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Abstract 

Functional integral calculus (FIC) methods are used to transform the meson-diquark bosonisation 
of quantum chromodynamics into a meson-baryon effective action description of the low 
energy states of QCD-the hadronisation of QCD. 

1. Introduction 

The hadron family of particles includes the well known mesons IT, p, W, ... 

and baryons p, n, ... and together they play key roles in the quark sector of 
matter, for the hadrons are bound states of quarks. The quarks, and the gluons 
through which they interact, correspond to the quantum fields of quantum 
chromodynamics (QeD), but are themselves not directly observable. The main 
problem of QeD is to extract its mass spectrum, and other observables, and 
to establish that these correspond to the hadronic phenomenon. One way to 
define this problem, and also a means for proceeding to a solution, is to 
consider the functional integral calculus formulation of the mass spectrum 
problem. We have in, Euclidean metric, 

~ exp(-EnT) = f DqDqDA~,1rlA~l exp(-S[A~,q,q]), (1) 

where T is a finite Euclidean time variable and {En} is the energy spectrum 
of QeD. Lattice gauge theory (LGT) is a fairly direct numerical modelling 
of (1), but an accurate lattice study of the low energy mass spectrum is 
computationally formidable, more so in the chiral limit as the low current 
masses of the u and d quarks are approached and the pions become very low 
mass and finally (massless) Nambu-Goldstone (NG) bosons. 

A more powerful and practical way to proceed is to apply the new 
techniques of functional integral calculus (FIe) to (1). This integral and 
differential calculus is the ideal mathematical language for quantum field 
theories, and its development appears to mirror that of ordinary calculus 
as the language of Newtonian physics. As individual quarks and gluons are 
not directly observable they do not appear as states represented in the QCD 
spectrum, and hence, while they are the defining fields of QCD, they are 
inappropriate variables of integration on which to base approximations to 
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(1), in contrast to the conventional approach to quantum electrodynamics, 
for example. The idea of the FIC approach to QCD is to change variables 
in (1) in such a way that the new variables correspond to quantum fields 
whose mass spectrum is that of the low energy states of QCD-presumably the 
hadronic states already mentioned. The choice of the fields introduced through 
successive changes of FIC variables is actually controlled by the dynamics of 
the quantum field theory under consideration, that is, it is not an arbitrary 
choice if a meaningful analysis is to proceed. For example, in Cahill and 
Roberts (1985) and Roberts and Cahill (1987), a change of variables to colour 
Ie and Be bilocal qq variables was made which, while useful in extracting 
meson observables, was also limited by the fact that the Be bilocal fields do 
not appear to play any meaningful role in QCD (related to the fact that gluon 
exchange is repulsive for these qq states); hence this choice of FIC variables 
halts any further analysis, and in particular the introduction of baryonic FIC 
variables. Kleinert (1976) and Schrauner (1977) have studied the use of bilocal 
fields, but without consideration of the colour algebra. 

However in Cahill et aI. (1989b, present issue p. 161) Ie meson and 3e 
and 3e diquark FIC variables are introduced in place of those in (1). This is 
very significant as all of these variables correspond to bound states of QCD, 
though in the diquark case they occur as constituents of Ie baryons. Thus 
(1) may be written 

~ exp(-En T) = f DrrDp .. .Dd . .Dd* exp(-S[rr, .. , d, .. d*]), (2) 

where the d and d* variables represent all the local diquark fields (successive 
effective actions are labelled by their arguments). Equation (2) is a meson­
diquark bosonisation of QCD, that is, the FIC variables are all bose fields. 
While the diquarks are not expected to be strictly represented in the QeD 
spectrum, as their colour charge is expected to lead to their confinement, there 
is growing experimental and phenomenological evidence that they correspond 
to qq correlations in baryons, which are qqq bound states. It also appears 
that they may be assigned effective masses. However one of the fundamental 
difficulties in FIe analysis up to now has been the complete lack of any 
convincing way of introducing a change of FIe variables so that they now 
include Grassmannian baryonic variables. Clearly (2) represented progress 
in this direction, but how are Grassmannian fields to arise from the above 
bose fields? The answer to this riddle actually lies in the fact that the 
effective action S[ rr, .. , d, .. d*] in (2) is an infinite series in the diquark fields, and 
that the diquark integrations in (2) produce functionals which are naturally 
representable in terms of baryonic FIe variables. Hence the purpose of this 
work is to show that (1), via (2), may be hadronised, that is, written as 

~ exp(-EnT) = f DrrDp . .DN . .DN .. exp(-S[rr, .. ,N,N, .. ]), (3) 

where Nand N represent the complete set of Ie baryon variables (each 
corresponding to a particular baryon). As we will note, the FIe change of 
variables fully specifies the meson-baryon effective action in (3), that is, 
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its form together with the values of the various parameters such as bare 
masses and coupling constants, all of which are ultimately determined by the 
underlying quark-gluon dynamics. Of course the FIC technique provides a 
systematic procedure for calculating the effective action, but one which must 
be truncated to be practical. The truncation criterion is to be based on the 
long wavelength approximation. There are two aspects of (3) not resolved 
in this paper; first whether, in addition to the usual hadronic variables in 
(3), there must also be present variables describing exotic states such as 
diquark-anti-diquark states etc., and second, how the local gauge invariance 
of QCD manifests itself in (3). However FIC analysis is still in its early days 
and rapid development can be foreseen. One of the important features of 
this analysis already established is that it is ideally suited to the chiral limit 
of QCD, unlike LGT, in that the degenerate vacuum structure of QCD is most 
easily studied and the consequences of the hidden chiral symmetry carried 
through to the effective action in (3). As well we have Lorentz covariance and 
the dynamical consequences of the colour algebra, which is so significant to 
the formation of the baryon states. Finally we draw attention to the fact that 
because the FIC analysis uses non-local field variables, which are then reduced 
to an infinite set of local field variables, all integral equations and functional 
expressions are finite-no regularisation is needed. This is to be compared 
with FIC analyses which proceed entirely through local field variables, leading 
to divergent expressions for observables. Our experience with the non-local FIC 
analysis of QCD points to the conclusion that divergences are not necessarily 
a part of quantum field theories in four dimensional space-time. They are 
more likely a consequence of bad analysis or the wrong theory. 

In Section 2 we recall and extend the FIC analysis that led to (2). Section 3 
presents the analysis which extracts baryon states from the diquark integrations 
and gives the hadronisation of QCD. 

2. Meson-Diquark Bosonisation 

Here we outline the FIC analysis which takes us from (1) to (2) (see Cahill 
et al. 1989b), but in doing so we provide a new general technique which 
implements the transformation from bilocal to local FIC boson variables. It is 
convenient to take T ---t 00 as we shall be able to infer the mass spectrum from 
the resulting effective actions. This avoids the need to deal with boundary 
conditions. We need only keep T finite if we are interested in genuine finite 
temperature and density effects. The defining QCD action is 

S[A~,q,ql = f d4x ( ~F~vF~v + 21~(OpA~)2 + q{}'p(op- i/I.; A~)}q), 

a=1,2 ... 8, 

and we add source terms to S, viz. 
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and in the presence of sources we call the RHS of (1) ZUJiA] . Here we 
consider massless quarks and as well as the local colour symmetry the action 
then has global chiral symmetry C = ULCNr) ® UR(Nr). As shown in Cahill et al. 
(1989b) (1) may be written, using various FIC techniques, 

Z = f D'BD1)D1)* exp (TrLn(C['B]-l) + i TrLn(l + 1)C['BjT 1)C['BD 

(4) 

in which we finally put J = 0,11 = 0 and Yj = O. Here 'B is a matrix valued 
colour-singlet bilocal meson field, while 1) and 1) are colour 3 and "3 bilocal 
diquark fields, respectively. To complete the meson-diquark bosonisation we 
must now write (4) explicitly in terms of the (in principle) infinite set of meson 
and diquark states, as in (2). To illustrate the general technique consider the 
meson sector of (4) only (i.e. with 1),1)* = 0); 

Z = f D'Bexp(-5['BD. (5) 

First the 'vacuum' configurations must be determined as the solutions of the 
Euler-Lagrange (EL) equations 85j8'B = 0, which become 

[ ( Me) 8R['B,0 0]] 'Be(x,y)=D(x-y) tr C(x,y,['BD-2m - e ' , 
8'B (y, x) 

which is the Schwinger-Dyson equation. This a non-linear equation for the 
{'Be}, and only translation invariant solutions, depending only on x - y, are 
known. This equation has degenerate solutions and an analysis, similar to 
that in Roberts and Cahill (1987), shows that in the vacuum C has the form 

C(q)-l = iA(q)q:y + VB(q), 

where V = exp(i.j2Y5 ITa Fa) and {ITa} are arbitrary real constants I ITI E [0,2IT]. 
Thus in the chiral limit the vacuum is degenerate and is the manifold C/H 
where C is the chiral group and H = Uv c C. Thus the chiral symmetry is 
represented as a hidden symmetry. Let us now change variables in (5) so 
that 'B = 0 is now the vacuum. It is convenient here to give the quarks small 
current masses to avoid dealing with the degenerate vacuum. Expanding 5 
about its minimum gives 

5['B] = I 5n ['B], 
n=O.2.3 .. 

where 5n is of order n in 'B and we write 52 = if 'Be(L1/ine<J1'B<J1. Introducing 
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bilocal source terms in (5) we have, with 5' = 5 - 52, 

Now 

= eXp(-5'[~])eXp (-iTrLn(L1;;l) + i f JL1mJ). 

= LTrLn(Ak(D)84(x - y)) 
k 
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(6) 

(see Appendix), and hence we may construct the local-boson-field FIe 
representation 

exp(-i TrLn(L1;;l)) = f n Dmk exp ( - L i f mk(x)Ak(D)84(x - y)mk(Y)), (7) 
k 

where 0 = -a 2 and where Ak(p2) are the eigenvalues of L1;J (in momentum 
space); 

We have the orthonormality relation 

and the corresponding completeness relation 

L [k(q; P)[k(p; P) = N84 (q - p). 
k 

(8) 

Note that in (7) the LHS functional Tr involves a double space-time trace, 
viz. f d4xd4y, appropriate to bilocal fields, whereas the RHS has only one 
space-time trace. Equation (7) is a fundamental identity as it implements 
the reduction of the bilocal Fie meson (and diquark) formulation to local FIe 
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variables, and exposes the physical content of (4). In fact we can write (6) as 

(9) 

where {mk(x)} is an infinite set of local meson fields, each corresponding to 
one physical meson state, and we have used the spectral expansion 

(}tJI 1" {} 1 2 -1 tJI Llm (p,q;P) = N LTk(P;P)/\k(P) Tk (q;P). 
k 

Applying the functional operator exp(-S![8j8]]) and then, with J -+ 0, we obtain 

z = f n Dmk exp ( - t ~ f mk(x)A(D)mk(x) - S![Tf mk}) . 

By explicit evaluation of S![Tfmkl. and identifying the mesons by their quantum 
numbers, we obtain the local FIC representation of the meson sector of (4) 

z = f DrrDpDw ... exp(-S[rr,p, w, .. J), (10) 

where 

(11) 

where we have written AiP2) = (p2 + mip2)2)N-t f} where mj(p2) are the running 

meson masses, and rvt fl is the slope of Aj(p2) at its zero pJ = -mJ, and we 
1 

have rescaled the fields m(x) -+ N"4 m(x). We choose N such that the above f~ 
agrees with the value in Cahill et al. (1987). 

The imaginary terms in this meson action are the chiral anomalies of QCD. 
In (11) we give the long wavelength limit of the effective action-in general the 
coupling constants, such as 9pmf are non-local (Le. momentum dependent). 
The leading terms in the expressions for the various meson parameters in (11) 
are given in Praschifka et al. (1987a, 1987b), where it is the good agreement 
with the experimental values of these parameters which implies that we have 
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indeed identified a viable truncation procedure. All these parameters are 
given by convergent integrals, and no regularisation is required. This follows 
from the presence of the Tk, which are the meson form factors, and indeed 
it is seen that (8), for A(p2) = 0, is the Bethe-Salpeter equation for the on 
mass-shell form factors. We have transformed (8) (Cahill et al. 1987) into a 
mass functional variational problem, but it may also be solved directly. By 
keeping the momentum dependence of 9prrrr Roberts et al. (1989) have shown 
that the IT- IT loop contribution to the p propagator, which arises from the IT 

integration in (10), generates a (finite) mass splitting between the wand p, 
comparable with the observed splitting. 

When the quarks are massless special techniques are needed to deal with the 
degenerate vacuum manifold, for in this case the NG bosons form homogeneous 
Riemann coordinates on the vacuum manifold, and we must use the matrix 
field U(x) = exp(i.j21"fl(x)FQ) where V(x) = PLU(X)t + PRU(X) = exp(i.j2Ys1"fl(x)FQ). In 
the chiral limit it is important to note that B(q) of the quark propagator is 
also the NG boson form factor, as may be found from (8). This is discussed 
more explicitly in Cahill et al. (1987). For this reason the ground state 
pseudoscalars, in the chiral limit, play a dual role: they are at the same 
time both the NG bosons associated with the hidden chiral symmetry and 
also qq bound states. This is important also in the non-local coupling of 
these pseudoscalars to the baryons. To maintain the hidden chiral symmetry 
necessitates a derivative expansion in apU(x), and we obtain (Roberts et al. 
1988), for the NG boson sector only (here :M is the quark mass matrix) 

+~tr([21- U - ut]:M) + .... ). (12) 

As derived in Roberts and Cahill (1987) under a chiral transformation G = UL ®UR, 

U(x) -+ ULU(X)Uk, and (12) is of course invariant under this mapping (except 
for the mass term). From this action we easily obtain the Gell-Mann-Okubo 
mass formula for the pseudoscalar octet 4m~ = m~ + 3mij and expressions for 
the IT - IT scattering lengths (ag and a6) which reproduce the Weinberg result 
ag/a6 = -7/2. The action in (12) is that of the non-linear o--model (NLSM), with 
all parameters frr,Kl,'''P, .. being finite and fully specified by the underlying 
quark-gluon dynamics. However (12) is only the long wavelength limit of 
this derived NLSM. If one wishes to study the quantum mechanics of this 
system, by carrying out functional integrations over the matrix field U(x), it 
will be necessary to keep the full non-locality of the above parameters, or 
equivalently, in momentum space, their momentum dependence. In this way 
we would see that there are no divergences associated with the quantised 
NLSM, even in four dimensional space-time. Again this is due to the extended 
nature of the NG bosons. 
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A similar transformation to local FIe variables is also possible for the 
diquarks, but this is a part of the baryonisation of QeD and is considered in 
the next section. 

3. BarYGns 

Here we show that the diquark sector of the meson-diquark bosonisation 
(4) generates the colour singlet baryon states of QeD. The meson dressing 
of these (bare) baryons also follows from (4). As we wish to be explicit we 
shall not discuss those extra (and more complicated) processes arising from 
R[~, V, VJ. Hence we will consider 

ZU*,JJ = f DVDV* exp (i TrLn(1 + VCT VC) - f ~~t + 

+ f U*V+ V*J)), (13) 

where the bilocal diquark source terms facilitate the analysis, and in which 
C = C[~v], where ~v are the vacuum configurations for the meson sector. 
Meson couplings arise from retention of the full ~. We will not discuss here 
the possibility that there may be non-zero diquark field configurations in the 
vacuum, i.e. diquarkcondensates. The existence of these can be studied 
using the full EL equations for the total action in (4). 

First consider the physical meaning of the i TrLn in (13), which on expansion 

Fig. 1. Single loop processes corresponding to the terms in (14). Note that the quark lines 
alternate in direction in accord with their coupling to the diquark fields. These loops also 
represent the terms in 5' of (19), in which case there are functional derivatives at each 
vertex. 
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gives 

(14) 

and which are single loop processes (see Fig. 1), but with the quark lines 
alternating in direction, in accord with their coupling to the diquark and 
anti-diquark fields. These loop structures are the key to noticing that Z[O,O] 
contains contributions representable in terms of baryonic FIC variables. The 
derived effective action for these fields is that of all the known baryon states. 

Using (14) the action in (13) has the expansion 

5(1)*,1)] = I 5n [1)*, 1)], 
n 

and we write 51 = f 1)<I>*(fl";/),/"/11)"'. Defining 5'=5-51, (13) can be written 

ZU*,J] = exp(5'[ o~*' ~]) f D1]D1]* exp (-f 1]* fl;111] + f U*1] + 1]*J») , 

(15) 

where fli has eigenvalues and eigenvectors (which are the diquark form 
factors) from 

(16) 

and whence the spectral expansion, 

(17) 

Praschifka et al. (1988a, 1988b) have extensively studied (16) in its mass 
functional form (Cahill et al. 1987) and effective masses and form factors for 
the 0+,0-, F and 1- ground state diquarks have been obtained. One expects 
that (17) may be truncated after only one or two terms as the higher mass 
diquark states will not contribute to the lower mass baryon states. It is also 
important to note that the sum in (17) is purely discrete, that is, there is 
no continuum contribution. This is because the quark propagators G[Bv] are 
confining, that is, the propagators have no poles on the q2 < 0 axis. Hence 
there is no 'ionisation' threshold leading to a continuum. To simplify the 
notation we will now only consider one term in the sum (17) and, with the 
f = i + baryon octet (p, n,A,L, .. ) in mind, we keep the first f = 0+ scalar diquark 
(which has an effective mass of "" 0.6 GeV). The above comments imply that 
the qq correlations in baryons are influenced by only a few diquark states, and 
this should have strong implications for the baryon structure functions. In 
fact (Praschifka et al. 1988a, 1988b) the calculated diquark form factors show 
strong peaking, which causes a quark constituent mass effect in diquarks. 
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• 
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Fig. 2. (a) Three-quark loops arising from Fig.1 when diquark propagators are attached 
between vertices. Shown are orders n = 2,3,4 with clockwise diquark propagators. The 
anti-clockwise diagrams contribute equally, giving a factor of 2 (except for n = 3 for which 
there is only one diagram). While the even order amplitudes may be drawn as planar graphs, 
odd orders are necessarily non-planar. The cross-over pattern for the diquarks has no 
significance other than to see how Fig. 3a is obtained. (b) The kernel of the above loops. 

zx 
(b) 

(a) 

Fig. 3. (a) A closed double helix of QCD-a baryon loop. To reveal the three-quark or 
baryon loop form of the diagrams in Fig. 2a, and in a form valid for all orders, they have 
been deformed into the above (an 8th order diagram is shown). (b) The kernel of the above 
loops, which is topologically identical to that in Fig. 2b. 
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With the above truncation we can obtain from (15) a simplified version of 
(13), using the general methods of Section 2, 

Z[j*,j] = f DdDd* expUTrLn(l + ~d*rMocTcTcTMordC)+ 

(18) 

where j is a local source for the one scalar diquark, and Mg( = -J~iYsEPE( 
where p= 1,2,3 and f= 1,2,3 are the colour and flavour indicies of the 3c 

and 3( scalar diquarks, and r is the form factor. The second order term in 
(18) has the form - f d*AOd. Then 

ZU*,j] = exp (-S'[8~*' t]) exp (f j*Ao1j), (19) 

in which 5' is a sum of loops, as in Fig.1, but with the functional derivative 
operators 8/8j* and 8/8j at alternating vertices, and with Mo ... at each vertex. 

Evaluating (19), and with j*,j-+ 0, we find that Z[O,O] has the form exp(W) 
where W is the sum of connected loop diagrams, with the vertices now joined 
by the diquark propagators. Of particular significance is that infinite subset 
of diagrams which will be seen to have the form of three-quark (Le. baryon) 
loops, as in Fig. 2a. These come with a combinatoric factor of 2 (except for 
the order n = 3 diagram) which cancels the ~ coefficient of the TrLn in (18). 
These 3-100ps are planar for even order, but non-planar, with one twist, for 
odd order. To exhibit the three-quark loop structure in Fig. 3a we show a 
typical diagram from Fig. 2b after deformation, revealing a closed double helix: 
a diagram of order n is drawn on a Mobius strip of n - 1 twists. This infinite 
series may be summed as the diagrams are generated by the kernel K, defined 
by the one-twist diagram, shown in Figs 2b and 3b. The weightings are such 
that (except for the third order diagram) all the double helix diagrams may 
be summed to TrLn(l + K) - TrK = WB - TrK. Thus 

Z[O,O] = exp(WB + WR), 

in which WR is the sum of the remaining diagrams (see discussion later). To 
determine the content of WB we consider the eigenvalue problem for 1 + K; 

(20) 

which in mometum space has the detailed form (see Fig. 4) 

(21) 

K( 'p){3j,ph '" 1 r . CTCTCT' rc,-l p,q, a(,yl = L TI EyaoEI(i1YS lYSE{3opEjih 1\0, 
io 
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Fig. 4. The eigenvalue equation which determines the spectral content of the infinite 
sum of double helix amplitudes of the form in Fig. 3a. The eigenvectors 'P are the 
baryon-quark-diquark form factors. The baryon masses are found from ;\(_M2) = O. 

in which the (momentum) arguments may be inferred from Fig. 4 and (23), 
and Ao is the scalar diquark eigenvalue, (16). Equation (21) is a bound state 
equation for a three-quark state in which the paired quarks form a scalar 
diquark. It is a simple matter to generalise (21) to include further diquark 
states from the spectral expansion (17), but in doing so we note that the 
generalised (coupled) equations still have only one f d4 q because (17) has 
only a discrete spectrum, due to the confining nature of the quark propagator. 
In (21) 'P is a Dirac spinor and as well a second rank tensor in both colour 
and flavour. To isolate the baryon octet we extract 

,.,j up} 1 mex; s: '1'/= Texf-JTex;Ufj, 

which transforms as a colour singlet and flavour octet. Equation (21) then 
becomes, after simplifying the Dirac algebra, 

. 1 P p. p P q. P -1 P 2 
K(p,q,P)=-bl('4+ q +'2''2- p)l('4+ P +'2''2- q )AO «'2- q» 

P 
xG(-q - p)G( '2 + q). 

(22) 

(23) 

Equation (22) is the basic equation for the f = i + baryon octet where 'P is 
the nucleon-quark-diquark form factor, and has been proposed by Cahill et 
al. (1989a, present issue p. 129) using non-FIC methods. Initial numerical 
studies of (22) by Burden et al. (1989, present issue p. 147) show that it has 
a solution, that is, the quark-diquark rearrangement mechanism is attractive, 
and has a lowest mass state, determined by A(-M2) = 0 of '" 1 Gey. In (23) AOI 
is the diquark propagator, and we find, using the mass functional formulation 
of (16) that AOI (p2) '" 18fo2(p2 + m6)-I, where forT] is the functional defined 
in Cahill et al. (1987). One can also show (Cahill et al. 1989a) that the 
baryon eigenvalues A(P2 ) of (22) are chiral invariants, and hence so are the 
baryon masses. The baryon equation (20) is thus Lorentz and chiral covariant, 
incorporates the colour algebra (without this algebra the exchange of spin-1 
bosons between 2 fermions is repulsive), and has bound state solutions. 
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Let us now construct an appropriate FIC representation for exp(TrLn(l + K». 
To this end note that analysis of (22) shows that an eigenvalue for positive 
energy solutions, with degeneracy 2 (for spin land D, has the form 

(define F so that a = 1 when A = 0, then Mk(P2) will be seen to be baryon 
running masses), while for negative energy solutions (anti-baryons) A!! = (A~)*. 
Thus, from the spectral representation for 1 + K, 

where k sums the ground state and excited baryons states of (22), and the 
squares in the In's arise from the spin degeneracy, and n = 8 from the flavour 
degeneracy (put a = 1 for simplicity), giving 

= exp (L nTrLn[(y.o + Mk(O»F~84(X - y)]) 
k 

= J n DNkDNk exp ( - L J d4xNk(x)(y.o + Mk(O»F~Nk(X»), (24) 
k 

in terms of Nk and Nk each of which is a flavour octet of local baryonic 
spin-i FIC variables. Hence the exponentiated sum of the clos"d double helix 
diagrams is representable as a (free) baryon field theory. The Fk may be 
absorbed with a re-definition of the nucleon fields. Other more complicated 
(including baryon multi-loops) diagrams are present and constitute a wealth 
of dressings and interactions between these (bare) baryons. Of some interest 
would be the terms describing nucleon-nucleon interactions via quark and/or 
diquark exchange. These are not meson mediated interactions and would affect 
the short range nucleon-nucleon force. As for the meson-baryon couplings, 
these may be systematically extracted by keeping the full 'B dependence 
in G['B] in (13). Such couplings are non-local, which makes all quantum 
fluctuation calculations, such as pion dressing of the nucleon, finite. For 
small quark current masses we have already shown (Cahill et al. 1989a) that 
the baryon equation (21) leads to multiplet splitting in accord with the well 
known Cell-Mann-Okubo and Coleman-Clashow formulae. 

The long wavelength limit of the NC-boson-baryon coupling may be inferred 
from the chiral invariance of (23). Now 

TrLn[(y.o + M(o»84(x - y)] = TrLn[(y.o + I1M(o»84(x - y)] 

reflects that invariance in (29), where 11 = exp(i.j2ys rraTa), with {Tal the 
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generators of SU(3r) 8 representation. Then combining the results above and 
from Section 2, we finally obtain, on expanding Y to first order in rra , 

Z = f Drr .. .DNDN .. exp (-f [ff (((3j.lrr)2 + m~rr2) + .. 

(25) 

in which the baryon octet is finally written as a 2nd rank tensor, N = NaTa, 
where the {Ta } are generators of the SU(3r) 3 representation (Cahill et al. 
1989a). We have shown mIT and l!.mN which are mass terms from the chiral 
symmetry breaking quark current masses, while mN is the 'chiral mass' of the 
baryons, determined by A(-m~) = O. Keeping in (25) the momentum dependence 
of M(p2) leads to the form factor FITNN. 

The extraction of the full meson-baryon and baryon-baryon interactions 
requires more detailed techniques, but the derivation here of (25) from (I) 

does demonstrate the hadronisation of QCD. 
The detailed form of (20) is easily determined for the other baryon multiplets, 

particularly the well known f. An important application of this formalism is 
to the magnetic moments and structure functions of the baryons. 

4. Conclusions 

We have presented here the FIC techniques that reveal the low energy states 
of quantum chromo dynamics-the colour singlet qq mesons and qqq baryons. 
The necessary intermediate stage of a Ie - 3e - 3e meson-diquark bosonisation 
leads directly to qqq states-the baryons. The reSUlting baryon equations are 
simple to solve and easily extended to include numbers of diquark states. 
They are Lorentz and chiral covariant and include the colour algebra, which 
is the key to the existence of qqq bound states. The reSUlting hadronisation 
is succinctly and elegantly stated as a dynamically determined change of 
integration variables; 

f DqDqDA exp(-S[A,q,q]) = f DrrDp . .DNDN .. exp(-S[rr,.,N,N,.]). 

The complete meson-baryon effective action has all parameters determined 
by the underlying quark-gluon dynamics and is ideally suited to the u - d 
mesons and baryons, as this analytic approach allows a complete description 
of the hidden chiral symmetry, and a simple perturbative account of the 
consequences of the small chiral symmetry breaking quark current masses. 
The natural non-locality of all hadron couplings means that as a matter of 
principle there are no divergent expressions in the quark physics. Hence QCD 
has been an ideal problem in which to develop a mathematically and physically 
sensible analYSis of how quantum field theories behave: It is not necessary 
for QFTs in four-dimensional space-time to be associated with infinities. 

The above integral identity is perhaps also archetypal to our understanding 
of matter. We might expect to the left of this equation another identity relating 
quarks and gluons to some more fundamental variables, while to the right 
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further changes of integration variables leading to the field variables of nuclear 
physics. The mappings of the effective actions .. -S[A,q,qj-S[rr, .. ,i\1,N, .. j- ... 
correspond to an increasing scale of the collective phenomenon: at the 
appropriate wavelengths we see meson-baryon processes while at shorter 
wavelengths we see quark-gluon processes. It is in the hadronisation of QCD 
where we see most clearly the development of such mappings and the FIC 
techniques which bring them about. 
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Appendix 

ConSider, for example, a 2 - 2 particle translation invariant kernel, K(x, y; U, v). 
Then the momentum space eigenvalue equation is 

The completeness relation is then 

K(p, q; P) = :L 'Pk(P; P)i\k(P2 )'Pk(q; P)t, 
k 

where the orthonormality relation is ('Pk, 'PI) = 8kl. Then 

TrLn(K) = TrLn(1 + (K - I» 

00 ( l)n+l 
= Tr 2: -=-n-(K - I)n 

n=l 
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= LTrLn(Ak(D)c54 (x - y», 
k 

R. T. Cahill 

where 0 = -alla ll , and any degeneracies are included in the k-sum. The f d4z 
factor is the space-time volume. 
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