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The scenario of single particle (proton as well as neutron) states near the Fermi surface of 
132Sn has been investigated on the basis of an average one-body potential suitably optimised 
for 208Pb and then extrapolated to the mass region concerned. The calculation shows excellent 
agreement with experiment. The ground state charge distribution of the nucleus has also 
been calculated. 

1. Introduction 

The doubly magic nuclei and their immediate neighbours are of particular 
interest to nuclear structure physicists since they allow the most stringent tests 
of the shell model. Of all the doubly magic nuclei, 132Sn with 50 protons and 
82 neutrons, is the least accessible to experiment due to its very short half-life 
(40 s). The behaviour of this doubly closed shell nucleus which has a large N/Z 
ratio has created much interest in recent times both from experimentalists as 
well as theoreticians. 

The magic behaviour of any nucleus emerges from its single (quasi) particle 
spectrum near the Fermi surface. The signature for strong shell closure comes 
out of the excitation spectrum of the nucleus concerned. Since these states are 
based on particle-hole excitation, their values give an indication of the proton or 
neutron shell gap. Another important characteristic peculiar to a magic nucleus 
is the absence of superfiuid pair correlations. These correlations vanish because 
of the presence of a sufficiently wide energy gap between the fully occupied and 
the vacant states, so that the interaction forces in the particle-particle channel 
with J = 0+ are not strong enough to transfer pairs into the V'dcant states. 

2. Experimental Evidence 

The initial indication of 132Sn playing the role of a good closed core came 
from the work by Kerek et al. (1972, 1973) who investigated the ground state 
properties of 132Sn and its neighbours. In another work Aleklett et al. (1977) 
studied the nucleus 132Sn and its neighbours from the point of view of the shape 
of the mass surface in the region far away from the ,a-stability line. Mass data 
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on extremely neutron rich nuclei are important for theories of nUcleosynthesis 
(Cameron et al. 1970) and also for predictions on superheavy elements (Nix 
1970). Studies of level schemes of nuclei having one particle (proton or neutron) 
outside the core reveal the shell model properties of the nucleus. In this respect 
studies of the low lying excitation spectrum of 133Sn (Sistemich et al. 1978) 
and 133Sb (Borg et al. 1973) clearly show that 132Sn can be taken as a good 
vibrator. Similarly, the structure of the neutron-hole nucleus 131Sn, as studied 
by De Geer and Holm (1980), brings out the states which can be explained on 
the basis of (132Sn, n-1) coupling. These assignments are based on systematic 
studies of lighter odd mass Sn isotopes. The identification of the complete set of 
single hole levels in 131Sn has been reported by Fogelberg and Blomqvist (1984). 
However, the main difficulty in identifying single particle and single hole levels 
in this region is due to a lack of stripping and pick-up reaction data. 

The level scheme of 132Sn has been studied with the on-line isotope separaters 
for fission products in OSIRIS (Kerek et al. 1972), JOSEF (Lauppe et al. 1978) 
and ISOLDE (Bjornstad et al. 1982).· In all these investigations the lowest 
lying excited state of 132Sn was observed at 4·041 MeV. This shows that the 
shell closure is somewhat more pronounced in this nucleus compared with other 
doubly closed shell nuclei (for example the first excited 3- state of 208Pb lies at 
2·614 MeV). 

3. Theoretical Work 

A structure calculation for the doubly magic nucleus 132Sn by Dehesa and Speth 
(1978) was done within the RPA formalism and compared with the experimental 
results. Severe uncertainties were introduced into the calculation due to the lack 
of experimental data. As the single particle transfer data are absent here, the 
single particle wavefunctions and energy values were taken from a Woods-Saxon 
potential adjusted to 132Sn. The most important result in this type of calculation 
is the energy gap between the particle and hole states. 

A similar type of RP A calculation for 132Sn was done by Conci and Klemt 
(1980) using a generalised particle-hole interaction which included, in addition to 
the zero range terms of the Landau-Migdal interaction, the explicit contributions 
of the one-pion and one-boson exchange potentials. After modification of the 
interpolation radii they could reproduce the level scheme of 132Sn satisfactorily. 

The single particle (hole) levels of 132Sn have been reported on the basis of 
the independent particle model and mean-field theory by Leander et al. (1984). 
However, there the emphasis was only on the reproduction of single particle 
levels in different regions of magicity. Whether there is some correlation in 
the formation of clusters around a specific N or Z number with an increase 
of valence nucleon number is not apparent. We, therefore, have undertaken a 
critical study of the situation where an average one-body potential with smooth 
geometry is able to depict the islands of stability throughout the nuclear chart. 
The mass range from 140 to 220 was analysed by Mukherjee et al. (1981), where 
a proton magic gap of 2· 3 MeV at Z = 64 and a neutron magic gap of 4· 5 MeV 
at N = 82 were established. In the present work we show that for the mass 
A = 132 the method works well in bringing out the shell gap. Application of the 
same procedure has been found to be very effective for the mass range 40-50 
(Krishan and Bhattacharya 1992). 
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4. Present Work 

Because of the interplay of the neutron-proton interaction it is well known 
that the shell gap at N = 126 disappears as we move up the periodic table. In 
our search for the bunching effect of the single particle energy levels around the 
A = 130-140 region, evaluation of the energy levels was pivoted around a good 
set of potential parameters which can be used for most of the magic nuclei and 
their neighbours. The magic gap at Z = 50 and N = 82 depends crucially on 
the 197/2 proton state and 1h9/2 neutron state in 208Pb and the variation of 
the binding energies with decreasing mass number. Thus, a critical choice is 
necessary of a set of realistic potential parameters in 208Pb after taking core 
polarisation corrections into account and then a suitable extrapolation formula. 
This is imperative as the dynamical fragmentation of shell model states is well 
understood for 208Pb and all the zeroth order shell model states are known. The 
justification for our model can be found in the calculated value of the shell gap 
in another doubly magic nucleus 146Gd (Mukherjee et al. 1981). The confidence 
obtained there led us to explore another area of magicity. 

Neutron 
Proton 

Neutron 
states 

3d3/ 2 
2g7/ 2 
4S1/ 2 
Ij15/2 
3d5/ 2 
lil1/2 
2g9/ 2 
3P1/2 
2f5/2 
3P3/2 
li13/ 2 
2f7/2 
1h9/2 
Ihl1/2 

Table 1. Woods-Saxon potential parameters for 208Pb 

Vo 

42·479 
64·620 

TO 

1·310 
1·184 

ao 

0·718 
0·640 

v. 
24·312 
32·510 

T. 

1·246 
1·136 

as 

0·391 
0·785 

Table 2. Single particle neutron and proton states of 208Pb 

Neutron binding energy (MeV) Proton Proton binding energy (MeV) 
Theory Expt states Theory Expt 

1·32 1·42 3P1/2 Unbound 
1·35 1·45 3P3/2 0·04 
1·64 1·91 2f5/2 0·33 
2·35 1·95 li13/ 2 1·55 1·70 
2·17 2·36 2f7/2 2·46 2·30 
3·:W 3·15 1h9/2 3·50 3·60 
4·01 3·74 2S1/ 2 7·71 8·03 
7·52 7·38 2d3/ 2 8·37 8·38 
8·14 7·95 1hl1/ 2 9·14 9·37 
8·33 8·27 2d5/ 2 10·18 10·23 
8·65 9·38 197/ 2 11·99 12·03 

10·41 10·38 199/ 2 16·15 16·03 
10·88 11·28 
14·62 14·50 

In Table 1 we present the optimised Woods-Saxon potential parameters for 
the nucleus 208Pb, which reproduce the single particle states of this nucleus 
after taking care of the core polarisation correction. In order to understand 
the fragmentation of the neutron states of 208Pb it was shown in the work of 
Mukherjee et al. (1979) that the coupling of the shell model states of 208Pb can 
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quantitatively account for the stripping and pickup reaction data. Each state is 
expanded as 

I aj} = L a>'j' I A/,;}, 
j' 

. where ~+j , = j and A = 0+,3- ,5- ,2+,4+ and 6+. The core particle interaction is 
Hint = k(r) (2A+1)l/2(a>. Y>.)o (Bohr and Mottelson 1975), wherek(r) = l/r(dV/dr) 
produces admbcture of these states. The phonon energies fu,.;>. and the vibrational 
amplitudes ( a>. ) were taken from the experimental data. The observed spectroscopic 
factors are equated with agj. The set of binding energies which are solutions of 
the secular equation are shown in Table 2. In finding the zeroth order single 
particle proton states of 208Pb we have used the same method assuming that 
similar dynamics prevail. It has been found that this phenomenological approach 
to the core polarisation effect gives a better description· of the experimental 
situation than the microscopic approach of Hamamoto and Siemens (1976). In 
order to examine the shell model states in the lower mass region our prescription 
is not to alter the geometry (which means an identical radius and diffuseness 
parameter where the radius of course has an Al/3 dependence), but to change 
the depth of the potential according to the following equations: 

( N-Z) Vn = Von -Kn - A - fn(r) , (1) 

( N-Z) Vp = Vop - Kp -A- fp(r). (2) 

It was found that for Kn and Kp separately adjusted to 33·0 MeV the prescription 
works well to reproduce the known neutron states in the N = 82 nuclei of Ce, 
Nd, and Sn and the proton states of the Z =50 nucleus Sn. In Table 1 Vo 
represents Vn and Vp for 208Pb. Table 2 presents the single particle proton and 
neutron states of 208Pb, as calculated by our potential along with the experimental 
states. The close correspondence between the theoretical and experimental levels 
indicates the reliability of the potential parameters. The spin-orbit strength was 
varied according to 

Vse32Sn) = Vseo8Pb) Voe32Sn)/Voeo8Pb). (3) 

The single particle proton states of l32Sn are shown in Table 3. The limitation 
set by the experiments led us to compare the calculated energy values for a few 
states only, e.g. 1£5/2, 197/ 2, 199/ 2, 2d5/2, 1hu/2' with the experimental values 
which are the centroids of observed states. The supports the appropriateness 
of our extrapolation constant and, at the same time, enhances the justification 
for our method of extracting the potential parameters starting from 208Pb. The 
experimental value for the state 1£5/2 was provided by B. Fogelberg (personal 
communication 1990). In Table 3 we also present a comparison of the single 
particle neutron states near the Fermi surface of l32Sn, obtained experimentally 
and theoretically. 
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Table 3. Single particle proton and neutron states of 132Sn 

Proton Proton binding energy (MeV) Neutron Neutron binding energy (MeV) 
states Theory Expt states Theory Expt 

If7/2 23·05 197/2 9·45 9·72 
IfS/2 19·00 18·97 2ds/2 9·53 8·95 
2P3/2 17·77 3S1/2 7·88 7·62 
2P1/2 16·36 1hll/2 6·62 7·53 
199/ 2 14·80 15·38 2d3/ 2 7·59 7·29 
197/ 2 8·99 9·68 2f7/2 2·59 2·63 
2ds/ 2 8·66 8·72 3P3/2 1·48 
3s1/ 2 6·12 3P1/2 1·00 
2d3/2 6·17 1h9/2 0·97 
1hll/2 5·99 6·89 

Only in the case of the high spin proton state 1hu/2 do we find a discrepancy as 
large as 0·9 MeV; otherwise the agreement is good. As soon as the spectroscopic 
strengths for these states become available, our comparison will be much more 
meaningful. We have calculated the r.m.s. charge radii and valence nucleon orbit 
radii for even tin isotopes and obtained excellent agreement with experiment 
(Bhattacharya 1986). In the same spirit we have extended our program to 132Sn 
and found values of (r2) 1/2 of 4·548, 4·547 and 5 ·231 fm for the 2P3/2, 2Pl/2 
and 199/ 2 states respectively. In obtaining these values we calculated the charge 
distribution of the nucleus using the formula 

p(r) = L)2j + 1)"pJ(r) , (4) 

where the sum is over all occupied levels and where "pj(r) are the single particle 
proton levels below the Fermi surface. In calculating the charge distribution we 
have taken into account the c.m. correction, the finite proton size, etc., and we 
have also used the non-locality correction. 

Fig. 1 shows our charge distribution which was used to calculate our r.m.s. 
charge radius of ( r2 ) 1/2 = 4·827 fm. Table 4 shows the Fourier-Bessel coefficients 
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Fig. 1. Charge distribution for 132Sn. 

8 



44 R. Bhattacharya 

of the ground state charge distribution, calculated by the prescription 

per) = Laj.tjo(qj.tr), 
j.t 

=0, 

r<R 

r>R, 

with qj.t = 7rJ-L/R and where R is the cutoff radius. Here per) is normalised such 
that 47r J p(r)r2 dr = Ze. In our calculation R = 10·0 fm and J-L = 10. Since 
there are no experimental data here we cannot compare our result. 

Table 4. Fourier-Bessel coefficients for the charge distribution of 132Sn 

J1, aIL J1, aIL 

1 0·0662 6 0·0226 
2 0·0765 7 -0·0080 
3 -0·0341 8 -0·0105 
4 -0·0461 9 -0·0010 
5 0·0204 10 0·0010 

5. Conclusions 

In this work we have reproduced the single particle structure of the doubly 
magic nucleus 132Sn. The cluster of single particle states in the mass region 
100-150 can be obtained reliably if one starts with a one-body shell model 
potential that works for the Pb region. In our previous work (Bhattacharya 1986) 
we showed that for even isotopes of tin (A = 112-24) our method reproduces 
well the valence orbit radii and total r.m.s. charge radii along with the energies 
of the valence proton states. Thus, we find a correlation among the islands of 
magicity. Future reaction data should testify to the utility of this calculation. 
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