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Abstract 

We show that in nanostructure geometry, by approaching the limiting behaviour of a 
two-dimensional system with large inhomogeneity in the electron density, a spontaneous 
current-carrying state can develop. We calculate the current patterns of this state and 
demonstrate that it cannot correspond to the chiral state required to support anyon 
superconductivity. 

1. Introduction 

Nanostructures provide the possibility for new transport and ground state 
properties of interacting Fermi systems. In this paper we focus on a repeated 
two-dimensional (2D) superlattice structure in which 2D conducting layers are 
separated by wide insulating layers. Now for low electron density (i.e. large 
rs) the system spontaneously forms spin polarisations (Ceperley 1978). The 
issue we address in this paper is whether spontaneously broken current-carrying 
states (SBCCS) are also a realistic possibility in such an itinerant 2D system? 
The answer is yes, provided the system is sufficiently inhomogeneous. This is 
particularly relevant to high-Tc superconducting lattices whose copper--oxygen 
(CuO) conduction layers are highly 2D, and even more so to the superlattice 
structures of these materials (see below). For these materials a spontaneously 
formed chiral ground state (mimicking the properties of the Laughlin ground 
state in the presence of an external magnetic field) has been proposed and from 
which anyon superconductivity has been suggested to evolve. We show that 
while a SBCCS is a realistic possibility its properties are those of an orbital 
ferromagnet and not a chiral fluid. 

Traditionally, spin polarised ground states are favoured theoretically in a 
weakly inhomogeneous Fermi liquid over SBCCS because, although XL is roughly 
of the same magnitude as Xp (Vignale et al. 1988), it is of opposite sign to XP 
suggesting that a SBCCS is unstable. Actually, it relates to the difference of 
broken symmetry in a gauge field (current carrying) and a static field; weakly 
inhomogeneous SBCCS can be transformed by Galilean invariance, to a lower 
state. Let us see it more explicitly. 
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In the presence of a gauge field A(r) and a scalar potential V(r), the interacting 
Hamiltonian Ho of a uniform Fermi liquid in d dimensions becomes 

H=Ho + J 2ddr(n(r)V(r) +J-LS(r).B(r) 

- [e)p(r)/c]. A(r) + [e2n(r)/2mc2 ] IA(r) 12) , (1) 

where B(r) = \7 X A(r), Jp(r) is the paramagnetic current, n(r) the density 
and S(r) the spin operators. The full current operator J(r) is given by 
J(r) = Jp(t) - [en(r)/mc]A(r). 

Generally, the ground state energy E == ( ¢G 1 H 1 ¢G) is a unique functional of 
the density n(r) == (¢G 1 n(r) 1 ¢G), the spin density S(r) == (¢G 1 S(r)1 ¢G) and 
paramagnetic current j p (r) == (¢G 1 J p (r) 1 ¢G) of the following form: 

(2) 

where we assumed that B(r) points along one direction (Vignale and Rasolt 
1988). 

For a weak A(r) and when we set V(r) = 0, then 

E == J ddr E( no, S(r), \7 X (jp(r)lno)) = 110 J ddr ddr' 

x (Sa(r) Xpa,6(r - r')S,6(r') + Va(r) XLa,6(r - r') V,6(r') + 8(r - r') : 1 jp(r) 12) 

+ J ddr(J-LS(r).B(r) - ~jp(r).A(r) + e2n~ IA(r) 12), 
c 2mc 

(3) 

with V(r) = \7 X (jp(r)lno) and where X is related to the inverse of x. 
If the phase transition to spin polarisation or SBCCS is second order, then 

equation (3) will describe it rigorously. It will occur when Sa(q) Xpa,6(q) S,6(q) < 0 
or when Va(q) XLa,6(q) V,6(q) + (mlno) 1 jp(q) 12 < o. The difference between spin 
polarisation and SBCCS is now obvious. From the definition of V( r) the term 
(mlno) 1 jp(q) 12 will clearly not permit such a SBCCS unless the current density 
is highly nonuniform. We should also add that such considerations apply as well 
to neutral Fermi liquids like 3He; e.g. we can attach a fictitious charge to 3He 
and then get rid of it at the end to arrive at (2) and (3). Actually, equation 
(3) is more appropriate to neutral Fermi liquids since we will be neglecting the 
energy B2/8K of the electromagnetic field. This will be of little consequence to 
the 2D and 3D electrons in the normal state (except in the formation of large 
domain structures). In the superconducting state this term must be included. 
However, for superfluid 3He, equation (3) is valid both above and below the 
superfluid transition. 
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Aside from strong inhomogeneities, 2D is also very important for SECCS. 
For example, unique to 2D the energy of noninteracting fermions in a uniform 
magnetic field is equal to the energy in its absence, when the Landau levels are 
filled. This is different to the 3D Landau diamagnetism discussed above and 
encouraging for SECCS in 2D. The inhomogeneity further strongly enhances the 
2D SECCS, as can be seen from the work of Hasegawa et al. (1989) who put 
the noninteracting electrons on a lattice. The Hamiltonian of (1) is now 

if = - L tij cler Cjer ; 

i,jcr 

t ij = t exp ( - i21T l j A.d.e) , (4) 

with A(r) = B(O,x,O). Its ground state energy for several different crystal 
structures is lower than when B = 0, for many appropriate ratios of electron 
densities and magnetic fluxes. 

2. Calculation of the SBCCS 

We calculated the SECCS using the results of Vignale and Rasolt (1988). One 
important aspect of this theory is its functional dependence on V(r), which in 
a rigorous way transforms the essentially 'surface structure' of the energy of a 
Fermi system to a bulk property (see e.g. Section 3 of Halperin et al. 1989). 
Very briefly, E in equation (2) is written as 

E( n(r), \7 X (jp(r)/n(r))) = Ei(n(r), jp(r)) 

( e. e2n(r)) + n(r) V(r) - -Jp(r) .A(r) + --I A(r) 12 , 
c 2mc 

(5a) 

where 

Ei(n(r), jp(r)) = Ts(n(r), jp(r)) +EH(n(r)) 

+ Exc ( n( r), \7 X (jp (r) / n( r)) ) , (5b) 

and where Ts is the kinetic energy of a noninteracting fermion liquid with density 
n(r) and paramagnetic current jp(r). Here EH(n(r)) is the Hartree energy and 
Exc the exchange and correlation. If we choose the Kohn-Sham (1965) approach 
to Ts , then 

(5c) 

with n(r) = 2Ek¢k(r)(h(r) andjp(r) = (n/2m)2Ek [¢k(r) \7¢k(r) - \7¢k(r)¢k(r)]. 
Minimising (5) with respect to the ¢, at fixed V(r) and A(r) we get (Vignale 
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and Rasolt 1988) 

lim {_I [- ih\7 + ~ (A(r) + Axc(r))] 
ACr) .... O 2m c 

~Axc(r) = _1_\7 X (8Exc(n(r),v(r))) , 
c n(r) 8V(r) 

l1xc(r) = 8~xc(n(r),jp(r))/8n(r) (6b) 

[with l1eff (r) = l1(r) + l1H (r)]. The dependence on S(r) [in equation (2)] is 
removed because we are searching below for SBCCS; i.e. when A(r) and B(r) -----to. 

There is one additional technical point concerning lim A(r) -----t 0 in (6a) or (5a). 
We need to consider the internal energy Ei in (5a), or the solution of (6), bearing 
an infinitesimal A(r) to fix the gauge! If we use the Thomas-Fermi approach, 
then Ts in (5b) becomes a direct functional of n(r) and jp(r) which simplifies 
the search for a possible SBCCS considerably (see below). 

Now from (6) the transition to a SBCCS is clearly driven by a self-induced 
gauge field Axc(r) whose origin is the exchange and correlation functional 
Exc (n( r), \7 X [j p (r) / n( r)]) . A realistic search for SBCCS then requires a 
realistic form for Exc; our conclusions will crucially depend on a reasonable form 
(both in magnitude and structure) for Exc. We derive Exc from the energy of 
a uniform 2D two-component electron gas in arbitrary but uniform B(r) = B. 
In the range of v where the Laughlin liquid state is valid we used our results 
for the energy of a 2D two-component quantum plasma (Rasolt et al. 1985) at 
v = ~, % and 2. In the limit when v -----t 00 we use the Tanatar and Ceperley 
(1989) E~(no). Our Pade form is then 

(7) 

where a is chosen to closely reproduce the values of Exc(no, v) at v = ~,%, 2. Our 
form of Exc is finally given by noting that for an arbitrary but uniform B and a 
uniform ground state, j(r) = jp(r) - (eno/mc)A(r) = o. So \7 X (jp(r)/no) = 
(e/mc)\7 X A(r) = (e/mc)B. From the definition v == no 27r£2 = no 27rhc/eB and 
the usual extension (Hohenberg and Kohn 1964) from no -----tn(r) and from jp(r) 
(appropriate to a uniform B) to arbitrary jp(r), we get the corresponding local 
current density approximation (LCDA) form for Exc(n(r), \7 X (jp(r)/n(r))). 
We make two additional observations: (1) There is no Zeeman splitting in (7) for 
the fictitious B(r) ~ \7 X (jp(r)/n(r)). (2) For an inhomogeneous system the 
true Exc(n(r), \7 X (jp(r)/n(r))) is clearly smoothed out and the discontinuities 
in Exc are not very important. 
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The equivalent form in the LCDA for Ts in (5b) can be derived; it is given by 

. ( 7r1i? 2 m1j(r)12) 
Ts( n(r),Jp(r)) = To (n(r)) + ~1i I V(r) 18n(r) - 2" m (8n(r)) + 2:(r) ; 

8n(r) = n(r) _ Nm I V(r) I , 
7r1i 

7r1i n(r) 
N == integ part of m I V(r) I ' (8) 

where To (n( r)) is the kinetic energy of a 2D electron gas in the absence of B. 
The last term in (8) is equivalent to (3), now for arbitrary magnitude of currents 
in the SBCCS in the presence of a nonuniform n(r) derived in the LCDA. 

For v"ff(r) in (6a) we take the following geometry. We put one spherical well 
potential at the four corners of a square (with sides of length 7ao; ao = 1i2 /me2 ) 

and another spherical well at the centre of the four sides. We fix the electron 
density at one electron per square and increase the depth of the wells to create 
a stronger and stronger inhomogeneity (see our initial discussion). We take two 
depth wells with effective band structure masses of m* 1m ~ 10·3 and ~17· 3 and 
replace the m by m* in (7) and (8).t 

To find the nature of the ground state we minimise (5) [using equations (7) 
and (8)] with respect to n(r) and jp(r) in the limA(r)----O. {Actually, a 
posteriori j p (r) is very small. So we solve the Kohn-Sham equations for n( r) 
above the SBCCS [i.e. (6) with Axe(r) = 0] and insert n(r) in (5) to minimise 
with respect to j p (r) below the SBCCS transition.} To facilitate the calculation, 
and in particular the 'V x (jp(r)ln(r)) term, we work in a plane-wave basis. 
The increasing inhomogeneity (i.e. m*) then requires a larger and larger basis set. 
The density n( r) above the SBCCS transition is calculated using up to 225 plane 
waves of reciprocal lattice vectors k in ¢k(r) of (6). Below the SBCCS transition 
the current is expanded as jp(r) = I;K aK[CK cos(K. r) + SK sin(K. r)]' where 
K. aK = o. The total energy change of (8) was calculated by numerical integration 
of the unit cell of a 61 X 61 point mesh. Equation (8) was then minimised with 
respect to all the CK and SK using a 'conjugate gradients method'. 

For m* 1m ~ 10·3 we found a well defined minimum with finite CK and SKi 
an SBCCS clearly appears. In Fig. 1 we detail its current pattern. We observe a 
clear vortex-antivortex structure. For m* 1m ~ 17·3 (Fig. 2) the Veff(r) potential 
is so strong that it forces the vortex-anti vortex structure into one single vortex. 
Other details are self-explanatory in the figure captions. The implication of these 
results to the incompressible chiral states, whose many-body gauge field mimics 
an external uniform magnetic field, is immediate. For example, taking the current 
patterns of Figs 1 and 2 and calculating the corresponding Axe(r) in (6), we 
find that the form of Axe (r) bears no resemblance to a uniform magnetic field. 
All this was argued in general and rigorously by Rasolt and Vignale (1990) and 
more recently by Tomboulis (1992) in the tJ model. 

t As a side comment about the choice of one electron per unit square we note that strong 
instabilities toward a Pauli antiferromagnet alignment occur at half-filling and strong periodic 
potentials. We therefore checked that the SBCCS is stable away from half-filling (i.e. less 
or more than one electron per unit square) where Fermi surface nesting is not an issue 
and where the instability towards a Pauli antiferromagnetic or orbital antiferromagnetic (see 
below) structure does not predominate. 
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Fig. 1. Current patterns in a unit cell of a symmetry-broken current-carrying state in a 
two-dimensional nonuniform interacting electron gas with m* 1m ~ 10·3 (see text). The 
corresponding Veff(r) in equation (6a) is made up of two spherical wells, one at the corner and 
one at the centre of the squares (see text). The two spherical wells have depths VI = 0 and 
V2 = -1 . 0 (in atomic units) and radii RI = O· 278ao and R2 = 0 . 222ao. The square corner is 
located in the centre of the panel. The effective dipole moment JL per square I JL I == neex/2mc, 
with ex = m J d2r j(r) X r; the ex we get is ~5·2x10-3. 

In this regard we note that we can imagine configurations of densities and 
Axe(r) within the continuum Lagrangian more closely related to the lattice 
models, i.e. the electrons are forced to occupy only a certain region of the unit 
cell. For example, consider unit cells where the electrons are totally excluded 
from some region in the centre of the square and further imagine that the Axe(r) 
mimics a uniform field B outside this region and a field B(r) inside this region, 
such that the total 'flux' J 2\1 X (Axe (r)) dS equals zero. This is not a chiral 
state, in that the Wilson loop is not proportional to the area (Halperin et al. 
1989; Rasolt and Vignale 1990). Nevertheless, if we take the limit of the excluded 
region to zero the electron outside this region would experience an environment 
'similar' to a uniform external magnetic field. Such states were not ruled out by 
Rasolt and Vignale (1990). However, the gauge field has specific requirements. 
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Fig. 2. The same as Fig. 1 but with m* 1m ~ 17 ·3, VI = -1·0 and V2 = -2·0. 
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For example, from equation (6b), 'V. (n(r) Axc(r») = 0 and furthermore, since 
the gauge field is a many body gauge field, j p (r) must equal the physical current 
j(r). In the above configuration this implies that just outside the excluded 
regions the electron velocities go to infinity; this is not possible. 

Next, there are other points of interest which we wish to address. An interacting 
version of (4) has been a subject of many recent publications, i.e. the Hubbard 
Hamiltonian 

(9) 

or the tJ model (Tomboulis 1992) which is a transformed version of (9). A wide 
range of broken symmetry ground states have been suggested (Anderson et al. 
1989). Obviously, the orbital antiferromagnetic configuration (Schulz 1989) and 
the 'chiral' configuration (Allieck and Marston 1987) are of particular relevance 
to this paper. Both have been understood to depend on Fermi surface nesting 
of (9); are the patterns of j(r) in Fig. 1 the continuum version of this, or are 
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they something new? Fermi surface nesting leads to doubling of the unit cell 
(Le. of the square). We increased the size of the super cell to four squares and 
found no change in our SBCCS of Fig. 1. It is then clear that this SBCCS is 
a new type of ground state generated by a new type of gauge field [equations 
(6) and (7)] appropriate to a continuum strongly-inhomogeneous electron gas. 
This state is actually closely related to SBCCS as suggested for the 3He A 
phase (Volovik 1984), heavy fermion superconductivity (Sigrist et al. 1989), and 
the anyon phase (Halperin et al. 1989). Concerning these states, we make the 
following observation. In these SBCCS a relation is suggested between jp(r) and 
nCr) given by jp(r) ~ V'n(r) X £ [£ is a unit vector perpendicular to the plane 
of current flow jp(r)]. However, the relation jp(r) ~ V'n(r) X £ is favoured with 
a local moment picture in mind (Volovik 1984). The SBCCS, however, has a 
global order which from our exact gauge structure is unlikely to sustain such a 
relation in any limiting range of the SBCCS. This can be argued using equation 
(10) of Vignale et al. (1992); details will be presented elsewhere. 

3. Conclusions 

We conclude with some experimental implications. The high-Tc superconducting 
materials LaCu04 and YIBa2Cu307 are naturally two-dimensional; even more 
so are their superlattice structures (Rasolt et al. 1991). However, our interest in 
SBCCS in those materials is probably preempted by a superconducting or antiferro­
magnetic transition at low temperature. It would be interesting, for example, to 
create artificial periodic insulating metallic-insulating heterojunctions (or quantum 
wells), or even insulating-doped semiconductors-insulating heterojunctions, with 
increasingly strong electron density variation in the conducting plane to look for 
this SBCCS. The experimental observations follow the same suggestions made for 
the search for the anyon state (Halperin et al. 1989). If the state is an orbital 
ferromagnetic from plane to plane, the magnetic moment per unit cell, although 
smaller (see Fig. 1) than the 15 G predicted in the anyon state, is still readily 
observable. For a distance of 30ao between planes, we calculate the induction 
to be B ~ 1· 0 G for Fig. 1 and B ~ 11· 5 G for Fig. 2. The other possibilities 
and subtleties in muons, neutron scattering, LEED and Faraday rotations are all 
equally applicable, but with considerably lower cross sections (see Halperin et 
al. 1989; Dzyloshinskii, unpublished). For example, for something like a high-Tc 
material we estimate the Faraday rotation to be ~1O-5-1O-3 radians per light 
wavelength, still within the sensitivity of the Stanford group (Spielman et al. 
1993). A preference for orbital antiferromagnetic alignment (Rojo and Canright 
1991) and its subtleties in optical measurement would also follow this SBCCS. 
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