
Aust. J. Phys., 1993, 46, 447-{)4 

Charge Fluctuations in High· Electron· Mobility 
Transistors: A Review* 

F. Green 

Division of Radiophysics, CSIRO, 
P.O. Box 76, Epping, N.S.W. 2121, Australia. 

Abstract 

The physics of high-electron-mobility transistors (HEMTs) plays a central role in contemporary 
design for millimetre-wave communications. HEMTs are the early fruits in a harvest of 
increasingly radical devices whose structural features are measured in nanometres. The 
operating principles of these devices are richly varied, and almost always far from classical. 
One of the tasks for device physics is to understand fluctuation phenomena, .or noise: the 
control of charge fluctuations is basic to high performance, yet the description of these processes 
remains incomplete if not obscure. This paper reviews some aspects of charge-transport noise 
that affect HEMT operation. 

1. Introduction 

In the last twenty years, revolutionary methods of materials fabrication at the 
atomic scale have been developed, with ramifications which are still not easy to 
envisage (Capasso 1990a,b; Corcoran 1990; Special Section, Science 1991). The 
prototype of these techniques, and one of the best-established for the GaAs family 
of semiconductors (the so-called III-V compounds), is molecular-beam epitaxy, 
or MBE (Foxon 1988; Wu et al. 1985). MBE makes possible the growth-atomic 
layer by atomic layer-of very pure, very uniform, precisely doped semiconductor 
composites, with exquisite control of the underlying band structure. At least in 
the world of electronics, epitaxial technologies such as MBE and its products 
represent the first manufacturing systems to rely on the design and forming of 
materials at a truly atomic scale. 

The desirable qualities of bulk GaAs as a substrate for high-frequency circuit 
applications have long been known (Brodsky 1990; Frensley 1987; Goronkin et al. 
1985). The GaAs band structure in particular, with its small electronic effective 
mass and its direct gap, overcomes the restrictions of earlier semiconductor 
technologies over a huge frequency band, stretching from direct-current to the 
visible. While the difficult processing chemistry of the III-V family militates 
against their large-scale adoption as bulk semiconductors, that disadvantage is 
now far outweighed by the unique electronic properties embodied in epitaxially 
grown structures . 
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The high-electron-mobility transistor, or HEMT, is already a bread-and-butter 
product of current MBE materials technology. (Two other acronyms, 'MODFET' 
and 'TEGFET', are also encountered in the literature.) HEMTs have inherently 
fast response times and low noise, which makes them ideal for millimetre-wave 
integrated circuit requirements (Archer 1992; Morkoc; 1991; Peart on and Shah 
1990). An obvious qualitative difference between the HEMT and its predecessor, 
the 'classical' bulk field-effect transistor, is the quantum confinement of majority 
carriers to a thin sheet within the semiconductor structure. The quasi-two­
dimensional carrier population, free to move within a near-perfect crystalline 
matrix, is the key to remarkable improvements in signal gain, current density 
and quiet operation. 

Current-fluctuation effects are central to all of these properties. Some of 
these are easily understood within linear-response theory, but other fluctuation 
phenomena are less tractable. In particular, nonequilibrium noise poses significant 
theoretical challenges, both descriptive and predictive. This paper examines a 
few of the basic physical issues which motivate device-noise theory. In Section 2 
the structure and operation of a HEMT are first reviewed. Simple examples of 
fluctuation-dominated behaviour are then discussed, with numerical illustrations. 
Next, Section 3 outlines the recent nonlinear fluctuation theory of Stanton and 
Wilkins (1987 a,b). Their idealised but exact approach helps to identify at least 
some of the complicated noise physics which can arise when carriers in GaAs-like 
conduction bands are subjected to high fields. Finally, Section 4 summarises the 
importance of understanding fluctuations in HEMTs as a prelude to under-standing 
the next generation of devices. 

2. Static Fluctuations: Charge Transfer 

High-mobility transistors are fabricated on single-crystal GaAs wafers by 
epitaxy, lithography, and selective etching. Fig. 1 shows the basic anatomy of 
a HEMT. For applications to millimetre-wave integrated circuits, the HEMT's 
planar layout is (with one exception) of relatively generous dimensions, namely 
fractions of a millimetre; the really delicate nanometre-scale structure in these 
devices is found in the epitaxially grown layers just below the surface. The 
single exceptionally narrow surface feature is the current-control electrode, or 
gate, whose length in the direction of current flow must be less than 0·2 J-Lm 
so that carrier transit times are short enough to cope with signal frequencies 
up to 100 GHz (Pearton and Shah 1990). We will turn to the issues of charge 
transport in the following Section. 

The first goal of HEMT design is to ensure a healthy population of mobile 
carriers within the quiescent device. The most important property of the carriers 
is that they are strongly confined by quantum effects to a thin ("-'15 nm) sheet 
buried within the epitaxial structure. Normally they are free to move only along 
this thin layer and not across it, like air bubbles trapped under an ice sheet. 
In effect, the carriers exist in a two-dimensional world. As in the familiar pn 
junction, the physical reason for charge segregation in a HEMT is the need to 
balance the Fermi level throughout a structure which is spatially nonuniform; the 
process is shown in Fig. 2. In heterojunction devices, the spatial inhomogeneity 
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Fig. 1. Anatomy of a HEMT. Metallic current-injection (source) and current­
collection (drain) pads are separated by an etched or recessed region, with a 
narrow control electrode (gate) to suppress or enhance conductivity via an applied 
biasing field. In the transverse direction, a high-purity GaAs substrate is overlaid 
by an epitaxially grown AIGaAs layer doped with Si. The abrupt AlGaAs/GaAs 
band-gap discontinuity promotes transfer and quantum confinement of donor 
electrons within a thin layer in the underlying GaAs. The trapped carriers remain 
highly mobile along the plane. Except for the gate length, planar dimensions are 
at the micrometre scale, transverse dimensions 100 times smaller. 
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is evident not just in the doping profile, but also in the local band structure of 
the host lattice. It is MBE which makes possible the large and sudden structural 
nonuniformities needed for a successful HEMT design. 

In practical high-mobility transistors, the majority carriers are electrons. 
Optimal configurations are those for which the largest possible number of 
electrons transfers from the Si donors on the high-band AIGaAs side to the 
undoped, low-band GaAs side of the heterojunction (Fig. 2b). To determine the 
equilibrium Fermi level and the fraction of electrons transferring from the AIGaAs 
into the conductive sheet on the GaAs side, one solves Poisson's equation for 
the local electrostatic potential induced in the neighbourhood of the junction. 
Poisson's equation is coupled self-consistently to Schrodinger's equation for the 
electrons, trapped by their own potential at the heterojunction itself. 

The coupled equations may be solved at various levels of sophistication. Having 
done this, one knows (i) the total electron density confined within the active 
channel in the GaAs, (ii) the strength of the self-confinement, and (iii) (by linear 
response analysis) the sensitivity to changes in the control voltage applied to the 
gate. 

The sensitivity, defined as the differential response to the gate voltage, is 
governed by the static density fluctuations in the active channel beneath the gate. 
This is not entirely surprising; the fluctuation-dissipation theorem (Martin 1968) 
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Fig. 2. Typical heterojunction band structure. (a) Conceptual alignment of 
conduction bands prior to formation of the confined electron population. Fermi 
level must become uniform throughout the inhomogeneous structure. (b) Actual 
band alignment; Fermi level uniform. Donor-bound electrons transfer either 
sacrificially to the gate-metal conduction band, or usefully to the quantum well at 
the AlGaAs/GaAs interface. The undoped AlGaAs layer next to the well boosts 
mobility by distancing carriers from ionised Si scatterers. The gate potential 4>(0), 
partly screened by intervening ionised donors, provides charge control. A signal 
applied at the gate displaces the local Fermi level and induces re-equilibration of 
the heterojunction. 

asserts that there is a one-to-one correspondence between density fluctuations at 
equilibrium and the system's response to a small external disturbance. 

Assume that the self-consistent problem has been solved for a given bias 
voltage Vg applied at the gate terminal. This means that we know the following 
parameters: the Fermi level EF; the local electrostatic potential p(z) as a function 
of depth z in the Si-doped A1GaAs layer; and finally the area density ns(EF) 
of electrons trapped in the thin conductive region. The situation is shown in 
Fig. 2b. 
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At the gate-metal/AlGaAs boundary (z = 0) we have the relation 

p(O) = Ps - qVg , (1) 

where Ps is the Schottky barrier energy (the work function for crossing the 
gate-metal/ AlGaAs interface) and -q Vg is the electronic potential due to the 
external bias. At the AlGaAs/GaAs interface (z = L) we have the boundary 
condition 

(2) 

where flEe is the difference between AlGaAs and GaAs conduction-band levels. 
This is one of the parameters fixed by the choice of alloy composition, and is 
typically "",0·25 e V. 

From equations (1) and (2) we can determine the change in EF with respect 
to a small change in the bias voltage: 

oEF OP(L) 
oVg = q OP(O) . (3) 

In principle the energy levels {Ej(ns)}~o in the quantum well (bound states and 
free) are known. Therefore the thermodynamics of the channel population are 
also known. The dependence of the energy levels on a thermodynamic variable, 
namely the density ns itself, follows from the self-generated nature of the trapping 
potential. 

The next task is to express the electron density as a function of the Fermi 
energy and to obtain its derivative. For a planar device with active area A, 
the transferred carrier population forms an open Fermi system with partition 
function Z(A, T, EF) (Pathria 1972). A little algebra allows us to write 

kBT 8lnZ 
n =-----

s - A 8EF 

00 

= D* L kBTln{l + exp([EF - Ej(ns)]/kBT)}. 
j=O 

(4) 

The parameter D* = m* /1fn 2 is the density of states for a two-dimensional 
conduction band with effective mass m*. For each level E j (ns ) quantised in the 
well perpendicular to the interface, there exists a band of freely conducting states 
along the interface plane. Parameter D* counts these states of planar motion, 
per unit 2D bandwidth per unit sample area. The jth term in the sum gives 
the bandwidth actually occupied at the jth level. 

We now vary both sides of equation (4): 

(5) 
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with Pj = {I + exp[Ej(ns ) - EFl/kBT} -1 being the relative probability that an 
electron belongs to the jth band in the quantum well. Two competing effects 
are thinly concealed within equation (5): thermal fluctuations in the electron 
population, and (as mentioned above) the self-consistency of electron trapping 
at the heterojunction. The latter effect is seen in the appearance of 8ns in the 
second term on the right-hand side of the equation. 

To display the fluctuation structure of equation (5), we need only associate 
the first term on its right-hand side with the standard definition (Pathria 1972) 
of the mean-squared fluctuation ((/::"'N)2) = ( (N - (N) )2) in the total particle 
number (N) = nsA, held within the active area under the gate: 

(/::"'Nn = kBT8(N) 
A - A 8EF 

00 

= kBTD*LPj. 
j=O 

Combining equations (5) and (6), we have 

(6) 

(7) 

Lastly, we connect this relation to the measurable sensitivity of the channel 
current to the gate-control voltage. In the limit of a small driving field [; between 
drain and source electrodes, the drain-to-source current Ids which crosses the 
gate region scales in a simple way with the carrier density ns , the device width 
W, and the mobility fL: 

(8) 

so that the transconductance (sensitivity) gm is 

= Mds = W [; 8nS 

gm - 811. q fL 811. 
g g 

(9) 

or, in a more convenient logarithmic form, 

(10) 

In this last equation, the two calculable factors which determine the transconductance 
have been teased out for emphasis. The first factor describes the effects of the 
carrier fluctuations in the GaAs channel, while the second factor describes the 
Debye screening of the gate potential, due to the partially ionised Si donors within 
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the AIGaAs layer. Screening attenuates the applied potential 4>(0), so that the 
potential actually felt by the 2D carriers at the heterojunction, 4>(L), is reduced 
in strength. 

The form of equation (7) makes clear how density fluctuations in the electron 
population directly affect the response of a HEMT. This must be so-quite 
generally-for any field-effect device, be it novel or not so novel (recall the 
fluctuation-dissipation theorem). However, in heterojunction structures, the 
self-consistent quantisation of the conducting states causes the denominator of 
equation (7) to exert a strong renormalising effect on the observable fluctuations, 
which otherwise would behave classically. The point is illustrated by comparing 
the calculated behaviour of various conceptual HEMT structures. For present 
purposes, the Poisson problem for the AIGaAs doping region (Fig. 2b) has been 
solved within a local Thomas-Fermi scheme, while the self-consistent potential 
for the quantum well at the AIGaAs/GaAs heterojunction has been approximated 
to lowest order by a ramp of constant slope. This simple approach suffices to 
illustrate the basic physics. 

Figs 3, 4 and 5 show three instances of static response behaviour in which density 
fluctuations and quantisation of the carrier states act in combination to determine 
the measurable outcome. Each set of figures presents the response and related 
quantities as functions of the total voltage at the gate pad [-Vbias = 4>(0) / q]. 
Part a of each figure shows the transconductance 9m and its two governing factors, 
8ns /8EF and 84>(L)/84>(0), while part b shows details of the density fluctuations. 

In the first example, Fig. 3, quantisation of the level structure for the 
confined electrons has been suppressed artificially: {Ej (ns)} ~o is replaced with 
its continuum analogue. We look first at Fig. 3a. Its most notable feature 
is the pronounced maximum in the transconductance. This contrasts with 9m 
profiles for conventional field-effect transistors having homogeneous bulk band 
structures, where both the carrier densities and their fluctuations have a classical 
form which decays monotonically as the gate voltage is made more negative. 
In heterojunctions, the peaked form of 9m arises because the carrier population 
in the GaAs, though initially large (",1012 cm-2 ), is screened from the gate 
voltage by the partially ionised Si donors in the intervening AIGaAs layer. As 
more electrons are stripped from the donors, the screening length for the charge 
distribution in the AIGaAs layer becomes comparable to the AIGaAs thickness. 
The carrier population in the GaAs is no longer isolated from the gate potential, 
and its Fermi level begins to drop rapidly. 

It can be seen, then, that the first distinguishing property of response in HEMTs 
is the characteristic transconductance peak. This depends in the first place on 
the physics of charge depletion in the donor layer, not explicitly on quantisation. 
With current MBE technology, it is not too hard to obtain transconductances 
on the order of 1000 mS mm-I, exceeding by several factors the best results for 
bulk GaAs devices. 

The solid line in Fig. 3b shows the bare fluctuation ((6.N)2) / (N) [equation 
(6)], normalised to the mean carrier population. The dot-dashed line shows the 
channel density ns in units of D*kBT [see equation (4)]. It can be shown that 
a classical population confined by a triangular potential has ns ex exp(EF/2ksT) 
after integrating over the spectral 'continuum'; there is no explicit quantisation 
correction as seen in equation (7). Consequently, for our (artificial) classical 
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Fig. 3. Static HEMT response as a function of gate voltage, carrier quantisation suppressed. 
Inset shows shape of AlGaAs/GaAs well. (a) Solid line: dimensionless transconductance 
n*-l(ons/oiP(O)) (see Section 2), magnified twentyfold. Dot-dashed line: dimensionless 
fluctuation factor n*-l(ons/oEF)' Dashed line: Debye attenuation factor oiP(L)/oiP(O). Note 
the distinctive transconductance peak when Debye screening no longer shields the carrier 
population from the gate potential. (b) Channel density and its fluctuations in dimensionless 
units. Solid line displays fractional fluctuation. Dot-dashed line: channel density ns in 
units of n*kBT. Beyond the 'pinchoff' voltage, 1·3 V, channel is depleted and fractional 
fluctuation goes classically to 1/2. Details of epitaxial structure: Alo· 2Gao· 8As/GaAs with 
20 11m undoped AlGaAs below the gate metal, 20 nm AlGaAs Si-doped at 1018 cm-3 , 211m 
undoped AlGaAs, then GaAs. Temperature is 300 K. 

system, (( 6.N)2) / ( N) = ~. (The slight deviation from this value at small 
Vbias is due to Fermi-Dirac statistics.) This behaviour establishes a benchmark 
for the more realistic examples which we now discuss. 
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Fig. 4. Static HEMT response for AlGaAs/GaAs heterojunction, quantisation included. 
Inset shows shape of AlGaAs/GaAs well. Epitaxial parameters and graphical legends as for 
Fig. 3. (a) Quantisation depresses fluctuation factor, but Debye factor is enhanced. Overall 
transconductance is not greatly reduced. (b) Solid line shows self-consistently renormalised 
fractional fluctuations [see equation (7)]; dashed line shows bare fluctuations. At pinchoff, 
fractional fluctuation goes over to classical limit as in Fig. 3b. 

Fig. 4a shows 9m and its two factors for a standard AlGaAs/GaAs HEMT 
structure, with bound-state quantisation now properly included. We note 
immediately that the fluctuation factor (dot-dashed line) is strongly suppressed 
in comparison with Fig. 3a. The transconductance, however, is not too much 
degraded because the Debye screening factor 8iP( L) / 8iP( 0) (dashed line) increases 
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faster than before. Fig. 4b is more interesting; here the bare fluctuation term is 
shown by the dashed line, while the solid line now shows its dressed counterpart 
[equation (7)]. Recalling that the difference between these forms exists only when 
there are discrete bound-state levels in the spectrum {Ej (ns)} ~o, the conceptual 
and quantitative importance of the latter is clear. As the gate potential becomes 
strong enough to deplete the active GaAs channel, the bound states again merge 
with the continuum. Beyond 1· 3 V the density becomes asymptotically classical, 
and we regain the high-potential behaviour seen in Fig. 3a (at least within the 
present simplified treatment). 

The power of epitaxial technology springs from the variety and flexibility 
in control of band-structure parameters. Our last example, Fig. 5, shows just 
one option for enhancing the transconductance, namely tailoring the density 
fluctuations by setting up a different quantum well structure. In the present 
case a 15 nm layer of InGaAs alloy is interposed between the underlying GaAs 
substrate and the AIGaAs layer. The AIGaAs specification is unchanged. InGaAs 
has a smaller band gap than GaAs. An AIGaAsjInGaAsjGaAs composite 
thus has a wider conduction-band discontinuity, and quantisation of the carrier 
states becomes even stronger than for the AIGaAsjGaAs configuration in Fig. 4. 
The result can be seen in Fig. 5a, where the maximum in gm is not only 
higher but sustained over a wider voltage range. Comparison with Fig. 4a 
shows that this is due in part to a ",50% enhancement of the fluctuation 
parameter 8ns j8EF . In Fig. 5b we see that the saturated carrier population 
of the 'pseudomorphic' InGaAs well is twice that for GaAs. Looking at the 
relative density fluctuations-bare and dressed-in the same figure, we see 
that initially they behave similarly in InGaAs as they do in GaAs. This 
is because the energy-level spectrum is dominated by its density dependence 
when the density is high; the band jump at the InGaAsjGaAs boundary is 
small compared with the self-consistent potential. The fluctuations in each well 
act quite differently, however, as the bias voltage depletes the channel. The 
self-consistent potential quickly dies and the InGaAs well reverts to its original 
rectangular shape, so that its bound-state spectrum does not collapse with the 
density. Because the density dependence is rapidly lost, the asymptotic limit 
for the fluctuations in InGaAs is ((!:::..N)2) j (N) rv 1 rather than ~ as in the 
GaAs well, where the wedge-shaped potential depends more persistently on the 
density. The practical importance of the pseudomorphic approach is that not 
only does the overall carrier density surpass by a healthy factor that in a 
standard GaAs heterojunction, but the response is also enhanced by stronger 
fluctuations throughout the whole density range. As a bonus the electron 
mobility is improved as well, thanks to the lower effective electron mass in 
InGaAs. 

Another way of enhancing sensitivity is to grow donor-layer structures with 
very strong spatial modulation of the doping profile; this is a technique for 
tailoring the screening function 8<P(L)j8<P(0), the other determining factor for gm. 
Systematic evaluation of this design path, in combination with InGaAs wells, is 
central to current research but outside the scope of this review. Nevertheless, 
the examples presented above encapsulate basic physical principles of MBE-based 
device design. We now look briefly at the more dramatic, and problematic, 
dynamical properties. 
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Fig. 5. Static HEMT response for pseudomorphic heterojunction. Inset shows shape of 
AIGaAs/GaAs/InGaAs well. AIGaAs structure as for Fig. 4. Quantum well is 15 nm 
InO·15Gao·S5AS. (a) Transconductance peak is higher and wider as stronger confinement 
boosts channel density and fluctuations. (b) In the pinchoff limit fractional fluctuations go to 
1, not !, because InGaAs bound-state spectrum does not collapse with density. 

3. Dynamic Fluctuations: High-Field Transport 

HEMTs are three-terminal devices. In the previous Section we relegated the 
drain-to-source driving field £ to a small influence, in order to simplify the 
discussion of the gate-control transconductance. In working devices, potentials of a 
few volts are typically applied from drain to source, eliciting high current densities 
(up to 1 A per mm of channel width), and inducing voltage gradients as high as 
100 kV cm-1 in the region underlying the narrow gate. Highly localised gradients 



458 F. Green 

of this magnitude are inaccessible to direct measurement; their existence must 
be inferred from elaborate device simulations. But the very problem of setting 
up a reliable transport model consists in capturing the nature and consequences 
of these strong spatial and temporal transients. The fact that one is dealing 
with strongly coupled electron and phonon populations far from equilibrium is 
one reason why 'hot-electron' physics requires powerful tools from the theoretical 
repertoire (Frensley 1990; Jacoboni and Lugli 1989; Reggiani 1985), and why 
it can be theoretically exciting. Another reason is that heterojunction devices 
behave classically in the plane and quantally in the transverse direction (although 
this neat decoupling is blurred at high fields); thus HEMTs provide one platform 
for examining phenomena at the border between macro- and mesoscopic physics. 

A vast established body of work exists in the field of nonequilibrium device 
physics (for a succinct technical review see Stern 1987). While much crucial design 
information comes from careful Monte Carlo modelling (see e.g. Jacoboni and 
Lugli 1989), it remains necessary to find a relatively uncluttered understanding 
of what goes on in these devices. This is especially true of fluctuations and 
noise at high fields. Therefore, as always, there is an important role for idealised 
but well-controlled models of high-field processes. We now examine one such 
approach (Stanton and Wilkins 1987a,b). 

The recent work of Stanton and Wilkins looks at nonequilibrium current noise 
by generating rigorous solutions for the time-dependent correlation functions of 
the Boltzmann equation for III-V conduction bands. They extend the usual 
relaxation-time phenomenology for collisional effects. Within this phenomenology 
they follow the exact consequences for current noise at arbitrarily large fields 
E. It is a semiclassical, dynamic, nonequilibrium single-particle theory of velocity 
fluctuations. Their work is complementary to the quantum, static, equilibrium 
many-particle description of density fluctuations reviewed in Section 2. The merits 
of the Stanton-Wilkins study are that it is clear, tractable, and still general 
enough to simulate the major processes in hot-electron transport. Three effects 
are reviewed here: field-induced electron heating, nonparabolic conduction bands, 
and inter-valley scattering. All examples are taken from the two references by 
Stanton and Wilkins. 

Fig. 6 shows the noise-power characteristic and velocity-field curve for bulk GaAs 
as functions of uniform electric field in a constant-relaxation-time approximation­
the simplest assumption. The velocity-field relation corresponds to v = p.,E, with 
the relaxation time TO related to the mobility p., by TO = m*p.,jq. At larger field 
values we note from Fig. 6 how the noise power rapidly exceeds its quiescent 
equilibrium value (defined by the Nyquist formula). The threshold field for this 
rise is ",5 k V cm -1 in typical GaAs material. 

One can describe this noise behaviour as an increase in effective temperature, 
recalling that noise is a measure of temperature in the familiar equilibrium 
picture. The accelerated electrons pick up energy from the driving field faster 
than relaxation processes can dissipate the excess to the surroundings. The 
carriers' velocity distribution function becomes skewed towards higher values and 
broadens. Since the broadening is essentially a measure of velocity fluctuations 
in the hot-electron population, this leads to an enhanced noise characteristic. 

Within this model of nonequilibrium transport, electrons in a HEMT channel 
would display a rising temperature profile as they traversed the high-field region 
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Fig. 6. Nonequilibrium electron heating: electron drift velocity and zero-frequency noise 
power in constant-relaxation-time approximation, taken from Stanton and Wilkins (1987a). 
Velocity is in units of classical thermal velocity. Noise power is in units of the equilibrium 
Nyquist value. 

just under the gate. One might then expect more, not less, current noise when 
the device was driven hard. The fact that HEMTs are so remarkably quiet in 
operation shows that things are not as simple as that. The second example, 
Fig. 7, displays the effects of a nonparabolic band on velocity fluctuations. Away 
from the centre of the Brillouin zone, GaAs-like conduction bands depart from 
their quadratic energy dispersion to a form better approximated by (Stanton and 
Wilkins 1987 a) 

(11) 

The nonparabolicity parameter a is in the range 0·5-1· 0 e V-I, and causes 
the energy dispersion to be asymptotically linear for large electron wavevectors 
k. Fig. 7 a shows that the electron drift velocity in such a band saturates 
in the high-field limit. With a constant relaxation time as before, the noise 
power (Fig. 7b) now behaves very differently, with strong suppression at large 
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Fig. 7. Nonparabolic-band effects on drift and noise, from Stanton and Wilkins (1987a); 
where a is the nonparabolicity parameter [see equation (l)J. (a) Drift velocity saturates at 
high fields because conduction-band group velocity is constant at large electron momenta. 
(b) Velocity fluctuations are strongly suppressed since group velocity is the same for all 
high-momentum states in the band. 
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fields. The reason for this surpnsmg behaviour is that the linear dependence 
of the nonparabolic band energy E(k) at large k leads to a weak k-dependence 
of the group velocity. It follows that deviations from the average drift velocity 
are necessarily small in the large-momentum region, where the group velocity is 
virtually a constant and where-under the influence of a large field-one finds 
the largest contribution to ensemble averages. 

2 

r 
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k 

e(k) 

L 

1t 

a 

Fig. 8. Schematic plot of energy dispersion in the GaAs conduction band. At small momenta, 
electrons in the central r valley have small effective mass. Near the zone boundary, electrons 
in side valleys (e.g. L) are ~1 eV above r and have a much larger effective mass. The r-to-L 
transitions are dominant at high fields, leading to velocity overshoot. 

We have seen two counteracting effects on nonequilibrium carrier noise in 
an idealised system driven by large potential gradients. The final example 
from Stanton and Wilkins addresses the important phenomenon of inter-valley 
scattering. Fig. 8 shows the general shape of a GaAs-like conduction band. We 
see that a large enough transfer of energy and momentum-easily reached in 
the active region of a HEMT -will take an electron from the central r valley 
to a peripheral L valley (with a nonparabolic domain in between). The L-valley 
effective mass is almost an order of magnitude greater than the r-valley mass, 
so that an electron thus displaced in the Brillouin zone suddenly acquires a 
much smaller group velocity. This accounts for the characteristic overshoot in 
the velocity-field curve, Fig. 9a: beyond the threshold field at which a r-to-L 
transition can take place, the carrier drift velocity falls dramatically. Most 
electrons crossing the active region of an operating HEMT are driven into this 
state. 

Once promoted to the L valley, electrons have a short lifetime (,,-,10-14 s) and 
shed their excess energy by optical-phonon emission or otherwise. The overall 
relaxation time is sensitive to the details of inter-valley scattering channels, 
selection rules, reduced dimensionality (as in a HEMT), etc. The most interesting 
point here (Stanton and Wilkins 1987b) is that the velocity-field relation, Fig. 9a, 
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Fig. 9. Effects of inter-valley scattering, from Stanton and Wilkins (1987b). 
(a) Drift velocity shows overshoot when driving field imparts enough energy to 
promote an electron to a side valley with much reduced mobility. Inter-valley 
scattering rate does not much affect the v-£ relation. (b) Noise power is very 
sensitive to scattering rate. Dots are experimental data; see above reference for 
details. 

is not at all sensitive to changes in the scattering rate, while by contrast the 
noise-versus-field relation, Fig. 9b, is extremely sensitive to the scattering rate. 

For the microscopic description of high-field noise performance, the evidence of 
Fig. 9 carries a wider and more powerful message: it constrains any attempt to 
link drift velocity (a steady-state quantity) to noise (a fluctuation) by a too-simple 
phenomenology, guided perhaps by linear-response theorems which do not apply 
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at large fields. The Stanton and Wilkins result dramatically restates the principle 
that there is no valid way to go from knowledge of an average property alone, 
to knowledge of random deviations from that average. Even in linear-response 
theory one must first calculate the fluctuations and then look for a simpler 
connection with the steady-state average. It is sometimes tempting to turn this 
principle on its head, given all the additional demands of practical HEMT-based 
circuit design; but convenient rules of thumb may totally misrepresent important 
physical processes. 

4. Summary: Issues in Device Modelling 

In Section 2 we saw that the process of understanding and optimising the 
static response of heterojunction devices is intimately connected with density 
fluctuations. This is an area in which systematic theoretical improvements are 
reasonably straightforward; it is, however, only the lowest in a progression of 
theoretical plateaux. In Section 3 we visited the next level, that of dynamical 
fluctuations for high-field transport, where the degree of complexity is high (even 
in a semiclassical context) and cannot be ignored safely without misrepresenting 
important effects. 

A thorny and recurrent issue in this branch of device physics is the valid 
description of populations in open quantum systems (e.g. confined carriers in a 
HEMT) when they couple strongly to their environment. In particular, it remains 
difficult in practice to marry the one-dimensional quantum-well description of 
a HEMT to two-dimensional current flow in the plane. In actual operating 
conditions, local inhomogeneities develop in the Fermi-level, velocity, and field 
profiles within the active channel. These non-uniformities are on a length scale of 
tens of nanometres, comparable to the dimensions of the epitaxial structure, so 
that it becomes impossible to resolve the total picture neatly into a confinement 
part and a transport part. Even in heavily computational (e.g. Monte Carlo) 
approaches, there are conceptual difficulties in specifying boundary conditions, 
good quantum numbers, and so on. 

Beyond the problems of mesoscale systems in high fields lie the novel questions 
posed by yet smaller-scale systems of a few elementary units (Capasso 1990b), 
in configurations too delicate to be treated in the usual thermodynamic limit. 
Instances are quantum wires, quantum dots and molecular entities such as C60 . 

These are certainly open systems but more strongly quantised than the electrons 
in a HEMT; extended quantum-coherence effects provide a new physical setting 
and a new class of operating principles. The next generation of nano-fabricated 
devices can still benefit from HEMT theory to the extent that it provides 
exposure to the technicalities of irreversibility, strong coupling to heat baths, 
intense external gradients, very short transients (important for high-frequency 
phenomena), and also in some degree to the fuzzy intersection between classical 
and quantum regimes. 

Finally, a tenable view of epitaxially grown heterojunction technology is that 
much is already known and much has been attempted towards practical solutions 
to design problems for low-dimensional devices, but that much remains to be 
done if we are ever to gather a large and valuable menagerie of special-purpose 
tools into a consistent taxonomy. 
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