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Abstract 

A theoretical framework is developed to describe the dynamical diffraction of X-rays in 
perfect and imperfect crystals. The propagation of the X-ray beam inside the crystal is 
described by the evolution of a set of trajectories in the complex reflectance plane. The 
trajectory path is determined from a form of the Takagi-Taupin equations and leads naturally 
to simple forms for the crystal reflectivity for perfect crystals. A stochastic model for the 
effects of crystal defects is developed in terms of the Langevin equation which leads to a 
description of diffraction from imperfect crystals as the evolution of densities in a parameter 
space, described by a Fokker-Planck equation. 

1. Introduction 

The effect of imperfections on the diffraction of X-rays in crystals is to 
introduce a degree of randomisation of the phases of the diffracted waves. 
Invariably, the study of diffraction from such crystals requires methods for 
calculating the collective effects of these phases, averaged over an ensemble 
of imperfect crystals (e.g. Dederichs 1971; Kato 1980, 1991; Holy 1982; Holy 
and Gabrielyan 1987; Becker and Al Haddad 1988). 

Rather than follow this approach, the aim of this paper is to treat the phases 
of the X-rays indirectly by describing the behaviour of the complex reflectance 
as a function of position in the crystal. The state of the X-rays in each crystal, 
comprising a part of a statistical ensemble, will be represented by a point in 
the complex reflectance plane. A study of the effects of lattice distortions and 
defects on the trajectories of these points will lead to a statistical model and 
a Fokker-Planck equation governing the evolution of densities in a parameter 
space. This provides a theoretical framework for the description of X-ray 
diffraction in imperfect crystals. 

The present work is directed towards Bragg reflections from extended 
face crystals and in particular, epilayers, where the crystal is considered 
to be statistically homogeneous in strata parallel to the crystal surface. In 
Section 2 the concept of an X-ray trajectory in the complex reflectance plane 
is developed, followed in Section 3 by a study of the effects of imperfections 
on the trajectories. This leads to the concept of a density of trajectories, 
the development of a stochastic defect model in Section 4, and finally, in 
Section 5, the evolution equation for these densities. 
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2. Crystal Reflectance in the Complex Plane 

The Takagi-Taupin equations (Takagi 1962, 1969; Taupin 1964) describe the 
variation with position in the crystal of the amplitudes of the transmitted and 
diffracted waves. These variations occur in the propagation directions of the 
X-ray beams. Consider a single, extended face crystal which is homogeneous 
in each plane parallel to the crystal surface so that the propagation directions 
can be projected onto the one axis and the equations written as functions 
only of depth t below the crystal surface. Here the origin of the coordinates 
will be at some point within the crystal (e.g. the boundary between a substrate 
and an epilayer) and t will be taken as positive in the direction of the crystal 
surface. It is assumed that the X-rays are plane waves. By defining the crystal 
reflectance R(t) at depth t as the ratio of the diffracted and transmitted wave 
amplitudes at t, a first order differential equation for the crystal reflectance 
can be derived, 

dRldt = iex(Xh - 2{3R + X-h R2). (1) 

Here ex = -rrklYh with the X-ray wavelength given by 11k = A; Yo and Yh are 
the direction cosines of the transmitted and diffracted waves with respect to 
the crystal surface normal; X' hand X'-h are the Fourier components associated 
with the reciprocal lattice vectors hand -h of the dielectric susceptibility of 
the crystal, with Xh = CX' hand X-h = -C(YhIYo)X'-h, where C is the polarisation 
factor; and {3 is the resonance parameter given by 

(3 = n2 k~ - k2 _ n kh • v( h. V(~») -
2k2 k = {3 + {3T; • (2) 

In this equation n = (1 +XO)1/2 is the refractive index for X-rays, k and kh the 
wavevectors of the transmitted and diffracted waves in the crystal interior 
with kh = k+h, and v the displacement of each point in the lattice from its 
normal position due to strain in the crystal. The parameter ~ represents a 
random quantity and it will be used in the description of the imperfect lattice, 
as discussed below. 

Note that the resonance parameter has been separated into two components. 
The first component is a function of the angle of incidence of the X-ray beam 
while the second component depends on the state of strain in the crystal. 

The reflectance is a complex quantity, the phase of which is the phase 
difference between the transmitted and diffracted waves in the crystal. Rather 
than focus on the direct form of the reflectance as a function of position, 
consider the complex reflectance plane with axes defined by (x, y) = (Re R, 1m R). 
Equation (1) then describes the 'motion' of a point located at (x(t), y(t») as a 
function of t. At each position in the crystal, the X-ray beam is associated 
with a particular reflectance, which is represented by a point in the complex 
reflectance plane. Because the reflectance is a function of position t, the 
location of a point in the complex plane changes as t is varied. By tracing out 
the path followed by the point, a trajectory in the complex plane is described 
(Fig. 1). This trajectory describes the relative phase and the amplitudes of the 
X-rays in the crystal as a function of depth. Here the depth t now plays the 
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Fig. 1. Trajectories in the complex reflectance plane for a 
10 Ilm thick silicon 111 wafer determined at a number of 
incident angles. The angles are measured in arc seconds 
relative to the Bragg angle: (a) 9", (b) 4", (c) 0, (d) -I" and 
(e) -6". The dashed curve is the locus of the singularities for 
all angles of incidence. The X-ray wavelength was 0·154 nm. 
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part of a time-like parameter and for constant coefficients it can be eliminated 
altogether from the equations of 'motion': 

dy/dx = (dy/dt) (dx/dt)-l 

1m i(Xh - 2p(x + iy) + X-h(X + iy)2) 

Re i(Xh - 2p(x + i y) + X-h(X + i y)2) . 
(3) 

This is an equation for the tangent to the trajectory (Le. the trajectory 
direction) in the complex plane. The tangent becomes undefined when both 
the numerator and the denominator are zero, which occurs when the complex 
number Ro satisfies 

X-h R6 - 2PRo +Xh = 0, (4) 

and it is given by 

Ro(p) = {p ± (13 2 - Xh X_h)1/2}/X_h = (13 + W)/X-h . (5) 

This is a singular point. of the trajectory and it depends on the incident angle 
of the transmitted beam, through p. An analysis of the behaviour of the 
trajectory in the vicinity of Ro(P) shows that the singular point is a stable 
focus of the system (Bogoliubov and Mitropolsky 1962; Brand 1966) with 
all trajectories for a given 13 asymptoting to this value. This fact identifies 
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Ro(f3) as the reflectance of an infinitely thick perfect crystal and, as such, the 
sign of co is chosen to ensure that I R I < 1. In Fig. 1 the locus of points 
(Re Ro(f3), 1m Ro(f3») is plotted as the angle of incidence of the X-rays (and hence 
b) is varied. 

Since all trajectories· for a given f3 spiral around the singular point, the 
solution to (1) takes a simpler form when expressed relative to Ro. Using 
equations (4) and (5) to eliminate Xh and f3 from (1) and assuming that Ro is 
constant yields 

d(R ~. Ro) = i oc(R - RoH2co + X-h(R - Ro}}. (6) 

With the boundary condition R(t=O) = 0 the solution to equation (6) is 

. 1 -Rox-h/2co 
R=Ro{l-exp(21ocCOt)}, {Tl 12 HI (2' ". (7) - OX-h co -exp lOCCOt 

This is the reflectance as a function of t for a perfect crystal, based on 
dynamical diffraction theory. The real part of co determines the angular 
frequency of the trajectory about the Singular point while the imaginary part, 
related to the absorption of X-rays, determines the rate at which the trajectory 
approaches the singularity. Close to the Bragg peak, co is very small and the 
trajectory is modified by the denominator in (7) causing it to approach Ro 
much faster than would be dictated by 1m co. This is also seen in (6) when 
the nonlinear term dominates and the subsequent solution shows that R --+ Ro 
as lit. In kinematic descriptions of diffraction [obtained by setting X-h = 0 in 
(I)]. this effect is absent leading to large errors near the Bragg peak. The 
reflectivity, R(t)* R(t), is the square of the distance from the origin to the point 
on the trajectory corresponding to depth t. This distance is seen to oscillate 
with depth (the Pendellosiing effect). 

3. Imperfect Crystal Trajectories 

In this section the effects on the trajectories in the complex reflectance plane 
of imperfections in the crystal lattice are discussed. Here, a large ensemble of 
the single crystals treated in Section 2 will be considered. The composition of 
each crystal may vary with depth but it is assumed that the crystal remains 
homogeneous in each plane parallel to the crystal surface. This assumption 
is equivalent to ignoring the boundaries between adjacent crystallites in each 
plane. The state of diffraction within each crystal will be represented by a 
corresponding point in the complex plane. If all the crystals are identical, 
then all the points will coincide and will follow the same trajectory. Any 
variation in the crystals will result in the points being distributed over the 
complex plane. The ultimate aim (Section 5) will be to derive a single equation 
describing the response of the ensemble to the X-ray beam. 

There are two classes of imperfections that will be discussed, albeit in 
an idealised fashion. These are (i) idealised point defects and (ii) extended 
defects. Real defects will be considered to lie somewhere between these two 
extremes. The defects create strains in the lattice which, according to equation 
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(2), cause variations in the resonance parameter p. The extent of this variation 
depends on the class of defect. 

An idealised point defect is taken to be localised so that the crystal lattice is 
disrupted only in the immediate neighbourhood of the defect. The assumption 
here is that the direction of propagation of the diffracted X-ray beam remains 
fixed with respect to the perfect lattice. As the X-rays cross the defect, P(t) 
sweeps rapidly with t over a range of values and then settles back to its 
unperturbed value. This has two effects in the reflectance plane. Firstly, the 
singular point Ro(p(t)) rapidly changes position as t is varied across the defect 
causing the trajectory to momentarily spiral about another point in the complex 
plane. Secondly, the 'angular velocity' rapidly changes, through w(p(t»), which 
alters the rate at which the point moves from its current trajectory. The 
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Fig. 2. Location of points in the complex plane arising from diffraction from a silicon 
wafer containing idealised pOint defects, showing the diffusion about the ideal trajectory. 
The reflectivity is the mean square distance of all the points from the origin. The angle of 
incidence of the X-rays was 9/1 from the Bragg angle. Each figure is obtained for a particular 
thickness: (a) 0·5 11m, (b) 1·0 11m, (c) 1·5 11m and (d) 2·0 11m, where the solid line is the 
trajectory for a 2·0 11m thick perfect crystal. 
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net result is that the point in the complex plane representing the state of 
diffraction in the crystal momentarily deviates from its trajectory about Ro 
and then continues on a neighbouring trajectory about the same singularity. 

For a large ensemble of crystals with randomly distributed idealised point 
defects, the points in the complex plane commence along the one trajectory 
but begin to diffuse into the complex plane. This effect can be seen by 
modelling the effects of the idealised point defects using equation (7). By 
selecting a mean value p, representing the perfect crystal, and introducing a 
random value f3~ over a small random distance ,st at random intervals, the 
position of a point in the complex plane can be computed for any given 
depth. This is repeated many times to obtain the distribution of points for 
the ensemble of crystals. Fig. 2 shows the distribution of points at a number 
of depths t for a 2 11m thick silicon III wafer. The solid line is the trajectory 
that would be followed in a perfect crystal. The diffusion of points is clearly 
seen although the points remain clustered about the trajectory of the ideal 
crystal. Note that the diffusion occurs azimuthally about the origin, rather 
than radially, which is to be expected since the defects randomise the phase 
of the X-rays. The orientation of the cluster changes as it moves along the 
trajectory so that the diffusion occurs along different directions with respect 
to the cluster. This effect reduces the anisotropy observed in Fig. 2a. 

Extended defects may be considered within an idealised block model whereby 
the crystal consists of grains, or mosaic blocks, with each grain being a perfect 
crystal, but which may contain a constant strain, or a tilt, relative to other 
grains. Across a grain boundary, the state of strain changes rapidly from one 
value to some other, after which it is constant until the next grain boundary. 
In this case it is the gradient df3(t)/dt, which assumes a large value at the 
boundary and which is zero on either side of the boundary. If the resonance 
parameter has the values f3(t-r5t) and f3(t+,st) on either side of the grain 
boundary at t, then the corresponding points at (x, y) in the complex plane on 
the trajectory about Ro(f3(t-8t») will follow a new trajectory about Ro(f3(t+r5t»). 
This causes all points within any cluster to diverge away from the cluster. 
This behaviour should also occur when a point defect causes the diffracted 
beam to change its direction of propagation relative to the perfect lattice. 

As with idealised point defects, the effects of extended defects on the 
trajectories in the complex plane can be observed using equation (7). A mean 
value p is chosen and a random change in f3~ at random intervals is introduced 
to compute the location of each point at a given depth. Fig. 3 shows the 
distribution of points for the 2 11m thick silicon III wafer at the same depths 
as in Fig. 2. Again the points diffuse from the ideal trajectory but, as discussed 
above, points are no longer clustered about the trajectory of the perfect crystal 
and they tend to diffuse over large areas in the reflectance plane. 

4. Stochastic Defect Model 

In the previous section it was argued that crystal defects cause the diffusion 
of points into the complex reflectance plane and this was demonstrated using a 
computer simulation based on a simple defect model. A natural extension of this 
model for a very large ensemble of crystals is to consider the density of points in the 
complex plane and to derive an equation governing the evolution of the density. 
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Fig. 3. Location of pOints in the complex plane arIsmg from diffraction from a silicon 
wafer containing extended defects. As in Fig. 2, the angle of incidence of the X-rays was 
9" from the Bragg angle. Each figure is obtained for a particular thickness: (a) 0·5 11m, (b) 
1 ·0 11m, (c) 1·5 pm and (d) 2·0 pm, where the solid line is the trajectory for a 2·0 pm thick 
perfect crystal. 

Before this can be done, a precise mathematical statement of the defect 
model is required. The real, imperfect crystal is represented by an ensemble 
of crystals, as discussed previously, and it will be assumed that at any depth 
t within the real imperfect crystal, the random parameter {3f, is gaussian 
distributed with a zero mean over the horizontal plane at t and that the X-ray 
beam is chosen with a cross section large enough to sample a significant 
proportion of these parameters; i.e. there is no bias in the sampling. Both 
defect types discussed in Section 3 were associated with an 'impulse' causing 
a momentary change in {3, in the case of idealised point defects, and in d{3/dt, 
in the case of extended defects. This impulse is characterised by a very 
short spatial extent, i.e. it is correlated only over a very short distance in 
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the crystal. Let the random impulse at t for one crystal within the ensemble 
be represented by ~(t). The parameter ~(t) is gaussian distributed over the 
horizontal planes at t for the crystal ensemble and it has a zero mean and a 
delta function autocorrelation, 

(~(td ~(t2)) = 8(t1 - t2). (8) 

A direct application of the Wiener-Khintchine theorem to equation (8) shows 
that this random term ~ has a constant spectral density, i.e. it has a 'white 
noise' spectrum. 

Although in Section 3 the extremes of defect types were considered, namely 
idealised point defects and extended defects, a real crystal will contain a range 
of defects lying somewhere between these extremes. Also, a real point defect 
produces a strain field which extends into regions well away from the defect 
centre. This suggests the following linear combination of terms, 

.e(d~~/dt) + ~~ = O"~, (9) 

where the parameters 0" and .e collectively determine the defect 'strength' 
and the similarity of the defect to the two extreme defect types. This is a 
stochastic differential equation and it is known as the Langevin equation (Van 
Kampen 1976; Risken 1984). It has been used in the study of Brownian motion 
(Uhlenbeck and Ornstein 1930) and it is one of the few stochastic differential 
equations that can be solved explicitly. With the boundary condition ~~(t=O) = 0, 
the solution to equation (9) is 

~~(t) = (O"/.e) exp (-tj.e) f: ~(r) exp(t' /.e) ctr. (0) 

The correlation function for ~~ can be found using equations (8) and (0): 

f t1ftz 
~~(td ~~(t2)) = (0"/.e)2 e-(h+tz)/.e 0 0 e(t+I')/.e8(t- r) dt dr 

= (0"2/2.e)(e-ltl-tzl/.e _ e-(tl+tZ)/.e). (1) 

Equation (1) contains a 'transient' term involving t1 H2. This is not required 
in the defect model which should have a stationary defect distribution. In 
this case the origin of the coordinates of the solution (11) is chosen so that 
t1 H2 ».e, resulting in the following correlation function: 

~~(t) ~~(t + T)} = (0"2/2.e) exp (-I TI/.e). (12) 

Note that as .e -+ 0, then ~~(t) ~~(t+T)} -+ 8(T) which is the correlation function 
for idealised point defects. This identifies .e as a correlation length in the 
crystal representing the characteristic distance between changes of the direction 
of propagation of the X-ray beam relative to the perfect lattice. Furthermore, 
the correlation function with T = 0 is the second moment of the probability 
distribution for ~~ which means that 0"2/2.e is the variance of the distribution. 
The power spectrum of ~~, unlike ~, is not constant and it describes a 'coloured 
noise' spectrum. 
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A similar result to (12) was obtained by Becker and Al Haddad (1989) who 
assumed a gaussian joint-probability distribution. This distribution, in fact, 
can be obtained as the solution of the Fokker-Planck equation derived from 
(9) (see Section 5 below). 

(3~ 

Distance 

Full 
Correlation 

Partial 
Correlation 

No 
Correlation 

Fig. 4. An example showing 
the effects of the correlation 
length on the resonance 
parameter /31,;. The curves 
have been arbitrarily offset for 
clarity. 

An example of the nature of f3~ is shown in Fig. 4 where a pseudo-random 
number generator was used to obtain a sequence of values for ~ = f3~ for 
.e = O. These values were also used with equation (10) to calculate f3~ for the 
partially correlated, .e < 00, and the fully correlated, .e = 00, noise terms. Note 
the difference between the partially and fully correlated noise in the presence 
of large transients. 

5. Evolution Equation for Densities in the Complex Plane 

Given a first order stochastic differential equation describing the motion of 
points in an N-dimensional space, it is possible to write down an equation for 
the probability density u within that space (Van Kampen 1976; Risken 1984; 
Lasota and Mackey 1985). This equation is called a Fokker-Planck equation 
and it is obtained by the following recipe. Using the notation of Lasota and 
Mackey (1985), in a matrix form with the Einstein summation convention, the 
N-dimensional stochastic equation is 

dXi/dt = bi(X) - (}"ij(x) ~it), (13) 

where ~i is the noise term with a zero mean and a delta function autocorrelation 
and 1 :5 i:5 N. This equation describes the dependence of the 'velocity' dxi/dt in 
one dimension on all the noise terms ~i through the matrix (}"ij. The density of 
points u(x) in the phase space with axes Xi obeys the Fokker-Planck equation 

ou/ot = i(02 /0 Xi OXj)(aij u) - (%Xi)(bi u), (14) 

where 
aij(x) = (}"ik(X) (}"jk(X) . (15) 
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The first term on the right side of (14) is a diffusion term which arises from 
the gaussian nature of the noise source. The second term represents the flow 
of points in the phase space driven by a 'velocity' bi and its gradients. 

The Fokker-Planck equation for the crystal reflectance is obtained by writing 
(1) and (9) in the form of a three-dimensional Langevin equation with dimensions 
(x, y, {3f,), where x = Re Rand y = 1m R. This requires an expansion of (1) in 
terms of the real and imaginary components, represented by subscripts Rand 
I respectively, 

dx/dt = Vx(x, y, {3f,}, dy/dt = Vy(x, y, {3f,}, 

d{3f,/dt = -{3f,/.e + (a/.e)~, (16) 

where 
- - 2 2 Vx(X, y, {3f,) = -CX{Xhl - 2({3RY+ {3I X) - 2y{3f, + X-hl(X - y ) + 2X-hRXY}, 

Vy(x, y, {3f,) = CX{XhR + 2([31 y - [3R x) - 2x{3f, + X_hR(X2 - y2) - 2X-hl xy}. (17) 

Following the above recipe, the corresponding Fokker-Planck equation is 

a u/o t = - (a /ox)Vx(X, y, {3f,)u - (a /0 Y)Vy (x, y, {3f,)u 

+ (a /0 {3f,){3f, uj.€ + (0"2 /U2)(02 /o{3~)u. (18) 

This is an evolution equation for the density of points in a three-dimensional 
phase space, where two of the dimensions represent the complex reflectance 
plane while the third dimension represents all possible values of the noise 
term {3f,. The solution of this equation u(x, y, {3f" t) is the probability per 
unit volume dx dy d{3f, of finding at depth t a part of the real crystal with a 
reflectance R = x + i Y and a resonance parameter with a value [3 + {3f,. In X-ray 
diffraction experiments it is the mean reflectivity (R* R) which is measured and 
therefore the required quantity is the second moment of the density with 
respect to x and y, 

(R*(t)R(t)} = J:ooJ:J:oo (x2 + y2)u(x, y, {3f., t) dx dy d{3f.. (19) 

This is essentially a geometric equation which yields the mean square distance 
from the origin of all the points in the complex plane. The effects of 
imperfections on the relative phases of the X-rays is contained in the angular 
dependence of the density u. 

In some instances [e.g. Ornstein-Uhlenbeck processes (Risken 1984)] it is 
possible to simplify the Fokker-Planck equation by expanding it in terms of 
moments, leading to equations directly involving the second and first order 
moments. However, such expansions are foiled by the nonlinear terms and 
the coupling terms {3f. x, {3f. y in Vx and Vy which cause each moment to be 
functions of the higher order moments. 

In general Fokker-Planck equations are difficult to solve and no attempt 
will be made here to solve (18). The fact that the equation has contained 
in it Riccati's equation (1), which cannot be solved explicitly in terms of 
quadratures, and the elementary functions of analysis for coefficients which 
are arbitrary functions of t (Bellman and Kalaba 1965; Brand 1966), suggests 
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that only approximate solutions may be obtained_ This will be the subject of 
future investigations_ 

However, several observations can be made_ In the absence of the 'flows' 
in the reflectance plane, Le. zero gradients with respect to x and y, the 
equation reduces to a diffusion one for the noise density u(f3~, t) and its 
solution, coupled with an initial condition for f3~ gives rise to a conditional 
probability density u(f3~, tl f3~0, to). Note that the 'velocity' along the f3~ axis is 
proportional -f3~/.e so that there is a tendency for points to move towards the 
origin, where f3~ = O. This tendency of points to accumulate is balanced by the 
diffusion, governed by 0-2 /2.e 2 • The correlation length .e scales the rates at 
which these two processes occur. This is to be expected since the correlation 
length determines the extent of the regions in a crystal which have similar 
properties and therefore must determine the rate at which the changes in f3~ 
occur. When the noise term is absent, the equation merely describes the 'flow' 
of the points in the reflectance plane, including a term describing the change 
in the density due to 'velocity' gradients. 

In the presence of idealised point defects, where .e = 0, the noise term ~ = f3~ 
can be included directly in equations (16). When polar coordinates are used so 
that (x, y) - (r, e) and (VX, Vy) - (Vr , V 0), then the noise term decouples from 
the equation for dr/dt reSUlting in 

dr/dt = Vr(r, e), de /dt = V o(r, e) - 2oco-~ , (20) 

with a corresponding Fokker-Planck equation 

ou/ot= - (%r)Vru - (%e)Vo u + 2oc20-2(o2/oe2)u. (21) 

The diffusion term is now seen explicitly in the angle coordinate e and the 
points in the reflectance plane will diffuse azimuthally about the origin. This 
is preCisely the result obtained from the simulations discussed in Section 3. 
This behaviour must also be described by the solutions to (18), although this 
is not obvious from the form of (18). 

6. Discussion 

It must be noted that there is a limitation with the defect model which 
arises from the assumed symmetrical form of the random term used to 
describe the defects. This is equivalent to assuming that the defects cause 
equal amounts of positive and negative strain in the crystal. This is true 
when the crystal consists mostly of randomly oriented crystal grains where 
the mean grain orientation is represented by ~, but it is not necessarily valid 
for defects which produce a bias in the strain field. For example, if there is 
a preponderance of interstitial atoms compared with vacancies then the bias 
in the strain distribution leads to an asymmetry in the X-ray scattering with 
angle about the Bragg angle (Dederichs 1971). This effect is essentially due to 
the presence of two lattice parameters, that of the unstrained regions of the 
lattice and that of the strained lattice due to the defects. It may be possible to 
model this behaviour by dividing the crystal ensemble into classes according 
to their average lattice parameters and calculating the probability density for 
each class separately. However, this would neglect any interactions between 
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classes. Alternatively, modifications to the Langevin equation for f3"E; mav be 
required, possibly using a different set of statistics for ~. 

The present description of dynamical diffraction in imperfect crystals provides 
an alternative approach to dealing with the effects of the randomisation of 
the phases of the X-ray beams. A study of the behaviour of the 'flow' of 
points in the complex reflectance plane has led to the development of a defect 
model based on a stochastic differential equation. The model contains two 
parameters which govern the degree of imperfection of the crystal and the 
length scale over which changes in the crystal occur. The natural extension 
of this model is a Fokker-Planck equation describing the probability density 
of finding a particular state of the X-rays within a crystal. This provides a 
theoretical framework for the calculation of the diffraction intensities from 
imperfect crystals. While it is likely that general solutions to the Fokker-Planck 
equation are not possible, the geometric description of 'flows' in the complex 
plane provides an intuitive basis for finding approximate solutions. 

Acknowledgment 

The author wishes to acknowledge sponsorship from the Australian National 
Research Fellowship Scheme. 

References 
Becker, P. J., and Al Haddad, M. (1988). Acta Cryst. A 44, 262-70. 
Becker, P. J., and Al Haddad, M. (1989). Acta Cryst. A 45, 333-7. 
Bellman, R. E., and Kalaba, R. E. (1965). 'Quasilinearisation and Nonlinear Boundary Value 

Problems' (American Elsevier: New York). 
Bogoliubov, N. N., and Mitropolsky, Y. A. (1961). 'Asymptotic Methods in the Theory of 

Non-linear Oscillations', Chapt. 2 (Gordon and Breach: New York). 
Brand, L. (1966). 'Differential and Difference Equations' (Wiley: New York). 
Dederichs, P. H. (1971). Phys. Rev. B 4, 1041-50. 
Holy, V. (1982). Phys. Stat. Sol. (b) 111, 341-51. 
Holy, V., and Gabrielyan, K. T. (1987). Phys. Stat. Sol. (b) 140, 39-50. 
Kato, N. (1980). Acta Cryst. A 36, 763-69. 
Kato, N. (1991). Acta Cryst. A 47, 1-11. 
Lasota, A., and Mackey, M. C. (1985). 'Probabilistic Properties of Deterministic Systems', 

Chapt. 11 (Cambridge Univ. Press). 
Risken, H. (1984). The Fokker-Planck Equation: Methods of Solution and Applications' 

(Springer: Berlin). 
Takagi, S. (1962). Acta Cryst. 15, 1131. 
Takagi, S. (1969). J. Phys. Soc. Jpn 26, 1239-53. 
Taupin, D. (1964). Bull. Soc. Franc. Miner. Crist. 87, 469-511. 
Uhlenbeck, G. E., and Ornstein, L. S. (1930). Phys. Rev. 36, 823-41. 
Van Kampen, N. G. (1976). Phys. Reports 24, 171-228. 

Manuscript received 6 May, accepted 7 August 1991 




