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Abstract 

Approximate analytic expressions are derived for the linear response 4-tensor of a strongly 
magnetised, ultrarelativistic thermal pair plasma. The response is obtained in terms of 
relativistic plasma dispersion functions known as Dnestrovskii functions. These functions 
allow for a relatively simple study of wave properties of the pair plasma without requiring 
complicated numerical schemes. The results obtained are valid in general for frequencies 
below the electron cyclotron frequency. It is believed that the results could be of importance 
in some models of radio pulsars and gamma-ray bursters. 

1. Introduction 

Electron-positron pair production is generally regarded as an exotic high-energy 
process and is usually only associated with particle physics. However, many 
astrophysical objects provide an environment in which electron-positron pairs are 
produced in large concentrations. Furthermore, these pairs can have a significant 
impact on both the dynamics of the source region and the characteristics of the 
radiation spectrum. 

The distinctive mark of electron pairs is their annihilation radiation, which is 
generally observed as a spectral line centred at 0·511 MeV. This line has been 
directly observed in a number of objects, including the galactic centre (Riegler et 
al. 1981), gamma-ray burst sources (Teegarden and Cline 1980) and solar flares 
(Chupp et al. 1982). There are other objects where annihilation radiation has 
not been directly observed, but in which electron-positron pairs are expected to 
play an important role. These include active galactic nuclei (AGNs) and radio 
pulsars. 

There is a number of papers that are concerned with the propagation of 
radiation in strongly magnetised pair plasmas. The properties of the natural wave 
modes of a pair plasma have been examined by several authors. Hardee and Rose 
(1976, 1978) examined the propagation of waves generated by the interaction 
of a relativistic electron-positron beam with a cool, electron-positron plasma. 
Melrose and Stoneham (1977) and Melrose (1979) examined the properties of 
the natural modes of a cold, relativistically streaming pair plasma, with a view 
to explaining the polarisation characteristics of pulsar radio emission. Arons 
and Barnard (1986) considered the propagation of normal modes well below the 
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cyclotron frequency in a relativistically streaming one-dimensional pair plasma 
with allowance made for momentum dispersion along the field lines. On the other 
hand, Volokitin et al. (1985) considered an arbitrary momentum distribution, 
other than taking it to be one-dimensional. Some papers have even examined the 
propagation of nonlinear Alfven solitons in magnetised pair plasmas (Karpman 
and Washimi 1977; Sakai and Kawata 1980; Mikhailovskii et al. 1985; Stenflo et 
al. 1985), with possible applications to radio pulsars. 

The basic quantity necessary for a determination of the wave properties of a 
plasma is the response tensor. As is discussed in Padden (1992; present issue 
p. 131, hereafter paper I), quantum and relativistic effects are important in the 
super-strong magnetic fields of neutron stars. In discussing the properties of wave 
modes in pair plasmas, most authors use the response of a classical magnetised 
plasma. Melrose and Stoneham (1977) calculated the response tensor using 
quantum plasmadynamics, as is done in paper I, but only in the long-wavelength 
limit and for a cold plasma. Also, in evaluating the wave properties they considered 
the regime where relativistic quantum effects could probably be neglected. In 
the present paper, the linear response 4-tensor of a strongly magnetised, pair 
plasma is evaluated within the framework of quantum plasmadynamics. The 
approach used is identical to that of paper I except that an ultrarelativistic 
Maxwellian distribution with a sharp momentum cutoff is employed. This is 
done primarily for mathematical convenience, allowing the approximation p ~ m 
to be made. Such a distribution is also chosen with applications to gamma-ray 
bursters and radio pulsars in mind, where it is expected that the bulk of the 
electrons and positrons are highly relativistic. This work aims to extend the 
theory of wave propagation in pair plasmas to frequencies up to the cyclotron 
frequency, including both quantum and relativistic effects. 

The layout of this paper is as follows. In Section 2, the linear response 
4-tensor of a magnetised pair plasma with arbitrary distribution function is 
presented. These results give the 4-tensor generalisation of those given originally 
by Svetozarova and Tsytovich (1962). An ultrarelativistic Maxwellian distribution, 
which has a momentum cutoff, is introduced for the pairs in Section 3. This 
distribution leaves the fraction of electrons and positrons arbitrary. In Section 4, 
the resonant denominator is examined in detail. A correction to the ultrarelativistic 
approximation is used to locate the resonant momenta more accurately. In 
addition, the graphical technique introduced in paper I is used to determine the 
conditions under which the resonant momenta are valid, in a simple manner. In 
Section 5, the relativistic plasma dispersion function of Dnestrovskii is used to 
evaluate the momentum integrals of the linear response tensor. Specific results 
are presented for th~ response 4-tensor in Section 6, valid for all angles of 
propagation except those parallel to the magnetic field. 

The notation used in this paper is the same as that employed in paper I 
unless otherwise stated. 

2. Linear Response Tensor for a Strongly Magnetised Pair Plasma 

In this section, expressions are presented for the components of the linear 
response 4-tensor of a magnetised pair plasma. As a starting point, since the 
expression given in equation (4) of paper I is to be employed, it is reproduced 
here for convenience: 
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aILV(k) = e3B t jdPIl { N~-N:'. Q~(n',n) 
271" n=O,n'=O 271" W-€q I €q' + lO 

N+ N- N+ N-
+ q + q'. Q!:"(n',n) q' + q . Q!:"(n',n) 

W-€q-€q' + lO W + €q + €q' + lO 

N- N-
- q - q' 

W + €q_€q' +. iO .,.,(p" v)Q!:,,(n', n) } , (1) 

with .,.,(p"v) given by equation (5) and the Q±(n',n) by equations (6)-(15) 
in paper 1. Since the magnetic field considered here is typically of the order 
~ O·IEer and provided the photon frequencies of interest are of order the 
cyclotron frequency or less, the second and third terms on the right hand side 
of (1) can be ignored, as they are nonresonant. If the electron and positron 
distributions are now denoted by f+(€q) and f-(€q) respectively, then (1) is 
replaced by 

a';'ES(k) = _ e3 B t jdPIl {I+(€q) - f+(Eq~) Q~(n',n) 
271" 271" W - Eq + €q' + lO n=O,n'=O 

I-(Eq) - f- (Eq~) .,.,(p" v)Q~(n', n) } , 
W + €q - €q' + lO 

(2) 

where RES denotes the resonant contribution to the response. 

e,P" , , 

£=e'+ (j) 

, 
, , , 
, " k",O) 

, , , 
" F.'PI! 

p,,= Pt,+ kl! 

Fig. 1. Feynman diagram showing 
cyclotron absorption by a positron, 
along with the labelling of the 
momentum and energy in the initial 
and final states. 

At this time it is necessary to mention a subtle point regarding equation 
(2). For an electron, the final state is denoted by the quantum numbers q', n' 
and energy eigenvalue Eq" A positron, however, is interpreted as an electron 
propagating backward in time, so that the quantum numbers of the final state 
are denoted by q, n with corresponding energy eigenvalue Eq and with primed 
quantities denoting the initial state, as is shown in Fig. 1. Thus for consistency, 
one should relabel the quantum numbers in the second term in (2) according to 

q-tq', q' -tq, n-tn', n' -tn. (3) 

The denominators in (2) are now the same, however, the numerator of the 
positron term contains the function Q~(n, n'). 

It is straightforward to show that (see Appendix A), using the relation 

J:(u) = (_1)8 ~~8(U) (4) 
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for the J~, functions that appear in the expressions for Q'; (n I, n), one has the 
following symmetry: 

where 

Q~ (n, n ') = ((p" v)Q~ (n', n) , 

((p" v) = {+1, 
-1, 

p" v = 00, 11, 22, 33, 02, 03, 23 
p" v = 01, 12, 13. 

(5) 

(6) 

Thus, combining (3) and (5) with (6), in (2), one can finally write 

with 

o.i:.'ES(k) e
3 B f= / ;;1 Q'; (n I, n) 
2n n=O,n'=O 

x { [f+( Eq) - f+(Eq')] + O"(p" v) [f.- (Eq) - f- (Eq' )] } , (7) 
W - Eq + Eq ' + ~O 

O"(p" v) = {+1, 
-1, 

p" v = 00, 11, 22, 33, 01, 03, 13 
p" v = 02, 12, 23. 

(8) 

Equation (8) shows that for a pair plasma in which there are equal numbers 
of electrons and positrons, the 0.02 , 0.12 and 0.23 components of the plasma 
vanish. In the case of the 0.02 component, this fact does not appear to have 
been mentioned in the literature. 

As is discussed in paper I, if one is interested in cyclotron absorption rather 
than cyclotron emission, the primed quantities should be reinterpreted as initial 
states and vice versa. Then on interchanging primed and unprimed quantities, 
equation (7) is written 

o.i:.'ES(k) e3 B f= /;;IQ~v(nl, n) 
2n n=O,n'=O 

[f+(Eq') - f+(Eq)] +O"(p" V)[f-(Eq') - r(Eq)] 
x=-~~~~~~~~~~~~ 

W + Eq - Eq ' + iO 

e
3 B f= /;;1 if?2Q~(n',n) 
2n n=O,n'=O 

[f+(Eq') - f+(Eq)] + O"(p" V)[f-(Eq') - f-(Eq)] (9) 

x 2"(m[0"- ~(ne _ L) _ kiIPII] , 
"( 2m "(m 

with Pit = PII + kll implicit. Also equations (39) and (40) of paper I are used. 
In order to further simplify the linear response 4-tensor, two assumptions are 

introduced. Firstly, the distributions of electrons and positrons in the initial state, 
denoted f+(Eq) and f-(Eq) respectively, are restricted to the ground state while 
the distributions of electrons and positrons in the final state, denoted f+ (Eq' ) 
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and I-(Eq ') respectively, are taken to be zero. This assumption is valid for 
magnetic fields of order the critical field, even for ultrarelativistic particles. This 
is due to the fact that the synchrotron decay rate (see equation (21) in paper 
I) greatly exceeds the collision rate, unless the plasma is very dense (typically 
;:c 1032 m-3). This again assumes there is no significant flux of radiation near 
the cyclotron frequency. Secondly, only absorption of radiation from the ground 
state to the first excited state n I = 1 is considered. Therefore, using these 
assumptions (9) becomes 

jW e3 B J dP11 [f+(Eq) + rY("", lI)f-(Eq)] <I>2Q~(1, 0), (10) 
C1REs (k) = 211" 211" [ 1 ( q2) _ klWII] 

2"(m w - - Oe - -
"( 2m "(m 

with the Q~ (1, 0) given by (22)-(31) in paper 1. 

3. Ultrarelativistic Particle Distribution 

In this section, the linear response is evaluated for the case of a thermal, 
ultrarelativistic distribution of particles. This corresponds to temperatures of 
at least several MeV. It should be noted that some authors have raised doubts 
as regards the attainability of an ultrarelativistic Maxwellian distribution in 
super-strong magnetic fields. Their argument is that the magnetic field suppresses 
Coulomb collisions (see e.g. Storey and Melrose 1987), except those that result in 
the excitation of one or both particles to a higher Landau level. Thus, unless the 
particles have a relative velocity above the excitation threshold (which is roughly 
the cyclotron energy), scattering is ineffective in exchanging energy between the 
particles. Thus it is difficult to see how the particles could thermalise. Although 
these doubts are noted, it must be pointed out that Coulomb collisions are 
not the only interactions experienced by the electrons and that it is likely that 
interactions between the electrons and radiation field will determine the form of 
the distribution. 

To facilitate the calculation, additional assumptions are employed. Firstly, it is 
assumed that the plasma is tenuous, so the refractive index of the plasma is close 
to unity and the dispersion relation w ~ Ikl is a valid approximation. In addition, 
the photon frequency wand wavevector k are considered to be real, which is 
valid if one neglects damping. Also the waves are assumed to satisfy k~ < w2 . 

Secondly, the magnetic field is assumed to be about an order of magnitude 
smaller than the critical field, i.e. B ~ 0 ·lBer , so the cyclotron energy is small 
compared with the electron rest energy, Oe «: m. Also the photon frequencies 
of interest are considered to be in the vicinity of the cyclotron resonance. 

Consider the particle distribution function for a magnetised quantum plasma. 
In a magnetic field, the exact, thermal relativistic distribution function, which 
satisfies the normalisation condition 

00 Joo 411"2N L dPlIgnf(Eq) = EamOe ' 
a -00 n= 

(11) 

with gn = 2 - Dna the degeneracy factor for the Landau levels and N the number 
density of particles, is given by 
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471"2 N exp( -€q/T) 

f(€q) = €omO e 2 f:gn€~Kl(€~/T) (12) 

n=O 

where €~ is defined by 

€~ = (m2 + 2neB)! . 

In equation (12) the Boltzmann constant is set to unity, K 1(z) is the McDonald 
function of order 1 and €q = (m2 + P~ + 2neB)! the particle energy. Thus for a 
distribution of particles confined to the ground state, (12) reduces to 

471"2 N exp( -"I /T*) 
fb) = €O m20e 2Kl(1/T*) , 

(13) 

where "I = (I+pf /m2)! and T* = Tim is the dimensionless temperature. Now 
suppose that a ~action 8 of the particles are electrons and that the remaining 
fraction 1- 8 are positrons. Then in the ultrarelativistic limit, which corresponds 
to 

"I ':::!. Ipld 
m' 

(14) 

the following distribution functions are introduced: 

f+(PII) = 8 471"22N O(lpld - Pc) exp(-lplll/T) 
€om Oe 2Kl(I/T*) 

(15) 

f- (PII) = (1 _ 8) 471"2 N O(lpld - Pc) exp( -IPld/T ) 
€Om20e 2Kl(I/T*) 

(16) 

Here, N is the total number of particles, Pc is a momentum cutoff, with typically 
Pc > 2m for an ultrarelativistic distribution, while the step function O(z - a) 
which is defined by 

{ I, 
O(z - a) = 0, 

z>a 
z<a 

ensures that no particle has momentum less than the cutoff. 

(17) 

Next the ultrarelativistic approximation is used to simplify the expressions 
for the Q~" (1, 0) functions. Employing the ultrarelativistic approximation in 
equations (22)-(31) of paper I, one can show 

Q~(I, 0) [JP]2, (18) 

Q~l(I, 0) mOe [J,o] 2 
'" 2 0 , - (m2 +PII) 

(19) 
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Q~(l, 0) = Q~l(l, 0), (20) 

2 
Q33(1 0) '" PII [J0]2 (21) +, - 2+ 2 1 , 

m PII 

Q01 (1 0) ~ (2eB)! Ipi Ii [.1.0][ J O] 
+, 2(m2 + Pft) ° l' 

(22) 

Q~(l, 0) = iQ~l(l, 0), (23) 

Q03 (1 0) '" PII Ipil I [J0]2 (24) +, - 2+ 2 1 , 
m PII 

Q~(l, 0) = iQ~l(l, 0), (25) 

Q13(l 0) ~ (2eB)!PII [J:O][Jo] 
+, 2(m2 + pft) ° l' 

(26) 

Q~(l, 0) = iQ~l(l, 0). (27) 

Strictly, a quasi-ultrarelativistic approximation is used in writing down the results 
(18)-(27), as the electron rest mass m is kept as a correction in the energy 
denominators. However, terms of order kll' S1e are ignored, compared with terms 
of order m, since kll < W ::::; S1e « m. 

4. Roots of the Resonant Denominator 

In this section, the resonant denominator is examined in detail within the 
ultrarelativistic approximation. Consider then the approximation (14) in the 
resonant denominator of equation (10), which one can write as 

Iplli PII A 

y(PlI) = - - nll- - S1(_) , 
m m 

(28) 

where nil = kll/w is the refractive index and 

S1 q2 
A e ___ • 
S1(_) = -;;; 2mw (29) 

The roots of the resonant denominator are obtained by solving the equation 
y(PlI) = O. In order to obtain more accurate results for the resonant momenta, 
the approach used here is to calculate the momenta, firstly solving (28), then 
secondly, obtaining a correction to the roots based on using the approximation 

'Y ~ Ipill (1 + m22) . 
m PII 

(30) 
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The reason that the approximation (3) is not used from the outset is explained 
shortly. 

Consider the solutions of the equation g(PII) = 0, with g(PlI) given by (28). 
1. PII > O. In this case the solution is given by 

o ~ 

P+ = 0C-) 
m I-nil 

(31) 

2. PII < O. In this case the solution is given by 

p~ nC-) -=--, 
m l+nll 

(32) 

where the 0 superscript indicates these are the lowest order solutions. To obtain 
a correction· to resonant roots, consider the equation 

a 
Z + ~ = b, Z » 1 . 

2z 
(33) 

Then if one takes the lowest order solution to be given by Zo = b, the next order 
solution is found by substituting the lowest order solution into the second term 
on the left hand side of (33), treating this term as a perturbation. Therefore, 
one has 

which implies 

a 
zl+--b 2zo - , 

Zl = b - ..!!:... = Zo (1 --;.) . 
2zo 2zo 

Hence, using the solutions (31) and (32) in equation (34), one obtains 
1. PII > O. In this case the solution is given by 

~ 2 
P+ = 0C-) {I _ (1-:: nil) }. 
m I-nil 202 C-) 

2. PII < O. In this case the solution is given by 

~ 2 
P- = _ 0C-) {1- (l-t:nll) }, 
m 1 +nll 20~_) 

where now the 0 superscript is omitted. 

(34) 

(35) 

(36) 

The above method is preferred to using equation (30) from the outset to 
calculate the resonant roots, as (30) leads to four solutions, of which at most 
two are valid. This occurs because (30) breaks down for small PII/m and thus 
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solutions are obtained in the nonrelativistic regime, which are clearly not valid 
and thus must be discarded. Not only is this approach unnecessarily complicated, 
it does not result in much improvement in the values for the resonant roots when 
compared with (35) and (36). 

It is interesting to note that a cutoff frequency is not predicted by the solutions 
(35) and (36) as they -are always real. However, one can show they are consistent 
with the cutoff frequency given by (A3) of paper I, which shows for n' = 1 that 
the cutoff is below the cyclotron frequency. If the equation g(Pll) = 0 is treated 
as a function of frequency rather than momentum, then one may obtain the 
frequency of a photon that is absorbed by a resonant particle. This yields 

Jpn (1 - cosB)2 + 2mOe sin2B - PII (1 - cos B) 
wres(B) = . 2 PII > 0, (37) 

sm B 

Jpn (1 + cos B)2 + 2mOe sin2B + PII (1 + cos B) 
wres(O) . 2 PII < 0, (38) 

sm B 

where the relation kll ~ W cos 0 is used. Equations (37) and (38) are only 
valid for resonant momenta that are large compared with the electron rest mass 
m. If they are used for a cold plasma, they imply an absorption frequency of 
v2mOe/sinO ~ Oe. Thus, for a particle with resonant momentum Pres ~ m 
then (37) indicates the absorption takes place at a frequency 

Oe 
Wres(O) ~ * (1 0) , Pres - cos 

Oe ----=----- « Oe , 
')'(1 - cos 0) 

where P;es = Pres/m and')' is the Lorentz factor. Thus the absorption takes 
place well below the cyclotron frequency, with the highest absorption frequency 

, , , 

P- -Pc 

, , , , , , 

y 

; 
; 

; 

/ 

.-
; 

; 
; 

Pc P+ 

Fig. 2. Location of ultrarelativistic resonant momentum zeros. 

PII 
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being ne/P~. This is a consequence of the monotonic decrease in the absorption 
frequency as the particle momentum increases. Relativistically, as the momentum 
increases the energy eigenvalues €q, €ql of the initial and final states tend to merge 
and thus the frequency required to satisfy the resonance condition w+€q-€ql = 0 
decreases. 

Returning to the expressions for the resonant momenta, one may use the 
graphical technique of Section 4a in paper I to visually locate the roots and 
classify them according to the values of nC-). This also allows one to determine 
the conditions under which the roots are valid and thus absorption takes place. 
The roots given by (35) and (36) can be visualised as the points of intersection 
of y = IPlii/m with the straight line y = nC-) + nljPll/m; see Fig. 2. To simplify 
matters it is assumed, without loss of generality, that kll > 0 and W > 0, hence, 
nil> o. There are four separate cases to analyse depending on the values of 

nC-)· 
Case 1: 

Case 2: 

{
no valid roots for nil :::; 1 

nC-) :::; 0, P+ is a valid root for 1 < nil ~ 1 + Inc->IIp~ 
no valid roots for nil> 1 + Inc->IIp~ 

{
there are no valid roots for nil < 1 - nC-)/p~ 

0< nC-) :::; p~, P+ is a valid root for 1 - nC-)/p~ < nil < 1 

there are no valid roots for nil> 1 

Case 3: 

{ 
p_,p+ are valid roots for 0:::; nil < nC-)/p~ - 1 

p~ < nC-) < 2p~, p+ > 0 is a valid root for nC-)/p~ - 1 < nil < 1 

there are no valid roots for nil > 1 

Case 4: 

{ 
p_, p+ are valid roots for 0 :::; nil < 1 

nC-) > 2p~, p_ < 0 is a valid root for 1 < nil ~ nC-)/p~ - 1 

there are no valid roots for nil > nC-)/p~ - 1 

For the above conditions, the dimensionless momentum cutoff p~ = Pc/m is used. 
If one is in a regime where absorption takes place, then for (35) and (36) 

to be consistent with the ultrarelativistic approximation, it is necessary that 
p~(l + nil) ~ nC-). Now, for the case of interest here, one must have nil < 1. 
Inspection of case 3 and case 4 above shows both roots contribute to cyclotron 
absorption provided 0:::; nil < nC-)/p~ - 1 for p~ < nC-) < 2p~, or 0:::; nil < 1 
for nC _) > 2p~. Inspection of case 2 shows that absorption can also occur for 
0< nC-) < p~ provided 1- nC-)/p~ < nil < 1. In this case however, only one of 
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the roots, p+, contributes. Furthermore, to be consistent with the assumption 
of photon frequencies of order the cyclotron frequency or less, one must have 
the restriction 1 ;S 0(_), which is shown in paper 1. Note that, in the parameter 
regime p~ < 0(_), the solutions obtained in (35) and (36) are quite accurate 
when compared with the exact solutions given in equation (69) of paper 1. For 
example, for p~ = 2 (approximately the smallest acceptable value of the cutoff) 
and nil = 0 . 5 there is only a 2% error between the two results. 

5. Introduction of Relativistic Plasma Dispersion Functions 

In this section, the integrals over parallel momentum occuring in the response 
tensor are performed in terms of relativistic plasma dispersion functions, known 
as Dnestrovskii functions. 

The first step is to write down the linear response 4-tensor given by equation 
(10) using the results of Sections 3 and 4. Using equations (15), (16) and (28) 
in equation (10) one obtains 

o:lJt'E S ( k ) Wp m d * 2 100 

2Kl(fi*) -::; -00 PII 

[8 + u(/-L, 1/)(1- 8)]O(lpnl- p~)lpnlexp(-fi*lpnl) Q~(I,O), (39) 

x [lpnl-nliPn- O(-)] 

fi* = 1/ T* and the * indicates the quantity is dimensionless, being written in units 
of m. Also the function q?2 = W + Eq + Eql that appears in (10) is approximated 
by q?2 ~ 21Plil· Note that the casual condition has not yet been applied to the 
right hand side of (39); this is performed later. 

If one refers to equations (18)-(27) for the Q~ (1,0) functions that appear in 
(39), then one can verify there are two classes of integral to evaluate, which can 
be written as 

G(z) = roo dy yexp( -fiy) 
}z y - a ' 

(40) 

and 

roo ytexp( -fiy) J! = 1,2,3. 
Ve(z) = }z dy (1 + y2)(y _ a) , (41) 

If one uses the partial fraction decomposition 

1 = _ 1 1 _ 1 1 1 _1_ (42) 
(1 + y2)(y - a) 2(1 - ia) y + i 2(1 + ia) y - i + (1 + a2) y - a ' 

then (40) and (41) are reduced to the single class of integral 

G (z) = 100 d ytexp( -fiy) J! = 0 1 2 3 
t Y " , , . 

z y-a 
(43) 



176 w. E. P. Padden 

This integral for arbitrary l may be evaluated in terms of the integral for l = 0 
by using the identity 

['>0 dy ytexP( -(3y) = (-1)£ d£e [00 dy exp( -(3y) . 
J Z Y - a d(3 J Z Y - a 

(44) 

The integral Go(z) follows from equation (3.352.5) of Gradshteyn and Ryshik 
(1965), which yields 

Go(Z) - e-/3a Ei*«(3a - (3z), a> Z 

= - e-/3a Ei«(3a - (3z) , a < Z 

(45) 

(46) 

where Ei(x) is related to the standard exponential integral function E1(x) by 
Ei(x) = -E1(-x) and * denotes the complex conjugate. The result presented 
in (45) is used if absorption takes place. In this case the exponential integral 
is complex and the imaginary part is associated with the absorptive part of the 
response. The result (46) is the form used if absorption does not take place; in 
this case the exponential integral is real. In the work that follows it is assumed 
that (45) applies. 

The exponential integral function is expressed in terms of the Dnestrovskii 
function Fq(z) (Dnestrovskii et al. 1964) by making use of equation (28) of 
Robinson (1986), which gives 

Fq(z) = eZ 100 dy y-qe-u = eZ E1(Z), q ~ 0 (47) 

for Re(z) > 0, with appropriate analytic continuation for Re(z) ::; o. Therefore, 
F1(Z) = eZE1(z) = -eZEi(-z) and (45) can be written 

Go(z) = e-/3z Ft«(3z - (3a) . 

Repeated application of (44) on (48), along with the differential equation 

dFq(z) = (1- 1- q)Fq(Z) _ ~, 
dz z z 

(48) 

given in equation (20) of Robinson (1986), allows one to obtain the following: 

G1 (z) e-/3z [aFt«(3Z - (3a) +~] , (49) 

G2 (z) e-/3z [a2 F* «(3z _ (3a) + z + a ~] 
1 (3 +(32 ' (50) 

[
22 

G3(z) = e-/3z a3 Ft«(3z _ (3a) + z + az + a + 2z + a 2.] 
(3 (32 + (33 . (51) 

Since the argument of the Dnestrovskii function which appears in the response 
tensor is negative when there is absorption (see Section 6), the integral appearing 
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in equation (47) cannot be used, as it diverges. However, the integral of (47) 
may be explicitly evaluated to yield 

E1(z) = -'Y-ln(Z) _ ~ (_Z)n 
L.J " n=l nn. 

(52) 

where l' = 0·5772 ... is Euler's constant. This function is analytic everywhere 
except z = 0 and thus can be used for Re(z) < O. One is free to choose the 
branch cut for the logarithm anywhere in the complex plane and here it is 
convenient to choose the cut along 

-7r < argz ::; 7r • (53) 

Hence, using this definition one has analytically extended the definition of the 
Dnestrovskii function F1(z) to Re(z) ::; O. 

6. Specific Results for the Linear Response 4-Tensor 

Using the results of the preceding section, it is now possible to write down 
explicit expressions for the linear response 4-tensor given in equation (39). Since 
some of the intermediate steps required in obtaining the final form of the response 
tensor are rather tedious, the details are left to Appendix B and only the final 
results are presented here. One finds: 

w2e-{3*p; * * * * a~Es(k) ~ p * m[JP(k1./2eBW{P+F1 [,a(Pe - p+)] _ p*-Pf[,a(P~ + p*)] 
2K1 ({3 ) w 1- cos 0 1 + cos 0 

a11ES(k) 

a'1iEs(k) 

a~Es(k) 

+ ~_~2_} 
(3sin20 ' 

w2e-{3*p; n 
p e [J.o(k2 /2eB)]2 

4Kl({3*) m 0 .L 

X { _ [-2p+Re{F1(</J)} - 2Im{F1 (</J)} + p+Ff(Z+)] 
2(1 - cos 0)[1 + (P+?] 

+ [2p*-Re{F1(</J)} - 2Im{Fl(</J)} - P*-Fi*(Z-)]} 
2(1 + cos 0)[1 + (p*-)2] , 

a}lEs(k) , 

w~e-{3*p; m [JP(k1./2eB)]2 
w 

x {[2P+Re{F1 (</J)} + 2Im{F1 (</J)} + (p+)3 Fi*(Z+)] 
2(1 - cos 0)[1 + (p+)2] 

(54) 

(55) 

(56) 

+ [-2p*-Re{F1 (</J)} + 2Im{Fl(</J)} - (P*-)3 Fi*(Z-)] + _1_} (57) 
2(1 + cos 0)[1 + (p*-)2] {3sin20 ' 
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2 _f)0po ~ 

01 wpe em ° 2 ] ° 2 (mne ) O'.RES(k) ~ (*) [Jo(k..l./2eB) [J1 (k..l./2eB)] -
2K1 (3 w 2 

x {[Re{F1(1))} - p+Im{F1(1))} + (p+)2 Fi*(Z+)] 
(1 - cos 0)[1 + (p+)2] 

+ [Re{F1(1))} + p~Im{F1(1))} + (p~)2 Fi*(Z-)]} 
(1 + cos 0)[1 + (P~)2] , 

(58) 

O'.~~s(k) = i(l- 2c5)O'.IjfES(k) , (59) 

w2e-f)*p; m 
0'.03 (k) ~ p [JO(k2 /2eBW 

RES 2K1 ((3*) W 1 ..l. 

X {[2P+Re{F1(1))} + 2Im{F1(1))} + (p+)3 Fi*(Z+)] 
2(1 - cos 0)[1 + (p+)2] 

(60) 

_ [-2p~Re{F1(1))} + 2Im{F1(1))} - (p~y Fi*(Z-)] + cos 0 } 
2(1 + cos 0)[1 + (p~)2] (3sin2 0 ' 

O'.}fEs(k) = i(l- 2c5)O'.}l"ES(k) , 

O'.}fEs(k) ~ ~~~;~~: [Jg(ki/2eB)][Jf(ki/2eB)] (m~e ) ~ 
x {[Re{F1(1))} - p+Im{F1(1))} + (p+? Fi*(Z+)] 

(1 - cos 0)[1 + (p+)2] 

_ [Re{F1(1))} + p~Im{F1(1))} + (p~? Fi*(Z-)]} 
(1 + cos 0)[1 + (p~)2] , 

O'.'JtEs(k) = - i(l - 2c5)O'.}fES(k). 

In equations (54)-(63), the following quantities are introduced: 

1> = (3*(p~ + i), 

Z± = (3*(p~ =f pi, + iO). 

(61) 

(62) 

(63) 

(64) 

(65) 

In writing down these results it is assumed that both resonant momenta contribute 
to absorption. In this case, one can see from (65) that Z± has negative real 
argument, since the resonant momenta satisfy Ip± I > Pc. This is the reason the 
expression in (47) is analytically continued. The small and positive, imaginary 
part of Z±, which arises from the causal condition, ensures that Z± lies on the 
branch defined by equation (53). It is a simple matter to extend these results to 
frequencies where, either one, or both roots do not contribute to the absorption. 
Firstly, ascertain which of the roots do not contribute, from the values of nil 
and f2( _). Then for the Dnestrovskii function which contains this root in its 
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argument, one removes the complex conjugation sign as the function is now real 
valued. The terms for which this is performed only contribute to the dispersion 
of the waves. 

The symmetry property F1(z) = Fq(z*), where q is an integer, given in 
equation (57a) of Robinson (1986), is used to write 

F1 (</» + F1 (</>*) = 2Re{Fl(</>)}' 

F1 (</» - F1 (</>*) = 2iIm{F1 (</>)}. 

(66) 

(67) 

The resonant momenta P± appearing in the linear response 4-tensor have values 
given by (35) and (36). Equations (54)-(63) are valid for all angles of propagation 
except () = 0 as here nil = 1 and the response diverges. It is simple to verify that 
in the case of perpendicular propagation, only the 03, 13 and 23 components 
of the response vanish, as is true in the semirelativistic approximation. If the 
response vanishes in one frame, it must vanish in all frames. 

Before closing this section there is an interesting question that arises, which 
although of direct relevance to this work, is a separate problem in its own right 
and would need to be examined in more detail in any further work. Basically 
the question pertains to the importance of the momentum cutoff Pc. The results 
presented above are valid in a frame in which all the particles of the pair plasma 
are ultrarelativistic. Suppose, however, that another (primed) frame is chosen, 
moving parallel to the magnetic field in which p~ = 0, so that now one has 
nonrelativistic particles present as well. In order, to quantify the contribution to 
the response of these nonrelativistic particles, consider the integral I given by 

1= 100 
dpF(P)g(P) , 

where p denotes the parallel momentum. Then I represents the typical integral 
appearing in the response, with F(P) representing the distribution function. Also 
it is convenient to introduce the integrals INR,IuR and Ipm where 

fmc 
INR = 10 dpF(P)g(P) , 

IUR = 100 dpF(P)g(P) , 
mc 

l mc INR = 0 dp[F(P)g(P)]UR. 

Then one has 

1= INR +IuR, 

while IN R measures the error obtained in extrapolating the ultrarelativistic 
approximation into the nonrelativistic regime. If one finds that 

INR« IUR, INR« IUR, 
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then I uRis a good approximation to I, otherwise one would need to take into 
account the contribution of nonrelativistic particles to the response. It must be 
stressed that this issue is not crucial in the context of the work presented here. 
The results derived above for an ultrarelativistic pair plasma are still valid, so 
it is a matter of determining whether any other contribution to the response is 
required. If this is the case, the results presented in paper I for a nonrelativistic 
plasma may be used in evaluating the total response. 

7. Summary 

In this paper, the linear response 4-tensor of a strongly magnetised 
electron-positron plaSma is derived. The calculations are performed using 
the methodology of quantum plasmadynamics as is the case in paper I. The 
response 4-tensor is evaluated in the case of an ultrarelativistic thermal distribution 
of pairs in the ground state, with a momentum cutoff. The distribution is also 
chosen to allow the relative fractions of positrol!s and electrons to be varied. 
This allows one to see how the wave properties change as the plasma goes from 
pure electron gas through pair gas to pure positron gas. It is also easy to include 
streaming motion into the distribution, as well as modifying it so the pairs move 
in either the same direction, or opposite directions. This could be of importance 
in some models of radio pulsars and gamma-ray bursters. 

Although the ultrarelativistic approximation is employed, corrections are 
included in the resonant denominator to more accurately locate the resonant 
momenta. For particles with energy much larger than the electron rest mass 
energy, it is found that absorption takes place well below the cyclotron frequency. 
A graphical technique is used to enable one not only to classify the resonant 
momenta according to the value of a certain parameter, but also to determine the 
conditions required to ensure the roots are consistent with the ultrarelativistic 
approximation. 

Explicit analytical results are obtained for the linear response 4-tensor in terms 
of a relativistic plasma dispersion function known as a Dnestrovskii function. 
As is the case with the Shkarofsky functions introduced in paper I, the analytic 
properties of the Dnestrovskii functions have been extensively studied (Robinson 
1986). They are particularly useful for studying the wave properties of the plasma, 
such as dispersion, absorption and polarisation, without resorting to complicated 
numerical schemes. The results obtained for the response are valid for all angles 
of propagation except () = 0° and for frequencies up to approximately fle/P~, 
although these results can be extended to frequencies w ~ fle . 
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Appendix A: Symmetry Property of Q~ (n " n) 

In this appendix it is shown how the result in equation (5) is obtained, by 
performing the calculation in detail for the 01 component, as this is the most 
tedious. From equation (10) in paper I, one has 

01, Pn' '-1 n' ) ( , n'-I)] Q± (n,n ) - -2-[(J;:-n,Jn- n'-1 + J;:-n,Jn- n'+1 
€q' 

Pn [ n'-1 '-1 n' n' - -2 (In-n ,J;:-n '+1) + (In-n,Jn- n'-I)]· (AI) 
€q 

The symmetry relation given by equation (4) implies 

I n '-1 
n-n' 

(_I)n-n'Jn- 1 
n'-n' 

I n' ( l)n-n'-IJn- 1 
n-n'-1 - n'-n+l' 

ro' ()n-n' n n'-1 ()n-n'+1 n 
I n- n , -1 In'-n, In- n'+1 -1 In'-n-l. 

Using the relations (A2) in (AI), one has 

Q~(n, n ') = - 2Pn ' [( -1)(J:;-!nJ:2n+l) + (-I)(J~'_nJ~'_n_l)] 
€q' 

- Pn [( -1)(J~=~,J;:'-n-l) + (-I)(J~'-nJ~;-!n+1)] 
2€q . 

2
Pn [(J;:;-!nJ~'-n-l) + (J;:'-nJ;:;-!n+1)] 

€q 

+ Pn' [(In-1 In-1 ) In In )] -2 n'-n n'-n+l + n'-n n'-n-l 
€q' 

(A2) 
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= - Qtl(n', n). 

The results for the other components follow similarly. 

Appendix B: Derivation of Linear Response 4-Tensor 

In this appendix some of the details leading to the results of equations 
(54)-(63) are presented. The calculation is performed in detail for one particular 
component. Consider then the 00 component of the linear response 4-tensor 
given by equation (39): 

wp m d * 2 JOO 
a~s(k) = 2Kl({3*) -;;; -00 PII 

[8 + (1 - 8)]O(lpii 1- p~)lp~ lexp( -(3*lpjd) Q~(I, 0). (Bl) 
[Ipill- nliPii - 0C-)] 

From (18) one has 

Q~(I, 0) = [Jr(kl/2eB)]2 , 

so that 

a~s(k) 
w2 ~ 2Kl({3*) : [Jil(kl/2eB)]2 I: dpil O(lpil~ - p~)I~p(-!*lp,d) 

2 [IPIII- n11P11 - °c-)] 

= 2K:({3*) : [Jil(k1 /2eBW{ j-P; dp* -pilexp({3*pil) 
-00 II *(1 A - PII + nil) - 0c -) 

+ 100 dp* pilexp( -(3*pil) } 
• II * (1 A 

Pc PII - nil) - 0c-) 

2 

= 2K:({3*): [Jr(k1/2eB)]2{ j-P; dpil -pilexp({3*pil) 
-00 (1 + nll)( -pil + p~ + iO) 

+ dp* PllexP -fJ pi!) 100 * «(.1* 
p~ II (1- nll)(pil _ p+ + iO)}' (B2) 

where in (B2) the division into positive and negative momentum parts arises 
from the modulus function and the resonant momenta P± are now understood 
to be given by equations (35) and (36). Also, the causal condition as given in 
equation (77) of paper I, is applied to the denominators in (B2). Next, the first 
integral in (B2) is written over positive momentum, so that one has 

2 • 

a~s(k) ~ nT.rw~n*\ : [Jil(k1 /2eBW{ J~c -dpil. pilexp(-{3*pil) 
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100 * pn exp(-:-,8*pn) } 
+ p~ dP11 (i - nll)(Pn - P+ + iO) 

w; m (JP(kl/2eB)]21°O dpnpnexp( -,8*pn) { 1 
w p~ 

1 } + * * .. (B3) 
(1 - nll)(PII - P+ + 'to) 

The integral over pi! may be performed using the result (49) for G1(z), if one 
makes the identification z = p~ along with a = -P":.. in the first term in (B3) and 
a = p+ in the second term. This yields 

a':Es(k) 
2 

wp m 2Kl(,8*) ~(Jp(kl/2eBWe-~'P; {P+Fi*[,8(P~ - p+)] + 1/,8* 
I-cosO 

_ p*-Fi*[,8(P~ + p*)] + 1/,8*} 
l+cosO ' 

w2 _p_m[JO( 2 • { * F*[ * 2Kl(,8*) ~ 1 kJ../2eB)]2e-~ p; p+ 1 ,8(pc - p+)] 
I-cosO 

_ p*-Fi*[,8(p~ + p* )] 2} 
1 + cos 0 + ,8sin2 0 ' 

(B4) 

where nil = kll/w ~ cos 0 is used and it is to be understood that the arguments 
z± = ,8(p~ 1= P~J of the Dnestrovskii function have an infinitesimal, positive 
imaginary part, arising from the causal condition. The other components are 
treated similarly, however, one needs to use (42) in addition to (49), (50) and 
(51) as well as (66) and (67). 
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