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Abstract 

The (e,2e) reaction on atoms can be described quite well in most of kinematic space by 
distorted-wave theories of varying sophistication. In some regions it is necessary to obey the 
newly-discovered boundary condition for three charged particles. The understanding enables 
us to recognise a kinematic region where the reaction is sensitive only to the target-ion 
structure. Single-particle and electron-correlation information has been discovered for a 
wide range of atoms and molecules. The understanding of solids is developing. 

1. Introduction 

Electronic structure is directly observed by kinematically-complete ionisation 
experiments (McCarthy and Weigold 1988). Relevant observed quantities are 
defined by Fig. 1. We adopt the convention that the momentum of the faster 
outgoing electron is labelled by kA. 

The experiment observes several quantities of theoretical significance. The 
electron separation energy Ef is defined by 

Ef =Eo -EA -EB. (1) 

It is the difference between the ground-state energy of the target and the 
energy of the eigenstate f of the ion. The experiment observes the energy 
spectrum of the ion. 

The recoil momentum of the ion in the state f is observed. It is 

p = ko - kA - kB = -q. (2) 

The most naive interpretation of the experiment is the plane-wave impulse 
approximation (PWIA). Here the electron is cleanly knocked out of the target 
so that the recoil momentum p is equal and opposite to the momentum q 
of the electron in the target at the reaction instant. If the target structure 
is interpreted by the most naive structure model, the one-electron model, 
the distribution of the differential cross section for the reaction against p is 
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Fig. 1. Definition of the kinematic quantities in the (e,2e) reaction. 
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Fig. 2. Distribution of the recoil momentum in the noncoplanar symmetric (e,2e) reaction 
on atomic hydrogen at different total energies (Lohmann and Weigold 1981). 

proportional to the square of the one-electron orbital for the one-hole state i. 
In most experiments the target is not aligned. Therefore we observe only the 
spherically-averaged distribution of electron momentum against p. 

A quantity of interest in considering the range of validity of approximations 
is the momentum transfer K from the incident electron to the faster electron 

K=ko-kA' (3) 

In this paper I discuss the type of structure information that can be obtained 
from (e,2e) and the range of validity of different theoretical interpretations 
of the reaction, particularly the PWIA. 
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For orientation we first consider the (e, 2e) reaction on atomic hydrogen, 
whose electron momentum distribution we know to be proportional to (l +q2)-4. 

The experimental kinematics most commonly used for structure applications is 
the noncoplanar symmetric kinematics, in which EA = EB, eA = eB and cf> is varied. 
The simplest interpretation of the reaction expects the cross section to be pro­
portional to the momentum distribution of the struck electron and also to K-4, 
which is the Rutherford cross section for two electrons. Since K is independent 
of e in noncoplanar symmetric kinematics, we expect the cross section as a 
function of p to be strictly proportional to the electron momentum distribution. 
Fig. 2 shows that this is so at total energy (EA +EB) of 400, 800 and 1200 eV. 
Not only must the PWIA be taken seriously as a good first approximation, but 
the apparent structure information is identified as true structure information 
since it is independent of the probe conditions, in this case the total energy. 

2. Simple Theory of Ionisation 

We first discuss the plane-wave impulse approximation, which corresponds 
not only to our naive intuition, but to the results of an actual experiment 
for hydrogen. The approximation represents initial and final states as 
antisymmetrised products of free-electron wave functions (plane waves) and 
eigenstates of the target and ion respectively. Since the electrons are 
approximated to interact only with each other at the collision instant we 
represent this interaction by its full amplitude ts for spin state S. The (e,2e) 
amplitude is 

Tf(ko, kA, kB) = {kAkBf I ts I Oko}. (4) 

The corresponding differential cross section is 

d5(Yf 4 kAkB -1 f . "" 2 df2 df2 dE = (2rr) -k-(4rr) dp.L,1 Tf(ko,kA,kB) I , 
ABA 0 av 

(5) 

where Lav indicates a sum over final-state degeneracies and average over 
initial-state degeneracies. 

Making the transformation from particle momenta to relative and centre-of­
mass momenta in the (linear) exponents of the plane waves in (4) we rewrite 
(4) as 

Tf(ko,kA,kB) = (k'i tS(k,2) I k}{fl Op}. (6) 

In this approximation the amplitude factorises into an ee collision amplitude 
and the structure overlap, which is the overlap of the ion wave function with 
a wave function representing a hole of momentum p in the target, sometimes 
called the Dyson amplitude. 

The ee collision amplitude is the antisymmetrised half-off-shell t-matrix 
element for total spin S, representing the solution of the equal-mass Coulomb 
scattering problem for relative kinetic energy k,2 and the corresponding final 
relative momentum 

k' = ~(kA - kB). (7) 
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The initial relative momentum in this amplitude, 

k = ~(ko +p), (8) 

does not correspond to the relative kinetic energy. Hence the amplitude is 
said to be half off shell. 

All kinematic quantities in (5) and (6) are observed in the experiment and 
the ee collision amplitude is known (Ford 1964). Hence we have a theory for 
the differential cross section, given the structure overlap. In other words the 
reaction directly observes the structure overlap, or more strictly according to 
(5), its absolute square, spherically averaged and summed over degeneracies. 

For all targets the degeneracies include the spin degeneracy of the ee 
collision and the magnetic degeneracies of the electronic states. For molecules 
we do not resolve vibrational or rotational states so these are effectively 
degeneracies, which are summed out by closure relations (McCarthy and 
Weigold 1988), assuming that their degrees of freedom are independent of the 
electronic degrees of freedom. The structure overlap therefore is effectively 
the electronic structure overlap. 

3. Structure Determination 

We now take a closer look at the electronic structure overlap. The 
simplest approximation, which orients our understanding, is the one-electron 
approximation. The best one-electron approximation represents the target by 
a determinant of variationally-determined (Hartree-Fock) one-electron orbitals 
and the ion by one hole for the orbital i in this determinant. If we are 
tempted to consider whether the ion Hartree-Fock orbitals may give a better 
approximation we should consider hydrogen! In this approximation the ion 
state I f} is identical to the one-hole state I i). The structure overlap is the 
momentum-space orbital (jJi(P). 

It is appropriate now to consider the first (e,2e) experiment to observe 
valence structure, the 400 eV noncoplanar symmetric experiment on argon by 
Weigold et al. (1973). Fig. 3 shows the distribution of separation energies. 
We notice that there are more ion states than the two we expect from holes 
in the valence orbitals 3p and 3s, whose Hartree-Fock energies are 16 and 
35 eV respectively. How do we understand these states? 

We have a new tool at our disposal, the momentum distribution. Fig. 4 shows 
the momentum distribution for the state at 16 eV compared with three PWIA 
calculations. The 3p Hartree-Fock orbital describes the data exactly. Two other 
quite sensible orbitals, Hartree-Fock-Slater and a variationally-optimised hydro­
genic 3p function, are noticeably worse. Not only does our simplest description 
work perfectly for this state but the orbital is determined very sensitively. 

What about the state at 29 eV and several unresolved higher states? Fig. 5 
shows their momentum distributions, observed with better resolution in a later 
experiment (Weigold and McCarthy 1978). The PWIA with the Hartree-Fock 3s 
orbital works well for all of them for p < 1 a.u. Its cross section is rather too 
small for higher p, but the states are certainly associated with the 3s orbital. 
What is this relationship? 
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Fig. 3. Differential cross section at cf> = 10° for the 400 eV noncoplanar symmetric (e,2e) 
reaction on argon (Weigold et al. 1973). The arrows indicate known energy levels of Ar. 
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Fig. 4. The 1200 eV noncoplanar symmetric momentum distribution for the 15·76 eV state 
of Ar (McCarthy and Weigold 1988). Curves are PWIA calculated with 3p orbitals: Full, 
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To understand the structure overlap we consider the configuration-interaction 
(CI) expansion of target and ion states in determinants (configurations) formed 
by occupying target Hartree-Fock orbitals by electrons in such a way that each 
configuration has the symmetry of the state. The configuration with all the 
lowest orbitals occupied is the Hartree-Fock configuration. The representation 
we want to consider for the ion is not the CI representation, but one in which 
the orthonormal basis states I j} are linear combinations of configurations 
formed by putting one hole in a target eigenstate. This is the weak-coupling 
representation and the basis states I j} are weak-coupling states. Note that 
the weak-coupling states are identical to the CI configurations if the target is 
uncorrelated, i.e. represented by the Hartree-Fock configuration 

(fl Op}=..[/fl jXjl Op). (9) 

Clearly (j I Op) is zero if I J) is not a one-hole state I 0 formed by putting a 
hole in the target ground state. 

The weak-coupling approximation has turned out to be usually valid. Here 
the weak-coupling expansion of the ion state I f} contains only a single one-hole 
state I 0 

(fl Op}=(fl i}(il Op). (0) 

The cross section in this approximation is proportional to the square of 
the one-hole overlap I (i lOp) 12, which is very close to the square of the 
momentum-space orbital 1 !/I;(p) 12. It is proportional also to the spectroscopic 
factor I (f I I) 12, which is the probability of finding the one-hole state lOin 
the weak-coupling expansion of the ion state I f}. 

Ion states that do not obey the weak-coupling approximation are of special 
interest in studying target correlations. The simplest example is helium, 
considered as a linear combination of IsIs and Is2s configurations. The 2s ion 
state is not a one-hole state. Its overlap with the target state is proportional 
to the coefficient of Is2s, thus giving information about the Is2s configuration 
that is not swamped by the large contribution from IsIs. 

The example of the 3s hole in argon is one that can be treated in the 
weak-coupling approximation. There is a manifold of ion states, each containing 
the 3s-hole state. We call it the 3s manifold. Consider the sum of cross 
sections for all the ion states I f} belonging to the i manifold. According to 
(10) and the fact that lOis normalised, the sum is proportional to 

..[rl (fl Op}1 2=..[r(pOII)(il f}(fll)UI Op) = I UI Op}1 2 . (11) 

The sum is therefore the cross section for the one-hole overlap, or essentially 
for the orbital !/I; (p). This gives an experimental definition of an orbital. 

The energy €; for the one-hole configuration I i}, the orbital energy, is defined 
to be the expectation value of the ion Hamiltonian H for the configuration I 0: 

€; = U I HI 0 =LrU I HI f}(fl i} =..[r I (fll) 12 €r. (2) 

The orbital energy is thus the centroid of the energies of the i manifold, 
weighted by the spectroscopic factors. In the case of the 3s manifold of argon 
this is at 35 eV, agreeing with the 3s Hartree-Fock energy. 
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There are now two loose ends to be tied up in our interpretation of the 
argon experiments. First the 3s orbital does not describe the shape of the 
3s momentum distribution exactly. It is too small for large p. Second we 
have not yet checked whether normalised 3p and 3s orbitals describe the 
relationship between the cross sections for the whole 3p and 3s manifolds. 
For this we need some more theory. 

p(a.u.) 

0 1.0 2.0 0 1.0 2.0 
I 

I 
I 

(a) (b) Argon 

-OWIA 

- - PWIAxO'874 
f "- I --........', 

OJ 

.i 10-3 
c 
.Q 
U 
OJ 
(J) 

(J) 
(J) 

0 
t; 
Cii 1 \ 

! lO-t 
\ 

\ 
\ \ 

\ \ 
\ 
\ \ 

\ \ 
\ \ 
\ \ 

\ \ 

10-5 
0 10 20 0 10 20 30 

~ (deg.) 

Fig. 6. The 1500 eV noncoplanar symmetric momentum distributions for 
the (a) 3p and (b) 3s manifolds of argon (McCarthy et al. 1989). The 
experiment is normalised to the 3p peak. 

4. Distorted-wave Theories 

The distorted-wave impulse approximation (DWIA) replaces the plane waves 
in the structure overlap of (6) by wave functions describing the scattering of 
electrons in the spherically-averaged static potentials of the target and ion in 
the initial and final states respectively: 

Tf(ko, kA, kB) = (k' I tsCk,2) I k)(X(-)(kA)X(-)(kB){ I ox(+) (ko)) . (13) 

This approximation is based on the intuition we have obtained by the 
iterative interaction between theory and experiment. Fig. 6 shows how it works 
for the 3s and 3p manifolds of argon (McCarthy et al. 1989) at 1500 eV, using the 
weak-coupling approximation (10). The noncoplanar symmetric experimental 
data are normalised to the calculation at one point, the peak of the 3p DWIA 
curve. Both our loose ends are tied up. The relationship between 3p and 3s 
manifolds is described perfectly by DWIA, but not by PWIA. The large-p cross 
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sections are described perfectly by DWIA, but the discrepancy observed for 
the PWIA in Fig. 5 is made more explicit in the more-accurate experiment. 
The noncoplanar symmetric argon experiment is thus completely understood 
by using the DWIA for the reaction and the weak-coupling approximation for 
the target-ion structure. 

At this stage it is important to point out that the success of the DWIA for 
the noncoplanar symmetric (e,2e) reaction is not repeated in other kinematic 
arrangements. Fig. 7 shows an experiment (Avaldi et al. 1989a) on the 3p 
state of argon in which EA = 880 eV, EB = 120 eV, eA = 8°. In this experiment p 
is always much greater than 1 a.u. The DWIA (dot-dash curve) is a complete 
failure, even compared to the PWIA (solid curve). It turns out (Madison et 
al. 1989) that this is due to the invalidity of the factorisation involved in 
going from (4) to (6) with distorted waves. The factorisation is exact for 
plane waves. It is impossible to calculate the unfactorised form obtained by 
introducing the distorted waves in (4). 

We can calculate the distorted-wave Born approximation (DWBA) obtained 
by approximating ts in (4) by its first-order form Vs (the ee potential with 
exchange) and introducing distorted waves: 

Tf(ko, kA, kB) = (X(-l(kA)X(-l(kB){ I Vs I OX(+l(ko». (14) 

This approximation describes the large cross sections for the asymmetric (e, 2e) 
reaction on the 3p state of argon much better (Avaldi et al. 1989b), particularly 
for eA = 20° and 14°, where p is less than 1 a.u. This is shown in Fig. 8. 

It is interesting to consider what is the best possible description of the 
(e,2e) reaction. Here we start from the formally-correct T-matrix element, 
considering hydrogen as the simplest target: 

T(ko, kA, k B) = (<P(-l(kA, kB) I Vs I 'P~+)(ko» (15) 

= ('PH(kA' kB) I Vs I Oko). (16) 

Here 'P indicates a complete three-body wave function and <pH indicates the 
asymptotic wave function for three outgoing charged particles. Until 1989 
<pH was not fully established. Brauner et al. (1989) showed that it is two 
plane waves multiplied by three Coulomb phase factors, one for each pair of 
particles. They used an approximation for 'PH in (16) which is two distorted 
waves calculated in the ion potential and the Coulomb factor for the relative ee 
motion. This approximation is illustrated for coplanar asymmetric experiments 
in Fig. 9, together with the DWBA (14) and an approximation to (15) due 
to Curran and Walters (1987) who use the same final state as the DWBA, 
but represent 'Ptl(ko) by a wave function taken from a detailed scattering 
calculation in which the first three states of hydrogen are represented exactly 
and the remainder (including the continuum) are represented by pseudostates 
with parameters fitted to approximate scattering calculations. The three-body 
wave function of Brauner et al. is clearly the best approximation. The DWBA 
is again quite good for the large cross sections, but tends to overestimate 
magnitudes. 
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5. Fine Details for Argon Structure 

The type of structure detail available from (e,2e) is excellently illustrated 
by continuing our argon example. Figs 10 and 11 show the states above 
34 eV observed in the 1500 eV noncoplanar symmetric experiment. Fig. lOa 
shows the 3s manifold (described here by the full notation 2se) described by 
the DWIA. Figs 10e to lOf clearly show states of the same manifold with 
their spectroscopic factors. Fig. lOb shows a state of the 2Se manifold whose 
leading configuration is 3s2 3p4 (Is) 4s. It is an ion state, like the 2s state in 
our helium example, which gives information about the 4s correlation in the 
target. 

The state in Fig. 11 a gives information about d correlations in the target. 
Figs llb and lle show correlations in the 3p ion manifold that can be 
described by the weak-coupling approximation, while the state of Fig. 11 d 
again requires d correlations in the target. 
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Table 1. Spectroscopic factors for the 3s manifold of argon 
Errors in the last figure are given in parentheses. References for columns are: Experiment 
(McCarthy et al. 1989), Overlap (Mitroy et al. 1984), Green's function (Amusia and Kheifets 

1985) 

Dominant Experiment Overlap Green's 
configuration €f (eV) 1 (;1 tW function 

3s 3p6 29·24 0·55(1) 0·649 0·55 
3p4 4s 36·50 0·02(1) 0·l3 
3p4 3d 38·58 0·16(1) 0·161 0·20 
3p44d 41· 21 0·08(1) 0·083 0·11 
3p4 5s 42.65J 0·04 

0·08(1) 0·081 
3p4 6d 43·40 
Ar+++e 0·12(1) 0·0l3 

The spectroscopic factors 1 (i 1 f) 12 are the squares of the coefficients of 
the one-hole states in the eigenvectors for the states 1 f} resulting from the 
diagonalisation of the ion Hamiltonian in the weak-coupling representation. 
One such diagonalisation has been done by Mitroy et al. (1984). Table 1 
compares the spectroscopic factors with the experimentally-determined ones 
and with the pole strengths resulting from a Green's function calculation by 
Amusia and Kheifets (1985). 

We believe the experimental spectroscopic factors because the calculations 
from which they are extracted describe the whole experiment perfectly. In 
particular we note the comparison of the momentum distributions for the 3p 
and 3s manifolds (Fig. 6) and the momentum distributions of the individual 
states in the manifold (Fig. 10). Table 1 shows that quantum chemistry has 
some way to go in describing wave functions. 

6. Molecules 

The example of the argon atom has shown the kind of structure detail 
that can be extracted from the (e,2e) experiment. The same is true of the 
electronic states of molecules. The major difference is that we must use 
the PWIA for molecules because the non-central potentials make the distorted 
waves difficult to calculate. 

Fortunately the PWIA works better for molecules than for atoms. Not only 
are momentum distribution shapes described very well up to p - 2 a.u. in 
'normal' cases such as N2 (Fig. 12) but the magnitudes of the momentum 
distributions for one-hole manifolds agree closely. 

A very interesting 'abnormal' case is H20, where the states represented 
by the outermost orbitals have momentum distributions that do not agree 
with even completely-converged Hartree-Fock calculations in the PWIA. Our 
experience with the PWIA leads us to trust it and to blame the weak-coupling 
approximation. This is vindicated by Fig. 13 where curves 5 and 6 represent the 
converged Hartree-Fock calculations and curves 6c and 7c represent calculations 
of the target-ion overlap (f lOp) performed with large CI expansions in each 
(Bawagan et al. 1987). Curves labelled by lower numbers are calculated with 
cruder orbitals. We conclude that the (e,2e) experiment reveals long-range 
correlations in the target. 
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Fig. 12. The 1500 eV (e,2e) momentum distributions for nitrogen (Cook et al. 1990) 
compared with the PWIA. Solid curves use the spectroscopic factors from a Green's function 
structure calculation using SCF orbital wave functions in a 11s7p2d basis. Dashed curves 
for the outer-valence states use unit spectroscopic factors and a basis of double-zeta quality 
(Snyder and Basch 1972). The normalisation is preserved for the whole figure. Dashed curves 
for € = 30·5 - -50·0 eV represent the lls7p2d orbitals which are added with the indicated 
spectroscopic factors to give the solid curve. 
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Fig. 13. The (e, 2e) momentum distributions for the outer-valence orbitals of water (McCarthy 
and Weigold 1988). Curves are described in the text. 
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The situation with final-state (ion) correlations for molecules is very similar 
to that for atoms. The inner-valence manifolds are strongly split into states 
with quite large spectroscopic factors. The case of water, shown in Fig. 14, 
is typical. The solid curves here represent a simulated experimental energy 
distribution. In the weak-coupling approximation the crosS sections for states 
at eigenvalues given by a structure calculation are given by the PWIA momentum 
distribution and the spectroscopic factor. These cross sections are spread 
by the experimental energy resolution (broken curves) and summed. The 
three lower-energy manifolds are not strongly split and are well described 
by the structure calculations. The theoretical spectroscopic factors for the 
inner-valence manifold are biased towards an energy that is too low. 
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Fig. 14. Energy distribution for the valence states of water (McCarthy and Weigold 1988) 
at E = 1000 eV, cf> = O· . Curves are described in the text. The corresponding structure 
calculations are (a) Green's function (von Niessen et al. 1982) and (b) CI (Cambi et al. 1984). 
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Fig. 15. Diffraction effects in the 30 keY (e,2e) reaction on a diamond 
crystal. Details are given in the text. 

7. Solids 

The understanding of solid-state (e,2e) experiments is just beginning (Ritter 
et al. 1984). They will be analysed using the DWBA, where the distorted waves 
are the wave functions of the dynamic diffraction theory of crystallography 
and the one-hole wave functions come from electron band theory (Allen et al. 
1990, present issue p. 453). It may also be necessary to include a description 
of strongly-coupled plasmons in the details of the distorted waves. 

For (e,2e) on a crystal it is important to find target orientations where 
Bragg diffraction does not invalidate the conclusion that the observed recoil 
momentum corresponds to the internal momentum of the electron. Fig. 15 
shows the ratio of the differential cross section calculated without diffraction 
to that calculated (Matthews, personal communication 1989) with diffraction 
for a diamond crystal with a [1,1,1] surface normal and a thickness of 50 A. 
The energies are E = 30 keY, EA = 28 keY and the angles are chosen to include 
p = O. The surface normal is initially in the incident electron direction and 
its orientation angles ()(,/3 are each swept through 100. The plateaus on the 
diagram for a ratio of about 0·9 or more indicate the orientations for which 
diffraction does not significantly interfere with the measurement of the electron 
momentum distribution. These plateaus are large enough to suggest that the 
determination of band momentum distributions is feasible. The valleys in the 
diagram are due to a powerful diffraction plane being tracked through the 
Bragg condition. 



-------.•. --~-----------

Electronic Structure from (e, 2e) 437 

Acknowledgment 

This work was supported by the Australian Research Council. 

References 
Allen, L. J., McCarthy, I. E., Maslen, V. W., and Rossouw, C. J. (1990). Aust. j. Phys. 43, 453. 
Amusia, M. Ya., and Kheifets, A S. (1985). J. Phys. B 18, 1.679. 
Avaldi, L., McCarthy, I.E., and Stefani, G. 0989a). j. Phys. B 22, 3305. 
Avaldi, L., Stefani, G., McCarthy, I. E., and Zhang, X. (1989b). j. Phys. B 22, 3079. 
Bawagan, A. 0., Brion, C. E., Davidson, E. R., and Feller, D. (1987). Chern. Phys. 113, 19. 
Brauner, M., Briggs, J. S., and Klar; H. (1989). J. Phys. B 22, 2265. 
Cambi, R., Ciullo, G., Sgamellotti, A, Brion, C. E., Cook, J. P. D., McCarthy, I. E., and Weigold, 

E. (1984). Chern. Phys. 91, 373. 
Cook, J. P. D., Pascual, R., Weigold, E., von Niessen, W., and Tomasello, P. (1990). Chern. Phys. 

(in press). 
Curran, E. P., and Walters, H. R. J. (1987). J. Phys. B 20, 337. 
Ford, W. E (1964). Phys. Rev. B 133, 1616. 
Klar, H., Roy, A. c., Schlemmer, P., Jung, K., and Ehrhardt, H. (1987). J. Phys. B 20, 821. 
Lohmann, B., and Weigold, E. (1981). Phys. Lett. A 86, 139. 
McCarthy, I. E., Pascual, R., Storer, P., and Weigold, E. (1989). Phys. Rev. A 40, 3041. 
McCarthy, I. E., and Weigold, E. (1988). Rep. Prog.Phys. 51, 299. 
Madison, D.H., McCarthy, I.E., and Zhang, X. (1989). J. Phys. B 22, 2041. 
Mitroy, J., Amos, K. A, and Morrison, I. (1984). j. Phys. B 17, 1659. 
Ritter, A. L., Dennison, J. R., and Jones, R. (1984). Phys. Rev. Lett. 53, 2054. 
Snyder, L. c., and Basch, H. (1972). 'Molecular Wave Functions and Properties' (Wiley: New 

York). 
von Niessen, Wo, Cederbaum, L. S., Schirmer, J., Diercksen, G. H. E, and Kraemer, W. P. (1982). 

J. Elec. Spectrosc. 28, 45. 
Weigold, E., Hood, S. T., and Teubner, P. J. O. (1973). Phys. Rev. Lett. 30, 475. 
Weigold, E., and McCarthy, I. E. (1978). Adv. At. Mol. Phys. 14, 127. 

Manuscript received 1 March, accepted 3 May 1990 






