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Abstmct 

Approximate analytic expressions are derived for the linear response 4-tensor of a strongly 
magnestised, mildly relativistic electron plasma. The results are obtained within the framework 
of quantum plasma dynamics, thus the response contains relativistic and quantum effects that 
are essential in a super-strong magnetic field. The response is obtained in terms of relativistic 
plasma dispersion functions known as Shkarofsky functions. These functions allow the wave 
properties of the plasma to be studied without resorting to complicated numerical schemes. 
The response derived is valid for radiation with frequency up to about the cyclotron frequency 
and is of use in the theory of spectra formation in X-ray pulsars. In addition, a simple 
graphical technique is introduced that allows one to visually locate the roots of the resonant 
denominator occurring in the response, as well as determine the conditions under which both 
roots are valid and contribute to absorption. 

1. Introduction 

The discovery of neutron stars possessing enormous magnetic fields, with 
typically B ~ 108 T, has stimulated great interest in understanding physical 
processes in super-strong magnetic fields and the effects they have on spectrum 
formulation, especially as it was realised that such fields can drastically alter 
physical processes. This can manifest itself in two ways: (i) Processes which 
already exist in the absence of a magnetic field and which are modified by the 
presence of a field. For example, the Compton scattering cross section exhibits 
strong anisotropy and polarisation dependence as well as having resonances near 
the cyclotron harmonics. (ii) Processes which are kinetically forbidden in the 
absence of a magnetic field become allowed in such fields, to the extent that they 
have measurable effects. One example of this is the quantum-electrodynamical 
process of single photon pair production, which is considered paramount for 
generating the pulses in radio pulsars (Toll 1952; Erber 1966; Ruderman and 
Sutherland 1975; Daugherty and Harding 1983). 

Super-strong magnetic fields, aside from introducing purely quantum processes 
such as single photon pair production and photon splitting, also produce quantum 
modifications to familiar astrophysical processes. The reason that quantum effects 
are of importance is due to the quantisation (into 'Landau levels') of the electron 
motion perpendicular to the field. If the energy spacing of the Landau levels is 
greater than the kinetic energy of the electron, the quantisation of the electron 
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orbit is important. Most electrons occupy the lowest few Landau levels, and the 
plasma becomes one-dimensional. It is expected that the plasma in X-ray pulsar 
accretion columns and radio pulsars is one-dimensional. 

The main objective of the work reported here is the derivation of analytic 
results for the linear response tensor of a strongly magnetised electron plasma. 
The response is evaluated for a mildly relativistic electron gas. Application to an 
ultrarelativistic electron-positron pair plasma is discussed in an accompanying 
paper (Padden 1992; present issue p. 165). Knowledge of the response tensor of 
the plasma is essential to the study of the dispersion and absorption of waves 
in a plasma. Given the response tensor, one can calculate all the properties of 
the natural wave modes; in particular the dispersion relation (e.g. the refractive 
indices), the absorption coefficient and the polarisation vectors. This work 
is intended to provide the basis for the investigation of the propagation and 
absorption of X-ray radiation in super-strong magnetic fields. An important aim 
of the work is to obtain expressions which permit straightforward computation 
of the wave propertise of the plasma, particularly in the vicinity of the cyclotron 
frequency. It is hoped that the results obtained will allow a clearer picture of 
the physics to emerge without being obscured in numerical details. The primary 
motivation for this work comes from application to problems associated with the 
formulation of spectra in the accretion columns of X-ray pulsars. There is an 
extensive literature on the theory and observations of X-ray pulsars, e.g. see the 
reviews of Borner (1980), Meszaros (1984) and Hayakawa (1985). 

Quantum effects on the dispersion of waves close to the cyclotron frequency in 
strongly magnetised (i.e. B ;:::: 108 T) plasmas has been investigated by Canuto 
and Ventura (1977), Kirk (1980) and Pavlov et ai. (1980). These authors 
employed a nonrelativistic approximation to the resonant denominators appearing 
in the response. The use of a nonrelativistic approach is generally justified 
by noting that, for magnetic field strengths of interest, the cyclotron energy is 
typically one order of magnitude smaller than the electron rest mass energy, i.e. 
Oe/m ~ 0·1. However, the use of nonrelativistic results close to the cyclotron 
frequency can lead to incorrect results. This was first shown in the case of a 
classical, magnetised plasma by Wu and Lee (1979). This situation also occurs 
with the resonance condition that arises in a quantum plasma. Herold et ai. 
(1981) investigated photon propagation in a strongly magnetised plasma within 
the framework of relativistic quantum theory, using parameters appropriate to 
X-ray pulsars. By keeping relativistic effects in the resonant denominators of 
the response, significant differences were found from the nonrelativistic treatment 
of Kirk (1980), particularly for quasi-perpendicular propagation. The work of 
Herold et ai. (1981) was extended by Kirk and Cramer (1985) who numerically 
integrated the susceptibility, retaining the exact resonant denominators. 

In this paper, the full 4-tensor expression for the linear response is derived. 
The previous analytical treatments of a magnetised quantum plasma by Canuto 
and Ventura (1977), Kirk (1980) and Pavlov et ai. (1980) have only obtained 
results for the 3-tensor. It should be noted that the use of a covariant formulation 
is not necessary for the inclusion of relativistic effects in the response. However, 
using a covariant theory allows one to make a Lorentz transformation to a new 
frame. This greatly facilitates the inclusion of a streaming motion for any particle 
species in the plasma. 
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The layout of the paper is as follows. In Section 2, general expressions for the 
components of the linear response 4-tensor of a magnetised plasma are presented. 
These results are based on the formalism of quantum plasmadynamics (QPD): a 
synthesis of the theory of quantum electrodynamics and classical plasmadynamics. 
Quantum plasmadynamics reduces to the theory of a collisionless plasma in 
the classical limit and to conventional quantum electrodynamics in vacuo. It 
is a fully covariant and gauge invariant theory which has been developed in a 
series of papers by Melrose (1974, 1983) and Melrose and Parle (1983a, 1983b). 
In Section 3, a nonrelativistic Maxwellian distribution function is introduced 
for the electrons. The resonant denominator is treated in Section 4 using 
a semirelativistic approximation that preserves the essential relativistic effects 
required near the cyclotron frequency. In Section 4a, a simple graphical technique 
is introduced for locating the roots of the resonance condition. The relativistic 
plasma dispersion functions of Shkarofsky (1966; see also Robinson 1986) are 
introduced in Section 5 which allow the evaluation of the momentum integrals 
appearing in the expressions for the linear response tensor. In Section 6, specific 
results are given for the components of the linear response 4-tensor that are valid 
in the case of quasi-perpendicular propagation (i.e. for angles not too far from 
90°). The behaviour of the antihermitian part of the response is examined for 
frequencies close to the cutoff frequency for cyclotron absorption in Section 6a. 
In Section 6b, results for exact perpendicular propagation are written down as 
a special case, as they are considerably simpler than the more general results. 
Finally in Appendix B, a 4-tensor generalisation of the results given in Section 
3 of Pavlov et al. (1980) for the polarisability of a magnetised electron gas is 
presented. It is believed that the work reported here in this paper is the first 
time that the complete 4-tensor has been written down for a strongly magnetised 
quantum plasma. 

The notation used in this paper follows that of Berestetskii et al. (1982). The 
3-vectors are written in bold script, while 4-vectors are in normal typeface. Unless 
otherwise stated, natural units Ii = 1, c = 1 are used in all formulas, which are based 
on SI units. In natural units the fine structure constant is given by a = e2/47rEo. 
The metric tensor adopted here is given by gJ.LV = diag(l, -1, -1, -1). 

2. Linear Response Tensor for a Strongly Magnetised Electr0D. __ Gas 

In this section expressions are presented for the components of the linear 
response 4-tensor of a magnetised plasma. As a starting point, the general 
expression for the linear response tensor of a magnetised medium as given by 
equation (34) of Melrose and Parle (1983b) is employed, viz. 

3 B J dp {1(E' -E) + EN€ - E' N€/} 
aJ.LV(k) = __ e _ '"' _II 2 q. q' [r<€ (Kw'[r<€ (K)]W, (1) 

27r ~ 27r W-f.f. + E'E 1+ zO q q q q 
Q,Q' q q 

where Q denotes the quantum numbers E, n, (j with E labelling the sign of the 
energy, E = 1 for electrons, E = -1 for positrons, n labels the Landau levels and 
(j is the spin quantum number «(j = ± 1), also q denotes n, PI I ' (j. The energy 
eigenvalues Eq , Eql are given by 

E(n,PII) = [m2 + prl + 2nnm]~ . (2) 
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Equation (1) corrects a minor error in the expression given by Melrose and Parle 
(1983b), who have interchanged the order of quantum numbers in the second 
of the gaug~independent vertex factors [r~:~(k)]*". The infinitesimal imaginary 
part iO in the resonant denominator arises from imposing the casual condition on 
the response tensor. The terms proportional to ~(e'-€) in equation (1) give the 
vacuum polarisation tensor. A large literature exists on vacuum polarisation in a 
magnetic field and, in particular, it has been extensively studied by Melrose and 
Stoneham (1976, 1977) and Stoneham (1978) amongst others. As such, only the 
contribution from the plasma to the linear response is examined in this work. 
This contribution arises from the terms proportional to €N: - €' N:;, where N: 
represents the particle distribution function. 

The gaug~independent vertex factors in equation (1) depend explicitly on the 
choice of spin eigenfunction. Spin-summed results for the linear response are 
presented here, so that the results are independent of the spin eigenfunctions. 
Before the sum over the spins in equation (1) is performed, the sum over € and 
€' is first evaluated. One obtains 

3B f d { N+-N+ o""(k) = __ e _ ""' ....EU. . q ql. ""' [r+;+(k)]"[r+;+(k)]*" 
211" L...J 211" W-€ + € 1 + ~O L...J q q q q 

~n' q q ~~ 

+ Nt + N;;;. L [r;/~(k)]"[r;/~(k)]*" 
W-€q-€ql + ~O 0',0" 

N-+N+ 
q ql ""' W + €q + €ql + iO L...J [r~/~+(k)]"[r+,- (k)]*" 

0',0' 1 q q 

N- + q +Nql 
W + €q - €ql + iO L [r;/~+(k)l"[r-'-(k)l*"} 

0',0" q q 
(3) 

In writing down equation (3) it is assumed that the distribution functions are 
independent of the spin of the particles. The sums over the spin quantum number 
are performed using equations (18) and (50) of Melrose and Parle (1983a) and 
Johnson and Lippmann (1949) eigenfunctions, as these are the simplest spin 
eigenfunctions. Also the magnetic field is chosen to lie along the z-axis as well 
as a gauge in which the photon wavevector lies in the xz plane, i.e. 

k = (k:z;, 0, kz) = (k.L, 0, kll). 

Although there are 16 terms in the linear response tensor, these are not all 
independent, in the sense that one may employ the Onsager relations to show 
that only 10 terms need be evaluated; the 4 diagonal terms 0°°, 0 11 , 0 22 , 0 33 

and 6 off-diagonal terms 0°1 , 0°2 , 0°3 , 0 13 , 0 23 . The other 6 terms may be 
calculated using the Onsager relations, which imply 

o""(W k B) = o""(w -k -B)· , , '" 
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these relations are a result of time-reversal invariance. 
On performing the spin sums, it is found that the linear response tensor may 

be expressed as follows: 

(};JLV(k) = 
00 

e3 B L 
271" n=O,n '=0 

J dP11 { N+ - N+ _ q ql JLV I 
271" W - fq + fq 1 + iO Q + (n ,n) 

N++N- N++N 
+ q q 1 • Q':!:' (n I, n) q 1 q. Q':!:' (n I, n) 

W - fq - fq 1 + 20 W + fq + fq 1 + 20 

N- -_ q -Nql 
W + fq _ fql + iO 1](/L, v)Q~(n I,n)} . 

In (4), 1](/L,v) is defined by 

1](/L, v) = { + 1 
-1 

/Lv 
/Lv 

00, 11, 22, 3~ 03, 12, 
01, 02, 13, 23, 

while the Q~ (n I, n) are given by 

Q~O(nl,n) = ~(1± m 2 ±PIIPII) [(J~;-.!n)2+(J~/_n)21 
fqlfql 

Ql1(nl,n) 

Qr(n/,n) 

Q~(nl,n) 

Q~l(nl,n) 

Q~2(n I, n) 

Pn 1 Pn In-1 In ± --- n'-n n'-n, fqlfql 

.1 (1 =F m
2 ±~II PII fql) [(J~/_n_l)2 + (J~;-.!n+1)2] 

2 fq 

± Pn'Pn In In-1 
--- n'-n-l n'-n+l' fqlfql 

Qll( I) 2Pn'Pn In In-1 
± n ,n =F --- n'-n-l n'-n+l' fqlfql 

.1 (1 =F m 2 =F PII PII) [(J~;-.!n)2 + (J~/_n)2] 
2 fqlfql 

Pn'Pn I n- 1 In 
=F --- n'-n n'-n' fqlfql 

- 2Pn [(J~;-.!nJ~/-n-l) + (J~/-nJ~;-.!n+l)] fq 

Pn l [(In- 1 I n- 1 ) (In In )] =F -2-- n'-n n'-n+l + n'-n n'-n-l , fql 

. Pn [(In In-1 ) (In-1 In )] 
2-2 . n'-n n'-n+l - n'-n n'-n-l fq 

± . Pn 1 [(In-1 In-1 ) (In In )] 
2-- n'-n n'-n+l - n'-n n'-n-l , 2fql 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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Q~(n',n) 

Q~(n',n) 

Q~(n',n) 

Q~(n',n) 
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(~ + ElL) [(J~;-.!n)2 + (J~'_n)2], 
2€q' 2€q 

·1 (1 m 2 ±PIIPII) [(In )2] 
2- =t= n'-n-l 

2 €q '€q' 

1 

PllPn [(In I n- 1 ) + (In- 1 J )] - -- n'-n-l n'-n n'-n+l n'-n 
2€q'€q 

PIIPn' [(In In) + (In- 1 In-l)] =t= --- n'-n-l n'-n n'-n+l n'-n , 2€q'€q 

. PllPn n n-l n-l n 
2--[(Jn'-n-lJn'-n) - (In'-n+lJn'-n)] 

2€q '€q 

PliPn' [(In In) (In- 1 In-l)] ± -- n'-n-l n'-n - n'-n+l n'-n , 2€q'€q 

(12) 

(13) 

(14) 

(15) 

where Pn = (2neB)~. The argument of the J~,(k;/2eB) functions is omitted in 
the above expressions. These functions are related to the generalised Laguerre 
polynomials L~'(u) defined in Abramowitz and Stegun (1965), via 

n _ n. 1 n' /2 n' [ , ] ~ 
In,(u) - (n + n ')! exp( -2u )u Ln (u). (16) 

In the literature one may come across functions denoted by either In',n (u) or 
F n, n ' ( U ); these are related to the J~,( u) by 

In,n'(u) = J~~n'(u). 

Some of the more important properties of the J~,(u) functions are given in 
Melrose and Parle (1983a). 

Terms proportional to Nt in equation (4) are due to the electron plasma 
component, while those proportional to N;; are due to the positron plasma 
component. In this paper only a pur~ electron plasma is considered, so that the 
N;; is set to zero. As such, equation (4) is replaced by 

J.LV(k) - e2mne ~ J d { f(€q) - f(€q') QJ.LV( 1 ) a - - --2- ~ PII . + n ,n 
41f n=O,n'=O W-Eq +Eq'+20 

f(Eq)Q~(n',n) f(Eq')Q~(nl,n)} 

+ W - Eq - Eq ' + iO - W + Eq + Eq ' + iO ' 
(17) 

where ne denotes the electron cyclotron frequency and the electron distribution 
function is now denoted by f(Eq). The normalisation of the distribution function 
is given by 

00 Joo 41f2 Ne L dPI19nf(Eq) = EOmne ' 
O -00 n= 

(18) 
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where 9n = 2 - 8no is the degeneracy factor for the Landau levels and Ne is the 
number density of electrons. 

As equation (17) stands at the moment, one is to interpret the primed 
quantities as representing final states with momentum PII = PII - kll' This is the 
correct interpretation if one is interested in cyclotron emission. If, on the other 
hand, one is interested in cyclotron absorption, then primed quantities should 
be reinterpreted as initial states with momentum denoted by PII and unprimed 
quantities as final states with momentum PII = PII + kll' Thus on interchanging 
primed and umprimed quantities equation (17) is now written 

al-'V(k) = _ e2mf2e ~ J dp { f(€ql) - f(€q). QI-'V(n',n) 
47r2 L.J II w - € I + € + ~O + n=O,n'=O q q 

f(€ql )Q~V(n', n) f(€q)Q~V(n', n) } 

+ w - €q I - €q + iO - W + €q I + €q + iO ' 
(19) 

with PII = PII + kll now implicit. 
In order to see that equation (19) reproduces the results of Pavlov et al. (1980) 

and Kirk and Cramer (1985), note that the 3-tensor component of a 4-tensor 
(3I-'V (k) is defined by 

(3ij(k) = [.B~(k))I-'=i,v=j = -[(3I-'V(k))I-'=i,v=j. (20) 

Thus if one examines the J.t = i, v = j components of equation (19) and used 
equation (20), the results of Pavlov et al. (1980) and Kirk and Cramer (1985) 
are reproduced (note that the susceptibility is related to the linear response by 
Xij = aij/w2). 

So far, the only assumption that has been made in arriving at equation (19) 
is that the distribution function does not depend on the spin of the electron. At 
this point a major simplification is introduced into the linear response tensor. It 
is assumed that the initial distribution of electrons is restricted to the ground 
state Landau level n = 0, there being no initial distribution of particles in excited 
states. This is usually justified as follows: The quantum theory of cyclotron 
emission shows that the decay rate or inverse lifetime of the first excited state 
given by 

r 1 ~ taf2eBB ~ 4 x 1015B~ S-1, 
cr 

(21) 

where Bs is the field in units of lOS T.Thus for the fields thought typical of 
X-ray pulsars, B ~ (2 - 6) x lOS T, it is seen that the electrons radiate away 
any transverse momentum they acquire, on a timescale of order 10-17 s. For 
mildly relativistic temperatures, this timescale is significantly shorter than the 
average time between collisions in a plasma even as dense as 1032 m -3, which is 
much higher than the plasma density of X-ray pulsar accretion columns. Thus 
one expects most electrons to be in the ground state. It must be pointed out, 
however, that this argument fails to take account of the possibility that if the 
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mean cyclotron photon occupation number is comparable with unity, then a 
significant population of electrons in the first excited state can exist. A rough 
estimate of the importance of this effect can be obtained by estimating the 
brightness temperature at the cyclotron frequency and comparing it with liOe. 
This possibility is ignored here as the aim of this paper to derive the simplest 
results of general applicability rather than examine a specific X-ray pulsar. If 
there is a significant number of electrons in the first excited state, it is a relatively 
straightforward task to include this effect in the results. Qualitatively it would 
have the effect of reducing the magnitude of the response tensor (see equation 
19) due to the reduced phase space for particles in the ground state if they make 
a transition to the first excited state. 

As a further simplification, only absorption of radiation from the ground state 
to the first excited state n I = 1 is considered. Under these new assumptions one 
has 

Q~O(l,O) 1 (1 ± m 2 ±PII PII) (JP)2, 
2 Eq'Eq ' 

(22) 

Qll(l,O) 1 (1 =f m 2 ±PII PII) (J8)2, 
2 Eq'Eq ' 

(23) 

Q~(l, 0) Ql1 (1, 0), (24) 

Qi3 (1,0) 1 (1 =f m 2 =f PII PII) (JP?, 
2 Eq'Eq ' 

(25) 

Q~(l,O) =f (2eB)! (JfJ8), 
2Eq' 

(26) 

Q~(1,O) iQ~l(l,O), (27) 

Q~(l,O) (BL + ill) (Jf)2, 
2Eq' 2Eq 

(28) 

Q~(l,O) iQl1 (1,0), (29) 

Q~(l, 0) 
1 

PII(2eB)2 (JfJ8), 
=f 2Eq 'Eq 

(30) 

Q~(l,o) = - Q~(l,O), (31) 

with 
J8(u) = exp( -~u), JP(u) = u! exp( -~u). (32) 

Consider now the energy denominators appearing in equation (19) in more 
detail. There are three distinct denominators appearing on the right hand side 
of (19), viz. 

W + Eq - Eq ', W - Eq - Eq ', W + Eq + Eq ' . 
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The vanishing of the first denominator corresponds to the process of cyclotron 
absorption. Provided magnetic fields are considered such that ne «: m, which is 
a good approximation for X-ray pulsars and one is only interested in the response 
of the plasma to frequencies w;S ne , then it can be seen that the remaining 
two denominators do not vanish since Eq + Eq ' ;:=: 2m ~ w. Consequently, the 
second and third terms on the right hand side of equation (19) are nonresonant 
terms for cyclotron absorption and are insenstitive to finite temperature effects. 
Therefore, in these terms one may set 

411"2 Ne 
f(Eq) ~ --8(PII)8no , f(Eq') = O. 

Eomne 
(33) 

Using (33) in the nonresonant terms of equation (19), it can be shown, with the 
aid of the sum rules (Sokolov and Ternov 1968) 

00 

L J:'_s(u)J:,_s"(u) 8ss /I , (34) 
s'=O 

00 

L (s' - s)[J:~s,(u)12 u, (35) 
s'=O 

that the contribution of these nonresonant terms to the linear response 4-tensor 
is 

aILV(k) = .!w2fILV 
nr 2 p , 

where wp = (e2 Ne/Eom)~ is the plasma frequency and 

{ 

W2 

fILv = 4m.2. 
_g'J 

o 

11 = 0, 1/ = 0 

11 = i, 1/ = j 

otherwise. 

(36) 

(37) 

Hence, only the first term on the right hand side of equation (19) needs to be 
treated in detail. 

/ 
; 

/ 
/ 

/ 

" k",ro 

" 
i,pi, / c,p" .. 

i=e+ co Pi,= p,,+ k" 

Fig. 1. Feynman diagram for cyclotron absorption. 
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The resonant part of the response tensor may be written 

aJ1.V (k) = - e2 mOe ~ J dp !(Eq') - !(Eq). QJ1.V(n', n), 
RES 411"2 ~ II w + E - E , + ~O + 

n=O,n'=O q q 

(38) 

where the label RES has been attached to the response to indicate the resonant 
contribution. The response tensor is resonant when the denominator is zero; this 
is associated with the process of cyclotron absorption, which is represented by the 
Feynman diagram of Fig. 1. Time is ordered from right to left in the diagram. 
The kinematics of the related process of cyclotron emission are discussed in 
Melrose et al. (1982). It is a straightforward task to obtain corresponding results 
for cyclotron absorption by making the changes 8 -? -8, kll -? - kll ' W -? -w in the 
results of Melrose et al. (1982). One may proceed further with equations (38) 
by introducing functions li>l and li>2 defined by 

li>l = w + Eq - Eq', li>2 = W + Eq + Eq'. (39) 

It can be shown that 

Ii> 1 Ii> 2 == (Eq +w)2 - E~' = 2'Yllm[W~(80e _ L) _ kiIPII] , 
'I'll 2m 'Yllm 

(40) 

where q2 = w2 - kn, 8 = n' - n > 0 and 'I'll is the Lorentz factor of the initial 
electron state given by 

~ 
'I'll = VI + ;;;?' (41) 

where 
2 _ 2 2 2 

P -PII +Pn =PII +2neB. (42) 

Using equation (4) in (38) the response is now written as 

aj(Es(k) = - e2m~e ~ J dp li>2[!(Eq') - !(Eq)]Q+",(n',n) . (43) 
411" _ L-,_ II [ 1 ( q2) kllPII ] 

n-O,n -0 2'Yllm w - - 80e - - ---
- 'I'll 2m 'Yllm 

3. Mildly Relativistic Particles 

In this section, the 4-tensor response given in equation (43) is evaluated for 
a specific distribution function. At this point it is appropriate to make clear 
the simplifying assumptions to be used in evaluating the response, some of 
which have been briefly discussed in the previous section. The magnetic field is 
restricted to values such that B/ Bcr ~ 0·1, which are thought typical of X-ray 
pulsars. This means the cyclotron energy is small compared with the electron 
rest mass energy. As well, for the plasma densities thought to occur in X-ray 
pulsar accretion columns (Ne rv 1026 _1030 m-3 ) and for frequencies w around 
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the cyclotron frequency, one has w;/ w2 «1. The refractive index of the plasma 
differs only slightly from unity and one may restrict w and k to real values with 
w ~ Ikl. Furthermore, it is assumed that the waves satisfy kll < wand w is 
taken to be positive. Also the initial distribution of electrons is taken to populate 
only the ground state (n = 0) and only absorption to the first excited Landau 
level (n' = 1) is considered. Finally, the electron temperature is assumed to be 
mildly relativistic. This includes temperatures in the range 1-100 keY, which are 
consistent with temperatures thought to exist in X-ray pulsar accretion columns 
10-50 keY. By comparison, the electron rest mass corresponds to a temperature 
of 511 keY. 

Since only mildly relativistic electrons in the ground state are considered, it 
is permissible to adopt a Maxwell Boltzmann distribution for motion along the 
magnetic field lines, i.e. 

f(Eq) = 47r2 Ne exp( -p~/2mT) 
EOmne (27rmT)! DnO , 

(44) 

where the Boltzmann constant is set to unity. Using the foregoing assumptions, 
one can write equation (43) as 

aj{'ES(k) = w; 1 J dp q>2Q~(1,0) exp(-Pfl/2mT) 
(27rmT)"?: 11 2", [ _ ~(r> q2) kIIPII]' dl w He-- ---

'"'III 2m '"'111 m 

(45) 

with 

'"'III = VI + P~ 
m 2 ' 

and the Q~(l,O) are given by equations (22)-(31). 
The primary interest here is to retain those relativistic effects which remain 

important even for mildly relativistic electrons. Thus as relativistic effects are 
crucial near the cyclotron frequency, '"'III can be approximated by 

2 
PII 

'"'III ~ 1 + 2m2' (46) 

in the resonant denominator, but is set to unity elsewhere in equation (45). The 
use of the so-called semirelativistic expansion given by equation (46) is valid 
provided that the angle of propagation () is well away from () = o. Kirk and 
Cramer (1985) have shown that for small angles of propagation the momenta of 
resonant electrons becomes large (pit ~ m), thus violating the semirelativistic 
approximation. 

Using the nonrelativistic approximation in equations (22)-(31) one finds 

Q~(1,O) ~ (JP)2, (47) 
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QU(1 0) '" ne (J.o)2 +, -2mo, (48) 

Q~(1, 0) = Qil(1, 0) , (49) 

2 

Q~3(1, 0) ~ {~~ + ~~ } (Jf)2 , (50) 

Q01(10) '" (2eB)! (JoJR) 
+ , - 2m 1 ° , (51) 

Q~(1, 0) = iQ~(1, 0) , (52) 

Q~(1,0) ~ (~) (Jf)2, (53) 

Q~(1,0) = iQ~(1,0), (54) 

Q13(1 0) '" _ PII(2eB)! (JoJR) 
+ ,- 2m2 1 ° , (55) 

Q~(1, 0) = - iQ~(1, 0) . (56) 

In (47)-(56) terms of order k~/m2, kliPII/m2 are neglected in comparison with 
terms of order ne/2m, p~/m2, and terms of order kll/m are neglected compared 
with terms of order PII/m. 

4. Roots of the Resonant Denominator 

Consider now the approximation (46) in the resonant denominator given by 
equation (40); one has 

CPICP2 ~ (1 + Pfl )w _ ne + L _ kllPIl 
2m 2m2 2m m 

wp2 k 2 
= _II _ ~ +(w-ne)+.!L. 

2m2 m 2m 
(57) 

Thus, the momenta of electrons occuring at resonance is found by solving the 
quadratic equation (57) for PII. Before this is performed, recall that for a tenuous 
plasma one can assume w ~ Ikl, so that the wavevector components are written 

kll ~ w cos (J, k.l. ~ w sin (J, (58) 

and thus q2 ~ w2 sin2 (J. Using these results in equation (57), one obtains the 
quadratic equation 

pfl - 2mPII cos (J + 2m2(1 - ~) + mw sin2 (J = 0, (59) 
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with A = Oe/w. Equation (59) has solutions 

PII = P± = m cos(} ± V m 2 cos2 (} - 2m2(1 - A) - mw sin2(} . (60) 

In order that the resonant momenta be real, the discriminant must be positive 
which leads to the following quadratic equation in w: 

w2 sin2(} + mw(1 + sin2(}) - 2mfle :::; O. (61) 

If this is expressed in the form 

(w - w+)(w - w_) :::; 0, (62) 

where 

-~m(1 + sin2(}) ± mV~(1 + sin2 (}) + 2(fle/m) sin2 (} 

w± = . 2 (63) 
sm () 

then (62) is satisfied for 0 < w < w+, or w_ < w < O. The solution w_ is 
a spurious one caused by introducing the function <P2 and is not physical for 
positive frequencies. Hence the solution 

{V~(1 + sin2 (}) + 2(fle/m ) sin2 (} - ~(1 + sin2 (})} 
o < w < w+ = m .. 2 (64) 

sm () 

gives the conditions under which a photon can be absorbed by a plasma electron 
with momentum given by (60) and with w+ the cutoff frequency for resonant 
particles to exist. At frequencies greater than w+ there are no resonant particles, 
i.e. the resonant ellipse does not intersect a particle ellipse (Kirk and Cramer 
1985; Melrose et al. 1982). The contour of integration in the complex PII plane 
is along the real axis in this case and the anti-hermitian part of the response 
tensor (which describes absorption) is identically zero (see Section 4a). The 
cutoff frequency w+ given in equation (64) corresponds to the result given in 
equation (30) of Herold et al. (1981). The approximate formula (64) becomes 
identical with the exact result given in equation (A3) in Appendix A, for () = 900 

and n ,= 1. Herold et al. (1981) found that (64) remains a good approximation 
at least down to () = 550 • 

For 0 < w < w+ one can express the momenta of resonant electrons as 

P± () ± [(w+ - w)(w - W_)]! - = cos 
m mw 

(65) 

In terms of the resonant and particle ellipses introduced in Melrose et al. (1982) 
one can see that there are only two points of intersection between these ellipses, 
corresponding to the two values of the resonant momenta. 

(a) Graphical Technique for Location of Resonant Roots 

In this section, a simple graphical technique for locating the roots of the 
resonant denominator is presented. This technique is based on that used by 
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Batchelor and Goldfinger (1984) in examining fully relativistic classical plasmas. 
Firstly the case of the exact resonant denominator is treated, then results are 
presented for the semirelativistic resonant denominator. 
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Fig. 2. Location of exact resonant momentum zeros. 

p" 

The conditions found above under which both roots of the resonant denominator 
are real are not sufficient to ensure that the roots are physical. The exact 
resonant denominator can be expressed as 

2 .l. 

( PII) 2 PII A 

g(Pll) = 1 + m2 - nil m - 0(_) , 

where nil (the parallel refractive index) and 0(_) are defined to be 

k 
nil = ...ll. 

w 

0(_) 
= Oe_L 

w 2mw 

(66) 

(67) 

(68) 

The roots of (66) may be visualised as the points of intersection of the hyperbola 
y = (1 + pn/m2)! with the straight line y = 0(_) + nliPII/mj see Fig. 2. Solving 
g(PlI) = 0 one obtains the two roots 

PI/ _ P± _ nIlO(_) ± (O~-) + nn -I)! 
m - m - 1-nn (69) 
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One or both solutions of (69) may be superfluous. Inspection of Fig. 2 shows 
that the following additional conditions are needed: 

1. PII must be real and the discriminant non-negative, Le. o~ _) + nn - 1 :::: o. 
2. The roots must lie on the top branch ofthe hyperbola, Le. 0C_)+nIlPII/m > o. 

These conditions can be readily understood with the help of Fig. 2. One can 
classify the resonant roots according to the values of 0C-) (the y intercept of the 
line y = 0C-) + nIiPIi/m). Without loss of generality assume kll > 0, W> 0 and 
hence, nil > O. 

Case 1: 

A { no valid roots for nil ~ 1 n _ < 0, 
C ) - p_ is a valid root for nil> 1 

Comment: For the case nil> 1, the point of intersection lies in the region PII > 0 
and since 1 - nn < 0 then p_ > 0, P+ < o. 

Case 2: 

{

there are no valid roots for nil < nliin = (1 - O~_»)! 

o < 0c -) < 1, . there are two valid roots for nflin ~ nil < 1 

p_ is the valid root for nil > 1 

Comment: The value nflin defines the point of tangency between the hyperbola 
and the line; this corresponds to vanishing of the discriminant. 

Case 3: 

Case 4: 

{ 

p_ = O,p+ = 0 are valid roots for nil = 0 

0C-) = 1, P- = O,p+ > 0 are valid roots for 0 ~ nil < 1 

p_ = 0 is a valid root for nil> 1 

n _ > 1, 
A { P-, P+ are valid roots for 0 ~ nil < 1 

C ) p_ is the valid root for nil> 1 (p_ < 0) 

The cases where resonants roots are invalid, imply there is no absorption. 
Inspection of Fig. 2 reveals the asymmetric character of relativistic cyclotron 

absorption. This feature is present in both classical and quantum plasmas. For 
a quantum plasma it is seen that the asymmetry is due to the one-dimensional 
nature of the plasma in a strong magnetic field. An electron moving in the 
same direction as kll has a higher energy on absorbing the photon than a 
counter-propagating electron, which loses energy. 

For the case of interest here, one has w > kll and thus nil < 1. If each of the 
cases 0C-) ~ 0, 0 < 0C-) < 1, OC-2 = 1 and 0C-) > 1 is examined separately, it 
is found that only in case 4, Le. nC-) > 1, is one in a frequency range relevant 
to cyclotron absorption. This follows from the definition given in (68), since 
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n( _) > 1 corresponds to photon frequencies less than the cyclotron frequency. 
Thus for nil < 1 it can be seen that both zeros of the resonant denominator 
contribute to cyclotron absorption. 
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Fig. 3. Location of semirelativistic resonant momentum zeros. 

p" 

Performing the same calculations as above for the semirelativistic resonant 
denominator, in place of (66) one now has 

2 

( PII) PII A g(PII) = 1 + -2 - nll- - 0C-)· 
2m m 

(70) 

Roots of this function can be visualised as the points of intersection of the 
parabola y = (1 + pn/2m2) with the straight line y = nC-) + nIIPII/m, as shown 
in Fig. 3. Solving g(PII) = 0 gives 

PII _ P± _ j 2 A 

- - - -nil ± nil +20C-) -2. 
m m 

(71) 

Note that equation (71) is equivalent to (60). Conditions 1 and 2 given above 
still apply with a difference being that the discriminant in the semirelativistic 

2 A 

case is now nil + 20C-) - 2. 
The roots of the resonant denominator can be classified according to the values 

of nC _) as before, however, only the case where n( _) > 1 is considered, as this is 
the one relevant to cyclotron absorption. In this case both momentum roots satisfy 
the auxilliary conditions for nil 2': O. However, some care should be exercised 
in using these solutions, since by making the semirelativistic approximation 
one limits the momentum zeros to values < m. This in turn leads to further 
restrictions on nil and nC-) as shown below. 
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The condition 0(_) > 1 corresponds to frequencies w < Oe; the larger 0(_) 

the further w moves away from the cyclotron frequency. Thus, far away from the 
cyclotron resonance, it requires particles of much larger momentum to absorb 
the photons. Recall that cyclotron absorption is strongly peaked about the 
cyclotron frequency and the semirelativistic approximation only tends to broaden 
the resonance. Therefore, unless one is 'close' to the cyclotron frequency, the 
resonant momenta are large (pres > m). For example 0(_) = 1· 5 corresponds to 
frequencies w ~ 20e /3, well below the cyclotron absorption frequency and one 
finds pres '" m. Thus, strictly, for the semirelativistic approximation to be valid 
one requires that 0(_) ~ 1. To quantify this, first introduce a momentum cutoff 
Pc, above which the semirelativistic approximation is inaccurate. From equation 
(71) it is apparent that P+ is the largest root, so that if one requires p+ < Pc, 
this leads to the following restriction on nil: 

2 A 

pc/m + 2 - 20(_) Pc 
O<nll < <-. - - 2pc - 2 

(72) 

Equation (72) in turn can be used to determine the maximum allowed value of 
0(_) consistent with the semirelativistic approximation. This occurs at nil = 0, 
i.e. for perpendicular propagation. In this case one finds 

A 2 2 
1::::;0(_)::::;1+Pc/2m . (73) 

It is assumed in the rest of this work that (72) and (73) are satisfied, so that 
one is in a regime where both resonant roots, as given by (71), contribute to the 
absorption of waves. 

5. Introduction of Relativistic Plasma Dispersion Functions 

In this section the integrals over parallel momentum occuring in the response 
tensor are performed in terms of relativistic plasma dispersion functions, whose 
analytic properties have been extensively discussed in Robinson (1986). Using 
the results of the preceding section, the response tensor in equation (45) can now 
be expressed in the form 

/1-" (k) 2m 3w; J Q~(1,0)exp(-p2/2mT) 
aRES = 1 dP11 ( )( )' w(27rmT) 2" PII - P+ PII - P-

(74) 

where <P2 is approximated by 2m. The causal condition is invoked to determine 
how to integrate around the poles occuring at p+,p_ in (74). One replaces w by 
w + iO under the square root sign in equation (65): 

(w+ - w- iO)(w -w_ + iO) = w(w+ +w_) - w2 - w+w_ + (w+ + w_ - 2w)iO .(75) 

The sign of the infinitesimal imaginary part is therefore determined by the sign of 
w+ +w_ - 2w. Noting that this can be written in the form (w+ -w) + (w_ -w), 
it is simple to see, using equation (63), that the above expression is negative. 
Hence, 

(w+ - w - iO)(w - w_ + iO) = (w+ - w)(w - w_) - iO, (76) 
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which implies one must use the prescription 

p+-p+ - iO, p_-p_ +iO. (77) 

This shows that in the complex PII plane, the pole p_ is displaced into the upper 
half-plane while the pole p+ is displaced into the lower half-plane. The resonant 
denominator in equation (74) is then to be interpreted according to 

(PI I - p+)(P1l - p-) -(PII - p+)(P11 - p-) + iO. (78) 

On examining the structure of the functions Q+,,(l,O) in equations (47)-(56), 
it is seen that the class of integral that needs to be evaluated in equation (74) 
can be written as 

100 pfl exp( _(3p2) 
Si = dP11 2 ' 

-00 PII - aP11 +e 
where {3, a and e are defined to be 

1 
(3 = 2mT' 

a = P+ + P- = 2m cos () , 

~ = P+P-

e = 0,1,2 

= m2 cos2 ()- m[(w+ -w)(w -w_)]. 
w 

(79) 

(80) 

(81) 

(82) 

These integrals may be performed with the aid of the following integral relationship 
(Robinson 1986): 

1 100 exp( _u2 ) 
:F1/ 2(Z, a) = ~ du u2 _ 2a!u + Z ' 

71"2 -00 
(83) 

where :Fq(z, a) is a Shkarofsky function (Shkarofsky 1966; Robinson 1986) defined 
via 

:Fq(z, a) = ez - 2a 100 
dt r q exp [(a - z)t + ~] , Im(z - a) > O. (84) 

With the change of variables u2 = (3pn, (83) becomes 

1 100 exp( -(3pn) 
:F1/ 2 (Z, a) = --I dPIl fff . 

({371") 2 2 a z 
-00 PII- 2 _PII+_ 

{3 {3 

Hence; on making the associations 
/ 

( z 
p=~' 

{3 2 m cos2 () 
a=-a =---

4 2T' 

(85) 

(86) 
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one obtains the simple relation 

80 = ~F1/2(Z, a). 

To evaluate the integral 8 2 given by 

82 = J d P~ exp( _f3p2) 
PII 2 

PII - (7PII +e ' 
where it now implicit that Im(e) > 0, note that it is possible to write 

d80 
82 = - df3 . 

149 

(87) 

(88) 

Some care is required here, as the Shkarofsky function appearing in equation (87) 
depends on two parameters Z and a which are in turn a function of 13. Thus 
one must write 

-8 = d80 = ...jfJ1r{ 8F1/2(z(f3), a(f3)) dz(f3) + 8F1/2(Z(f3), a(f3)) da(f3)} 
2 df3 rr 8z df3 8a df3 

- ~ ~F1/2(Z' a). 

Equation (86) implies that 

dZ(f3) = e, 
df3 

da(f3) _ (72 

df3 - 4 ' 

while Robinson (1986) obtained the differential equation 

8Fq(z, a) = Fq(z, a) - Fq_1(z, a). 
8z 

(89) 

(90) 

(91) 

It is straightforward to calculate the relation for 8Fq(z, a)j8a from the integral 
relation in (84) to obtain 

8Fq(z, a) = Fq- 1(z, a) - 2Fq(z, a) + Fq+1(z, a). 
8a 

Using (90), (91) and (92) in equation (89), one finally obtains 

{ 
(72 

82 = - ~ e[F1/2(Z, a) - F-1/2(Z, a)]- 4[2F1/2(Z, a) 

- F-1/2(Z, a) - F3/ 2(Z, a)]} - ~ ~Fl/2(Z' a). 

(92) 

(93) 
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If new quantities >. and 7 are defined by 

>. 

7 2 

4 

a 2 
2" - e = ![(p+)2 + (p_)2] , 

(J2 
4 - e = i (p+ - p_)2 , 

then equation (93) can be written as 

[( 1 ) 7
2 a 2 

] 8 2 =..Jjjir >. - 2(3 F1/2(Z, a) - "4F-1/2(Z, a) - 4F3/2(Z, a) . 

To obtain an expression for 8 1 the following identity is required: 

1[p2 2] PI! = -- II-aPII +e-PII-e , (J 

which allows one to write 

1 100 [prl - aP11 + e - prl - e] exp( _(3p2) 
8 1 - - dP11 ~-~---;;-2--"------

(J -00 PII - (JPII + e 

--;{ J dP11 i: dP11 exp(-(3p2) - 82 - e8o} 

(94) 

(95) 

(96) 

(97) 

(98) 

-~ {~ - (e + >. - 2~ )Fl/2(Z, a) + : F- 1/ 2(Z, a) + 4F3/2(Z, a) . 
2 a2 } 

It should be noted that the Shkarofsky functions of half-integer index can be 
re-expressed in terms of the more familiar plasma dispersion function of Fried 
and Conte (1961) (see e.g. Robinson 1986). 

6. Specific Results for the Linear Response 4-Tensor 

Using results (87), (96) and (98) it is now possible to write down expressions 
for the linear response 4-tensor. This gives the following results 

o8fES(k) ~ w; (:;) [J?(ki/2eB)]2 F1/2(Z, a), (99) 

11 2 ( m2 ) (ne) 0 2 / f aRES(k) ~ wp wT 2m [Jo(kl- 2eB) F1/2(Z, a), (100) 

a'JiEs(k) = a}lEs(k) , (101) 
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a~Es(k) 2(m2) 0 2 2{fle ~ Wp - [J1 (k.d2eB)] -F1/ 2(Z, a) 
wT 2m . 

+ ~2 [ (A - 2~ )F1/2(Z, a) 

r2 q2 ]} 
- 4"F-1/ 2(Z, a) - "4FS/2(z, a) , (102) 

a9iEs(k) ~ w~ (:;) (~~) ! [J8 (kl/2eB)][.Jll (kl/2eB)]F1/2(z, a), (103) 

aCJiEs(k) = iafjfES(k) , (104) 

03 w; (m2) 0 2 2{ 1 ( 1 ) ( ) aRES(k) ~ - -;; wT [J1 (k.d2eB)] p - ~ + A - 2(3 F1/2 Z, a 

r2 q2 } + 4F-1/2(Z, a) + "4FS/2(z, a) , (105) 

a}fus(k) = ia}iES(k) , (106) 

a}lEs(k) ~ _ w~ (m2) (fle )! [J8(kl/2eB)][.Jll(kl/2eB)] 
mq wT 2m 

{I (1) r2 x p - ~ + A - 2(3 F1/2(Z, a) + 4F-1/2(Z a) 

q2 } + "4F3/2(Z, a) , (107) 

a~s(k) - a}lEs(k) . (108) 

The J8 and JP functions which appear in the linear response tensor may be 
simplified by noting that their argument ki/2eB is small compared with unity 
under conditions appropriate to X-ray pulsars. To see this, note that one can 
write kJ.. ~ wsin{} so that 

k2 w2 
U = --:!:... ~ -- sin2 {} • 

2eB 2eB 
(109) 

Since the frequencies of interest lie in the vicinity of the cyclotron frequency, 
this allows one to write w ~ fle in (109). This gives the final result 

u~~sin2{} 
2Bcr ' 

(110) 

which for magnetic fields typical of X-ray pulsars, B '" 0·1 BeT! indicates u «: 1. 
Using (32) one obtains to good accuracy 
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Jg(u) ~ 1, 

JP(u) '" ( B )1 - 2Bcr sin () . (111) 

(a) Behaviour of the Response near the Cutoff 

In the paper by Herold et al. (1981), it was noted that the response function of 
the plasma is singular at a certain critical frequency unless the finite lifetime of 
the first excited Landau level is included explicity. This is a unique feature of the 
quantum plasma. In classical plasmas, singularities in the response function are 
removed by including thermal effects. However, even with the inclusion of finite 
temperatures, Herold et al. (1981) found that the singular behaviour persisted. 
In this section it is shown how the singularities encountered by Herold et al. 
(1981) may be deduced from equations (99)-(108) directly. 

The hermitian and antihermitian parts of the linear response tensor determine 
the dispersion and absorption of waves respectively. In equations (99)-(108), these 
are associated with the real and imaginary parts of the Shkarofsky functions. 
Before the imaginary part of the Shkarofsky function is examined, the following 
preliminaries are necessary. Using (80), (82) and (86) one can show that 

1 
Z = a - 2wT[(w+ - w)(w - w_)] , (112) 

and thus for frequencies above the cutoff w+, it can be seen from (112) that 
Z> a. Robinson (1986) has shown that in this case the imaginary part of the 
Shkarofsky function vanishes. Hence, above the cutoff frequency the antihermitian 
part of the response vanishes and there is no absorption, just as· one expects. 

Now consider what happens in the case where the cutoff frequency is approached 
from below. In this case z < a and Robinson (1986) obtained the following result 
for Im[.rq(z, a)]: 

[ 
( )] (q-l)/2 

Im[.rq(z, a)] = _7rez - 2a a: z Iq- 1 [2va(a - z)], z < a, (113) 

where Iq(x) is a modified Bessel function. The dominant behaviour for Im[.rq(z, 
a)] as w approaches the cutoff, comes from the term [(a - z)/a](q-l)/2. From 
(112), it is seen that 

a-z 
1 

2wT[(w+ - w)(w - w_)] 

rv (w+ -w), (114) 



Relativistic Quantum Response of Plasma. I 153 

near the cutoff, where ( is roughly constant and the symbol rv denotes 'of the 
order'. Also using (95), one can write 

7 2 
"4 rv 'r/(w+ - w), (115) 

where 'r/ is also roughly constant. Using (113) with (114) and (115) in equations 
(99)-(108), it is then possible to write for the antihermitian part of the response 

a':EAS(k) = a(p" v)Im[F1/ 2 (Z, a)] + b(p" v)Im[F_1/ 2 (Z, a)] 

+ c(p" v)Im[F3/2(Z, a)] 

a(w+ - w)-! + b(w+ - w)(w+ - w)-~ + c(w+ - w)! 

(w+ - w)-!, as w --+(w+)_ . (116) 

The behaviour given in (116) confirms the result obtained by Kirk and Cramer 
(1985) in their equation (24). An equivalent result to (116) is obtainable for 
the hermitian part of the response for frequencies that approach the cutoff from 
above. Hence the mathematical origin of the singularities encountered by Herold 
et al. (1981) at the cutoff is now apparent. 

(b) Perpendicular Propagation 

The results obtained in Section 5 apply to waves propagating obliquely to 
the magnetic field. In this section results are presented for the special case 
of perpendicular propagation, () = 90° and thus kll = O. From (86) it is seen 
that a = 0 in this limit. This leads one to introduce the Dnestrovskii function 
(Dnestrovskii et al. 1964), defined by Robinson (1986) as 

Fq(z) = Fq(z, 0). (117) 

Therefore the result of (87) is replaced by 

lim 80 = ~Fl/2(Z), 
() ---> 7r/2 

(118) 

From (81), (82), (86), (94) and (95) for perpendicular propagation the following 
results hold: 

7 2 

4' 

Hence, one obtains from (96) that 

Z 
.>.. = -73' (j = O. (119) 

lim 82 = ~{ - !..F1/2(Z) - ~Fl/2(Z) + !..F-1/2(Z)} . (120) 
() ---> 7r/2 {3 2{3 {3 
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Further, using the recurrence relations 

171/2(Z) - 17-1/2(Z) - (...!... -1)171/2(Z) - .:!-., 
2z z 

(q -l)17q (z) 1- Z17q_l(Z) , 

equation (120) reduces to 

lim 82 = ~173/2(z). 
6 -+ 7r /2 V 4(3 

(121) 

For 8 1 the result (98) is no longer valid, as (J' = 0 now. However, noting that 
p_ = -p+ for perpendicular propagation, then in (79) with l = 1, the numerator 
is an odd function of PII while the denominator is an even function of PII' 
hence, this integral vanishes by symmetry, so that 8 1 = O. This allows one to 
immediately write down the results for the components of the linear response 
tensor, viz. 

o8fES(k) ~ w; (:;) [Jf (kl/2eB)]2171/2 (z, a), (122) 

11 ) 2 (m2) (Oe ) [0 2 / ]2 aRES(k ~ wp wT 2m Jo(k.!. 2eB) 171/2(Z, a), (123) 

a~~s(k) = a}tEs(k) , (124) 

a~Es(k) ~ w; (:) [Jf(k}./2eBW{ ~;171/2(Z' a) + 173/2(z, a)} , (125) 

2 1 

a~IES(k) ~ w; (:T ) (~;) 2 [J8 (kl/2eB)][Jf (kl/2eB)Wl/2 (z, a), (126) 

af]fEs(k) = ia<jfES(k) , (127) 

aCjfEs(k) = 0, (128) 

a}lEs(k) = ia}tES(k) , (129) 

aifES(k) = 0, (130) 

a'ifEs(k) = O. (131) 

7. Summary 

In this paper we present a new approach to the derivation of the linear 
response 4-tensor of a strongly magnetised electron gas. The calculations are 
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performed within the framework of QPD, which is a manifestly covariant and 
gauge invariant theory. Through the use of QPD, the magnetic field has been 
included exactly, by employing eigenfunctions of the Dirac equation in a magnetic 
field, and also quantum and relativistic effects are included. The linear response 
4-tensor is evaluated in the case of a nonrelativistic Maxwellian distribution in 
the ground state Landau level. A semirelativistic approximation is employed in 
the resonant denominator so that important relativistic effects are retained near 
the cyclotron resonance. 

The roots of the resonant denominator are also examined in detail, showing 
that there is no absorption above a critical cutoff frequency. In addition, a 
simple graphical technique is introduced that allows one to visually locate the 
resonant electron momenta, as well as determine the conditions under which both 
roots are valid and contribute to absorption. The results for the linear response 
4-tensor are expressed in terms of relativistic plasma dispersion functions known 
as Shkarofsky functions. The analytic properties of these functions, which have 
been extensively studied by Robinson (1986), make them extremely useful for 
studying the wave properties of the plasma, such as dispersion and absorption, 
without resorting to complicated numerical schemes. The work presented here thus 
extends previous analytic approaches which have either employed nonrelativistic 
approximations to the resonant denominator, thus neglecting crucial relativistic 
effects, or have calculated only the refractive index of the plasma directly. In 
addition, the result obtained for the behaviour of the response tensor near the 
cutoff gives an independent verification of the result derived by Kirk and Cramer 
(1985). Although no applications are given in the present work, the response is 
derived using parameters typical of X-ray pulsar accretion columns, for which 
it is thought that the present results are of importance in the calculation of 
physical processes oecuring there. 
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Appendix A: Cutoff and Absorption Frequencies 

In this appendix details are presented for obtaining the exact cutoff and 
absorption frequencies for photons absorbed by resonant electrons. From Melrose 
et al. (1982) one can show that the kinematic condition for cyclotron absorption 
to occur is given by 

(En - En+s)2 ~ (w2 - kn). (AI) 

Using this condition one may derive the cutoff photon frequency for cyclotron 
absorption or emission to occur. The discussion is restricted to the case 
o < q2 < (En -En' )2. Also if one considers a tenuous plasma, so that the photon 
dispersion relation is w ~ Ikl, thus kll ~ w cos (), where () is the angle between 
the magnetic field and photon wavevector, then equation (AI) is rewritten as 

w2 sin2 () ~ (~ + 2~/eB - V m 2 + 2neB)2 

or 

['1'1 + 2n'(n/m) - '1'1 + 2n(n/m)] w<m . 
- sin () 

(A2) 

The largest frequency for which absorption takes place, occurs when n = 0, i.e. 
for absorption from the ground state, hence, 

w ~ Wn'O = m ['1'1 + 2n'(n/m) -1] 
sin () 

(A3) 

Above Wn '0 there is no absorption by the plasma electrons. The result (A3) gives 
rise to the characteristic saw-tooth pattern in the absorption coefficient (see e.g. 
Fig. 3 of Kirk and Cramer 1985). Another important feature of the frequency 
Wn '0 is that at this point the two resonant momentum zeros coincide and thus 
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on integrating the response over the momentum, an infinite value is obtained. 
This is the point at which Herold et al. (1981) encountered the singularity in 
the response function. 

One can also derive the frequency of a photon actually absorbed by an electron, 
as follows. Firstly, the energy of the electron in the excited state is given by 

( ,. ') 
€ n ,PI! [m2 + (PI! + kll)2 + 2n'Om]t 

~ [m2 + (PII + W cos (})2 + 2n 'Om] t . 

IT one squares both sides of the energy conservation equation 

€'(n ',PII) = €(n,PII) + W, 

and substitutes (A4) in the left hand side, it is found that 

w2 sin2 () + 2w(€q - PII cos (}) - 2seB = 0, 

(A4) 

(A5) 

(A6) 

where for simplicity €q denotes €(n,pl!). IT instead equation (A6) is considered 
as a function of frequency rather than momentum, one obtains the solutions 

-€q + PII cos () ± . I(€q - PI! cos (})2 + 2seB sin2 () 
W=W± = V (A7) 

sin2 () 

For the case of cyclotron absorption the positive root is the correct choice. The 
other root is spurious; it is introduced by squaring equation (A5). Hence, the 
quantity defined by 

-€q + PII cos () + V(€q - PI! cos (})2 + 2seB sin2 () 
wres «(}) = . 2 () (A8) 

Sln 

gives the frequency of a photon that an electron of energy €q and momentum 
PII actually absorbs on making a transition to the excited state with n' = n + s. 

In the case of a cold plasma (PII = 0) and for electrons initially in the ground 
state Wres «(}) becomes 

W~es«(}) = m [VI + 2s(Ojm) sin2 () -1] 
sin2 () 

(A9) 

For magnetic fields such that Ojm« 1 one may Taylor expand equation (A9) 
to obtain 

W~es«(}) ~ so( 1- ~~ sin2 () + ... ) . (AlO) 

It can be seen from this result that there is a small angle-dependent, frequency 
down-shift from the cyclotron frequency sO. This is due to momentum transfer 
from the photon to the plasma electron. By way of comparison, one can perform 
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the same calculation in the nonrelativistic limit. The energy of a nonrelativistic 
electron in a magnetic field is given by 

p2 
€q = m+ _II +nfL (All) 

2m 

Using (All) in equation (A5) one obtains in place of equation (A6) 

w2 cos2 0 - 2w(m - PII cos 0) + 2seB = 0, 

which has the solutions 

(AI2) 

m - PII cos () ± /(m - PII cos ()2 - 2seB cos2 () 
w = w± = 2 • (AI3) 

cos () 

In this case the appropriate solution is given by the negative root and, hence, 
the nonrelativistic resonance frequency is then 

m - PII cos () - V (m - PII cos 0)2 - 2seB cos2 0 
w~:«() = . 2 A • (AI4) 

Again, taking the limit of a cold plasma initially in the ground state gives 

w~:«()o = m (1- VI - 2s(eB/m) cos2 0) 
cos2 () , 

(AI5) 

which in the case of o./m « 1 implies 

w~:(O)o ~ so. (1 + !~ - !~ sin2 () + ... ) . (AI6) 

In this limit, if one compares (AI6) with (AlO) , it is seen that there is an 
additional frequency upshift that is independent of angle. This is a reflection of 
the difference between the relativistic excitation and the nonrelativistic excitation 
of the Landau levels. 

Appendix B: 4-Tensor Generalisation of the Polarisability of Pavlov et al. 

In this appendix results are given for the 4-tensor generalisation of the quantum 
response of a strongly magnetised electron gas as derived by Pavlov et al. (1980). 
The results of Pavlov et al. (1980) were obtained using the general expressions 
derived for the susceptibility (termed polarisability by Pavlov et al.) of an electron 
positron plasma by Svetozarova and Tsytovich (1962), which is identical to the 
three tensor part of equation (4). Pavlov et al. (1980) evaluated the susceptibility 
tensor in the nonrelativistic limit, so that near the cyclotron harmonics the results 
do not take into account important relativistic effects. In the work presented 
here, the methodology of Pavlov et al. (1980) is employed, with the exception 
that SI, rather than Gaussian units are used. As well, expressions are given 
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here for the response tensor rather than the susceptibility tensor that Pavlov et 
al. (1980) quoted. The 3-tensors are related by a~rv) = aij/w2, where a~rav) 
denotes the polarisability employed by Pavlov et al. (1980), aij denotes the linear 
response tensor employed in this paper and w is the photon frequency. 

The distribution employed by Pavlov et al. (1980) is given by 

- 411"2 Ne tanh('-\/~) exp( -pn /2mT - n.-\) , 
f(Eq) - EOmOe (211"mT)2 

where .-\ = ne/ T. The distribution of particles in the final state is 

_ 411"2 Ne tanh('-\/~) exp( _P li/2mT _ n '.-\) , 
f(Eq') - EOmOe (211"mT)2 

with PII = PII + kll' 

(Bl) 

(B2) 

Using the expression for the energy eigenvalue given in equation (A2), if one 
Taylor expands the resonant denominator w + Eq - Eq ', it is found that 

Pllkll kn I 0,2 
W + E - E , ~ w - sO - -- - - + sen + n)-

q q m 2m 2m 

+ sn (pn + p,i) 
4m2 

(B3) 

with s = n I - n. The third term in (B3) takes into account the linear Doppler 
effect, the fourth term represents the effects of quantum recoil due to the 
electron-photon interaction, the fifth term arises from the anharmonicity of the 
Landau levels and the sixth term represents the quadratic Doppler effect. Pavlov 
et al. (1980) argued that, for Ikl ""' w ~ 0 one can neglect the quadratic Doppler 
term in comparison with the linear Doppler term provided Icos 01:» /3, where 0 is 
the angle of photon propagation with respect to the field and /3 = (2T/m)! «: 1. 
It was also argued that the anharmonicity term is only comparable with the 
linear Doppler term for .-\:G Icos 01//3 :» 1, when only the lowest Landau levels 
are populated (n = 0 or n I = 0). Therefore, they put n '+ n = s in the fifth 
term of (B3), which leaves the approximation 

Pllkll kn 02 
W + E - E , ~ W - sO - -- - -. + slsl-. 

q q m 2m 2m (B4) 

The nonresonant terms of the response tensor may be treated in the same 
manner as in Section 2, except in place of (33) one should use 

411"2 Ne 
f(Eq) ~ - ..... -O(PII)OnO, 

EOmHe 
( ) 411"2 Ne ( ') f Eq ' ~ --0 PII On'O' 

EOmne 

This leads to the result 

aJ1.V(k) = w2fJ1.V 
nr p' (B5) 
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where 

{ 

W2 
4m2 f..L = 0, 1/ = ° 

fJ1.V = .. 
_g~J f..L = i, 1/ = j 

o otherwise. 

(B6) 

The resonant part of the response 4-tensor that is evaluated here can be 
written 

a':ES(k) e2mOe ~ J d QJ1.V( I ) f(Eq') - f(Eq) 
2 L....- PII + n , n . 

47r n=O,n'=O W + Eq - Eq ' + 20 

- e2Netanh(,\f2) f f 100 dPIIQ~(s, n) 
EO (27rmT)"2 n=O 8=-00 -00 

exp[-PI12/2mT - (n + s)>.]- exp( -p~/2mT - n>.) 
x----~------------n-----~--------

P k k2 0 2 
w-SO-_I_I _II __ II +slsl-+iO 

m 2m 2m 

(B7) 

In equation (B7) the summation over n I has been changed to a summation over 
s = n I - n, thus everywhere one replaces n I by n + s. In the nonrelativistic 
approximation the functions Q~(s, n) are given by 

Q~(s, n) 1- (s + 2n)- [(J;'-1)2 + (J;,)2] + --v(n + s)n(J;'-lJ;') , (BS) [ 0 ] 20 
2m m 

Q~l(S, n) (s + 2n)~ + 20 v(n + s)n(J;'_lJ;'';}) , 
2m m 

(B9) 

Q~(s, n) Ql1(s, n) - 0 v(s + n)n(J;'_lJ;';l) , 
m 

(BI0) 

Q~(s, n) [ (S + 2n)~ + (PII + kJI/2)2] [(J;,-1)2 + (J;,)2] 
2m m 

20 
- --v(n + s)n(J;,-l J;'), (Bll) 

m 

Q~l(S, n) 
1 

- (2~)"2 [vin(J;,-lJ;'_l) + (J;'J;';l) 

+ vn+ s(J;,-lJ;';l) + (J;'J;'_l)] ' (BI2) 

Q~(s, n) ( 0 )! i 2m [vin(J;' J;,;l) - (J;,-l.r:_l) 

+ vn + S(J;,-l J;';l) - (J;' .r:-l)] , (BI3) 
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Q~(s, n) = (2P": kli) [(J:-1)2 + (J:)2] , 

Q~(S, n) = i(s + 2n)~[(J;'_1)2 - (J;'.;l)2] , 
2m 

Q~(s, n) = - ~2n {PI,vn[(J:_1J:-1) + (J:.;lJ:)] 
m m 
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(B14) 

(B15) 

+ Pllv'n + s[(J:_1J:) + (J:.;lJ;'-l)]) , (B16) 

Q~(s, n) = i~~{Pllv'n[(J:_lJ:-l) - (J:.;lJ:)] 
msm 

+ Pllv'n + s[(J:_1J:) - (J;'.;lJ;'-l)]) , (B17) 

The momentum integrals that appear in the response are of the type 

HI. = 100 d pf,e-(PII+a)2/2mT 
Pll----:----

-00 b- cp , 
£ = 0, 1, 2. (B18) 

These integrals can be evaluated in terms of the plasma dispersion function, 
which here is given by the definition 

W(z) = 2i7f-l/2e-z21z dT er2 

000 

i 100 e-r2 

--1 dT--- . , 
7f2 -00 T - Z + 'to 

and the differential equation 

dW(z) = 2i7f-1/2[l + i7ftzW(z)]. 
dz 

(B19) 

(B20) 

In order to perform the sums over n in (B7) , the following special sum is 
required for the JF functions 

00 _y -01./2 ( ) ( /) ~)J~(y)]2zn = e 1 z exp _ 12YZ 101. 2yv z, (B21) 
n=O -z -z 1-z 

where 1OI.(x) is a modified Bessel function. Also one needs to use the recursion 
relations for JF given in equations (A4a)-(A7) of Melrose and Parle (1983a). 
Finally the recursion relations 

1OI.-l(Z) - 1OI.+l(Z) 2a 1OI.(z) , 
z 

(B22) 
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I",_l(Z) + I"'+1(z) = 2dI",(z) 
dz ' 

for the modified Bessel functions are required. 

(B23) 

Using the results presented above it is now possible to obtain the following 
results for the resonant contribution to the linear response 4-tensor: 

2 00 

a<]pEs(k) ~ W P2 ( L {4Is(X)-,62,\tanh(,\/2)[XIs-1(X)-sIs(X)]}Gs, (B24) 
21i,,6 s=-oo 

a}1Es(k) 
2 00 2 ( ) ~ wp ,\ (L s Is X G s , 

21i, sinh(,\/2) s=-oo X 
(B25) 

4w2 00 

a'h1s(k) = a}1Es(k) - li,P sin~('\) (X L [I~(X) - cosh('\/2)Is(X)]Gs , (B26) 
8=-00 

a~3ES(k) 2
00

[ ,\] w: (L 2Is(X)G~2) + XI~(X)2tanh('\/2)Gs , 
8=-00 

(B27) 

aC]lEs(k) 
2 

Wp tan (J 00 

2,6 cosh(,\/2) ( L I~(X)Gs, 
8=-00 

(B28) 

02 w2 t (J 00 aRES(k) ~ i-..E.~( '"' sI8 (X) 
,6 sinh'\ s~oo ----:;zx-Gs , 

(B29) 

aIjtEs(k) 
2w2 00 

Ii,; ( L I s (x)C<l) 
8=-00 s' 

(B30) 

a}fEs(k) 
w2,\ 00 

- i-..E.-. -( L s[cosh('\/2)I~(X) - 18 (X)]Gs , 
Ii, sm'\ 

(B31) 
8=-00 

13 2 tan (J ~ [SIs(X) (1) Ii, ,] aRES(k) ~ wp . (/)( ~ --G8 - - tanh(,\/2)I s(X)Gs , (B32) 
2 smh ,\ 2 s=-oo X 4 

tan (J 00 { G(l) 
a1tEs(k) ~ iw; ') ~:_h (\ 1')\ (L [cosh (,\/2)1' seX) - Is (X)] s 

8=-00 

_ ~tanh('\/2) sIs (X) G8} . 
4 X 

(B33) 

In equations (B24)-(B33) the following definitions are employed: 

( = e-u cOth(A/2) (B34) 

( 2 )! 
Ii, W mT cos (J , (B35) 
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k2 W2 
U == ~ ~ --sin2 0, (B36) 

2mf2 2mf2 

u 
(B37) X = sinh(Aj2) , 

I' ( ) = dIs (X) 
s X dX' (B38) 

G s = i7r~ [e-SA/ 2W(Zs +~) - eSA/ 2W(zs)] , (B39) 

G~l) = (zs + ~)Gs - 2sinh(sA/2), (B40) 

G(2) = (z + ~ ) G(l) - ~cosh( sA/2) 
8 S 4 s 2 ' (B41) 

x...,. SA + slsl,82/4 /'i, 
(B42) Zs = -4:' /'i, 

W 
(B43) X = 

T 

It should be noted that these equations apply in the frame where 

k = (k.L, 0, kll). (B44) 
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