1973). Thus, for a presently expanding universe, a big bang singularity is unavoidable 
in the FLRW models (Ellis 1971, 1973; Hawking and Ellis 1973). However, in Lyra's 
manifold, it is possible to have a bounce at a minimum (at which R; R = 0) provided 
that RI R > 0, or equivalently, from equation (31), provided that 

(32) 

Pure imaginary values for p2 have already been considered by Sen (1957) and by 
Kalyanshetti and Waghmode (1982). Although the physical significance of such 
an imaginary quantity is not very clear, we remark that manifolds with imaginary 
connection have been considered (Moffat 1956). As we shall see later, the metric 
always turns out to be real in the models we derive. Perhaps a more convenient way 
of looking at this difficulty is to let _p2 = a (say), which is real, and which can 
then be thought of as a variable cosmological-type term. In the standard models, the 
cosmological term is regarded as the vacuum energy density of the quantum field and 
the problem is that of very fine tuning, i.e. why is the term so small now. As we 
shall see later in our models, p2 was large during the early stages of the universe and 
has decayed to its low value at present. Thus the problem of fine tuning has a ready 
explanation. 
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We now proceed to derive some singularity-free models. Equations (29) and (30) 
are two equations in the four unknowns R, {3, p and ,..,. Assuming the usual equation 
of state of the form 

p = (1'-1),..,; (33) 

we reduce the number of unknowns to three. In the absence of another independent 
equation for {3, we are forced to impose some condition. Following Ozer and Taha 
(1986, 1987), we assume that the energy density of the universe is always equal to its 
'critical' value, 

• 2 ,.., = 3(R/R) , (34) 

for which there seems to be some observational evidence (Ozer and Taha 1986, 1987). 
This ansatz yields viable cosmological models that are free of some of the main 
problems of the standard models. 

Using the relation (34) in (29) we obtain 

(35) 

Now in order to solve the entropy problem of the standard model, it is necessary 
to have dS > 0 for at least a part of the evolution of the universe. In Riemannian 
geometry without a cosmological constant, we have 

(36) 

for all time. In Lyra's geometry with {3 - {3(t), we derive from (29) and (30) the 
following conservation-type equation: 

(37) 

Thus for dS > 0, we must have 

(38) 

The inequality (38) is satisfied for {32 < O. From (35) it then follows that k = - 1. 
Equation (35) then becomes 

(39) 

From (29) and (30) we obtain 

(40) 

During the radiation dominated era, p = ,..,/3 and, with the aid of (34) and (39), we 
obtain 

(41) 
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This equation can be written as 

dlP/dR+21P/R = 4/R, (42) 

which can readily be integrated to yield 

(43) 

where A is a constant of integration. A further integration then yields 

(44) 

where we have chosen R = Ro at time t = 0 and the second constant of integration 
to be zero. From (34) and (44) we obtain, for the energy density, 

(45) 

This model is singularity free with p. = T = S = 0 and R = Ro at t = O. The 
quantities p., T, S and R are nonzero and finite for all finite nonzero values of 
time. As we have already demonstrated, the model solves the entropy problem since 
dS/dt > O. Since the integral 

f t dt' 

It R(t') 

diverges'as tl -- - 00 (Weinberg 1972; as the model is singularity free, we consider 
tl -- - 00), it follows that our model does not possess particle horizons (Rindler 
1956). 

We now tum to the matter dominated era during which p = O. Equation (40) 
becomes 

(46) 

SuJ>stituting (34) and (39) into the above equation we obtain, after some simplification 
and rearranging, 

(47) 

Integrating, we get 

"2 R = A/R+4, (48) 

where A is an integration constant. In order to integrate (48), we make the substitution 

1 
dT = Rl dt, (49) 

and obtain the solution 

(50) 
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where we have chosen R = Ro at T = 0 and the second constant of integration to 
be zero. The energy density is given by 

(51) 

Finally we turn to the stiff matter solution, but digress for a moment to point out the 
importance of stiff matter in general. The possibility p = IL during the early stages of 
the evolution of the universe seems to have been considered first by Zeldovich (1972). 
Solutions have since then been discussed by a number of authors in cosmology both 
in general relativity (Barrow 1977, and references therein; Maartens and Nel 1978; 
Wainwright et al. 1979), and in other theories as well, notably the Brans-Dicke theory 
(Ram and Singh 1984; Lorenz-Petzold 1984, 1985). Other important applications are 
the relativistic degenerate Fermi gas (Zeldovich and Novikov 1971), and probably 
superdense degenerate baryon matter at low temperaturaes (Zeldovich 1962; Bludman 
and Ruderman 1970; Walecka 1974). Substituting P = IL and (34) and (39) into 
equation (40), we derive the following equation for R: 

2R +41PIR = 4/R. (52) 

Integrating we find that 

(53) 

Introducing a new time variable T given by the transformation (49), we can integrate 
(53): 

(54) 

where, once again, we have chosen R = Ro at T = 0 and the second constant of 
integration to be zero. The energy density of the model is given by 

(55) 

We remark that it is also possible to derive solutions for k = + 1, but these solutions 
are not as interesting physically as the k = - 1 solutions. 

5. Asymptotic Behaviour of the Models 

We now discuss the asymptotic behaviour of the models that we have derived, 
starting with the vacuum models. Equation (19) may be written as 

(56) 

For small R, the term AI R4 dominates the dynamics of the model and the asymptotic 
equation is 

(57) 

Since the term in 'k' becomes negligible, the asymptotic solution is the same as the 
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k = 0 vacuum solution (20), namely 

R ex: t~. (58) 

For large R, we may write (56) as 

(59) 

The asymptotic equation for large R is thus 

(60) 

For k = -1, the asymptotic solution is 

R ex: tL (61) 

The nonempty models exhibit the same asymptotic behaviour for small R as 
the FLRW models in Riemannian geometry (Ellis 1971, 1973). For large R, the 
asymptotic equation, which follows from equations (43), (48) and (53), is 

A.2 ::::: const. (62) 

The asymptotic solution is thus the Milne universe R - t. 

6. Conclusions 

In conclusion, we note that the models that we have derived with a time dependent 
displacement field solve the singularity, entropy and horizon problems. Further, the 
models possess the open topology since k = -1. This is in contrast to the model of 
Ozer and Taha (1986, 1987) in which k = + 1. The observational evidence seems 
to favour open models (Gott et aL 1974). We remark that the inflationary universe 
scenario, which also claims to solve some of the problems of the standard model, 
is beset with a number of difficulties (Ellis and Rothmam 1985; Olivo-Melchiorri 
and Melchiorri 1985). Further it does not avoid the initial singularity, does not 
solve completely the horizon problem and the difficulty of fine tuning still exists 
(Olivo-Melchiorri and Melchiorri 1985). 
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