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Abstract 

The lattice dynamics of YBa2Cu306+x with partially filled 0(4) sites is investigated using a 
supercell method. The model used is the lattice-dynamical shell model, which incorporates the 
short-range interactions and the long-range Coulomb potential as well as the polarisabilities 
of ions. Varying the oxygen content produces small changes throughout the spectrum of 
normal modes, as well as major changes in those modes with large 0(4) amplitudes. Selected 
phonon dispersion curves are presented, with emphasis on the variation of frequency with 
oxygen concentration. The nature of new modes, which appear with an increase in oxygen 
concentration, is investigated. The overall phonon density of states is also presented. 

1. Introduction 

Since the discovery of high- T c superconductivity in the Y -Ba-Cu-O materials, 
the lattice dynamics of both the superconducting YBa2Cu307 and semiconducting 
YBa2Cu306 have been the focus of much work. Many experiments using Raman 
scattering (e.g. McCarty et al. 1990) and infrared absorption (e.g. Genzel et 
al. 1989) have been carried out to probe the k = 0 modes of these systems. 
Neutron scattering methods have been used to measure the phonon density of 
states (Renker et al. 1988a, 1988b) and phonon dispersion curves (Pintschovius 
1990; Pintschovius et al. 1991). Lattice-dynamical model calculations have been 
reported by many workers (Kress et al. 1988; Yasuda and Mase 1989; Yim et 
al. 1992). Much of the early work has been reviewed by Feile (1989). 

To date, theoretical calculations have considered only the limiting structures, 
viz. x = 0 and x = 1. Most experimental studies have also focused on these two 
structures, or other structures with x values close to them, since the oxygen 
concentration and distribution cannot be monitored precisely. However, there 
is also considerable interest in intermediate values of the oxygen concentration, 
o < x < 1. For example, it is well known that the curve of the superconducting 
transition temperature T c versus x shows a plateau at x ~ 0·5, and it has been 
conjectured that this is related to the oxygen ordering in the 0(4) sites. (See 
Fig. 1 for the ion labelling.) Experiments have revealed the possible existence of 
a number of stable ordered phases (Van Tendeloo et al. 1987; Zeiske et al. 1992). 
and these have been extensively modelled using phenomenological lattice-gas 
models (de Fontaine et al. 1987; Aukrust et al. 1990; Burdett 1992; Aligia et al. 
1992). 
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Fig. 1. Conventional unit cell of YBa2Cu3 07. Also shown are the vertical sheets of ions in 
the cell. 

Some Raman and infrared studies have also been performed on 'YBa2Cu306+x 
with intermediate values of x (e.g. Blumberg et al. 1989; Burns et ai. 1991; 
Echegut et ai. 1989; Crawford et ai. 1988; Morioka et ai. 1989). The behaviour 
of the k = 0 normal modes with respect to oxygen content, in particular the 
;\g Raman modes, has been studied rather thoroughly. The frequencies and 
intensities of some modes are found to vary considerably with oxygen content. 
Nevertheless, the experimental work for intermediate x is less comprehensive than 
that for the two limiting structures. Moreover, no theoretical studies have been 
reported on the lattice dynamics of the intermediate-x materials. 
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Fig. 2. Structures of the IC and BC phases, showing the plane of the Cu-O chains. The 
filled circles represent the filled 0(4) sites, while the open circles represent vacancy sites. The 
rectangles represent the supercells. 
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Motivated by this, we have undertaken a series of theoretical studies of 
the lattice vibrations in the YBa2CU306+x systems with intermediate oxygen 
concentrations. An immediate difficulty is that in the real systems the distribution 
of oxygens will certainly be non-uniform, and hence impossible to model. In our 
calculations we must assume that the oxygen distribution is uniform and periodic 
in the CU(1)-O(4) chain, allowing the use of a large unit cell, or 'supercell', which 
is repeated periodically. In addition we ignore any possible vacancies forming in 
other oxygen sites (Jorgensen et al. 1990). While this makes comparison with the 
existing experimental results difficult, we believe that our results, and particularly 
the trends observed with a variation of x, are useful for understanding these 
materials. 

2. Model and Method 

Methods 

In the study of non-stoichiometric crystals, two different approaches are 
available. One is the mean-field or 'effective-atom' approach, in which the site 
with fractional occupation is treated as having a fictitious atom of reduced mass 
and force constants in every unit cell in the whole crystal. In our case this means 
that all the 0(4) sites along the Cu(1)-O(4) chains are occupied by fictitious 
atoms. The strengths of interaction between the fictitious oxygen and other 
constituents of the crystal are scaled from the full strengths by a factor related 
to the occupation probability of the sites. Such a mean-field approach, though it 
will almost certainly give a good qualitative description of the system, has one 
serious shortfall-it blurs out any ordering of the fractionally occupied sites, which 
might otherwise exist in the system. Hence, no information on properties related 
to the ordering can be unambiguously obtained using this method. Since there is 
at least partial ordering of oxygens in the Cu-O chains of YBa2Cu306+x, except 
at very high temperature, the mean-field approach will not be so appropriate. 

The alternative approach is the supercell method, which we employ in our 
present work. In this method, instead of considering fictitious atoms in every 
single unit cell, a number of unit cells are taken to form a supercell with some 
unfilled oxygen sites along the chain. Thus we can consider structures with 
different oxygen stoichiometries and ordering, provided they possess some overall 
periodicity. In the present paper we study structures with x = 0, 0·25, 0·50, 
0·75 and 1· 00. For each value of x, two phases are investigated: the intact chain 
phase and the broken chain phase, designated IC and BC phases respectively. To 
form the fractional x structures in the IC phases, complete chains of 0(4) oxygens 
are removed, while in the BC phases the Cu-O chains are broken by removing 
selected 0(4) oxygens within every chain (see Fig. 2 for their structures). The 
space group symmetry of all the structures with fractional x is D~h(Pmmm). 

Calculation 

To study systems with x = 0·25 and 0·75 we require a superceU which is 
four times the size of the conventional unit cell. This is the minimum size for 
the supercell for which the above two systems can be modelled. For the IC 
phases this supercell takes the form (4ax1bxlc), where a, b, c represent the usual 
lattice parameters. For the BC phases the supercell has the form (lax4bx1c). 
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For x = 0·5 a supercell of the form (2ax1bx1c) or (lax2bx1c) could be used. 
However, to compare the calculated phonon dispersion curves for different values 
of x, it is most convenient to use the same supercell for all x. Thus in this manner 
(with reference to Fig. 2) the supercells for x = 0·25, 0·75 are by themselves 
primitive unit cells but the supercells for x = 0, 0·50 and 1· 0 are non-primitive 
unit cells. There are four primitive unit cells in the supercells for x = 0, 1·0 and 
two primitive unit cells for x = 0·50. 

Since the number of ions in a unit cell has now increased (48 for x = 0 to 52 
for x = 1, compared with 12 and 13 for the corresponding x in the conventional 
unit cell), the size of the dynamical matrix is now much greater. This does 
not pose a serious problem because many of the matrix elements are related 
by symmetry even for fractional-x structures. However, the number of phonon 
modes at each q has increased fourfold. This complicates the analysis and the 
comparison between phonon structures of different x. 

The new Brillouin zone is four times smaller than the conventional one. It 
can be obtained by folding the conventional Brillouin zone in the same direction 
as that in which the unit cell is increased. This is illustrated in the Appendix in 
terms of a two-dimensional model. A consequence of this folding is that different 
q values in the original Brillouin zone, and the phonon modes belonging to these 
q, are mapped onto the same point in the reduced Brillouin zone. This folding 
generates some symmetry-related problems. For x = 0·25 and 0·75 the supercells 
are primitive and their Brillouin zones are the conventional ones. Hence for these 
two structures the symmetries of all the phonon modes of any interior q point 
in the Brillouin zone are unique, and only the symmetries of the zone-boundary 
modes are origin-dependent (Cornwell 1971). However, for x = 0, 0·5, 1·0, the 
supercells are non-primitive and their Brillouin zones are the reduced ones. Some 
of the zone-boundary modes from the conventional Brillouin zone are mapped 
onto the interior of the reduced Brillouin zone. The symmetry classification for 
these zone-boundary modes are origin-dependent, irrespective of their positions 
in the reduced Brillouin zone and the choice of the unit cell. 

In our calculations the choice of the origin is the 0(4) sites because these 
positions possess the full point group symmetry for each value of x. For x = 0 
and 1· 0 all the 0(4) sites are equivalent because for x = 0 they are all vacant 
and for x = 1· 0 they are all filled. Hence choosing the origin at any of the 0 ( 4) 
sites will give the same symmetry classification for the phonon modes of any q. 
For x = 0·50 the origin can be on a filled 0(4) site or on a vacant 0(4) site. 
These choices will result in a different symmetry classification for phonon modes 
originating from the zone boundary. The complete set of dispersion curves is 
however, independent of the choice of origin. 

Model 

The lattice-dynamical model that we use is the well-known shell model. 
It incorporates short-range overlap forces, long-range Coulomb forces and the 
polaris abilities of ions in the crystal lattice. The polarisability of an ion is related 
to the shell charges and core-shell spring constants of the ions. A detailed 
description of the form of shell model we are using can be found in our previous 
work (Yim et al. 1992). We do not include screening in the present model as we 



540 K. K. Yim et al. 

found previously that even for the YBa2Cu307 system a reasonable description 
is possible without screening. 

Table 1. Selected shell-model parameters for YBa2CUgOa and YBa2Cug07 

Only parameters which are different from those in our previous work (Yim et al. 1992) are 
tabulated. For YBa2Cu306 the unchanged parameters correspond to those of Modell and 

for YBMCu307 those of the unscreened shell-model (Model 2) in our previous work. 

0(4) 

Ions-Ions 

Cu(1)-0(4) 
0(1)-0(4) 
Ba-O(l) 

Cu(l) 
0(1) 

Ba 
0(2,3) 
0(4) 

Shell charges (e) 
Previous New 

4·48 
-3·24 

3·68 
-3·00 

Ionic charges (e) 
Previous New 

1·85 
-1·80 
-1·65 

1·775 
-1·775 
-1·600 

Core-shell spring constants (e2/Va) (kpcrp kbond kz) 
Previous New 

(496 1003 496) (396 unchanged 396) 

A 

350·0 
-5·5 
90·5 

Short-range force constants (e 2 /2va) 
Previous New 

B 

-40·0 
4·0 

-6·0 

A 

Unchanged 
Unchanged 

89·0 

A 

-20·0 
5·0 

-7·0 

The shell-model parameters that we use in our present work are based on 
those obtained previously (Yim et al. 1992) using a least-squares fitting to the 
inelastic neutron data for YBa2Cu306 (Pintschovius 1990; Pintschovius et al. 
1991). Our initial parameter set for the two limiting structures of YBa2CU306+x 
(x = 0, 1) was that of Modell in our previous paper. However, for the present 
work some fine tuning of these parameter values is necessary in order that the 
parameter sets of the fractional-x structures, which are obtained via a consistent 
interpolation scheme, are free from phonon instabilities. The x = 0·25 structures 
seem particularly prone to instabilities. The adjustments to the model parameters 
are given in Table 1. We retain as many as possible of the model parameters 
of the previous work, especially for YBa2Cu306, because they were obtained 
on the basis of a systematic least-squares analysis. The major changes in the 
parameters are those of the Cu(1)-0(4) chain, as one would have expected, since 
this part of the crystal is changing as we vary x. The new magnitudes of the 
shell charges of Cu(l) and 0(1) for YBa2Cu306 have been reduced considerably 
in comparison with their initial values. Other modifications to the parameters, in 
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particular those of 0(2) and 0(3) in YBa2Cu307, are necessary to balance the 
changes in the parameters of 0(4) in order to maintain a reasonably good fit to 
the experimental phonon data of YBa2Cu307 (Pintschovius 1990; Pintschovius 
et ai. 1991). 

In the calculations for other values of x (= 0·25, 0·50 and 0·75) the short­
range force constants, the shell charges and the core-shell spring constants are 
interpolated from those of the two limiting structures (x = 0,1) on the assumption 
that they vary linearly with the oxygen content. The lattice constants a, b, c and 
the atomic positions of the ions in these structures are also obtained through 
linear interpolation. In doing so we have ignored the structural anomalies (Cava 
et ai. 1990) at 0·30 < x < 0·45, which would require an equally abrupt change 
to the model parameters and would further complicate the calculations. Phases 
with x ::::: 0·5 are assumed to have a tetragonal structure in which the average of a 
and b is used as the single-cell lattice parameters for the x and y directions. The 
corresponding atomic coordinates, short-range force constants and the core-shell 
spring constants are also averaged in this way. 

The problem of ionic charges in the non-stoichiometric systems is more 
complicated. We need a method of varying the ionic charges systematically in 
response to oxygen removal, which at the same time can fulfil the requirement of 
charge neutrality. The way we resolve this is by considering the Y-Ba-Cu-O crystal 
to be made of vertical sheets of ions (see Fig. 1). The sheets are parallel to the 
Cu(l)-O( 4) chains in the IC phases and perpendicular in the BC phases. If a sheet 
has the environment of YBa2Cu307 then we assign the charges of ions on the sheet 
with the ionic charges ofYBa2Cu307, and likewise for the YBa2Cu306 environment. 
However, if the sheet is in an environment intermediate between YBa2Cu307 and 
YBa2Cu306, then an ion on the sheet will take the average ionic charge of the 
two. In this way the charge neutrality requirement will always be maintained. 

3. Results and Discussion 

The model and method described above were used to determine the phonon 
dispersion curves for x = 0, 0·25, 0·50, 0·75 and 1· 00 for both the IC and BC 
phases. The overall results are shown in Figs 3-6. Fig. 3 shows the dispersion 
curves for the IC phase with q in the [100] direction. The phonon modes are 
classified according to their symmetries. Note that for x = 0, 0·5 and 1· 0 there 
are degeneracies within the Brillouin zone due to crossing of dispersion curves. 
This is due to the folding of the original Brillouin zone (see the Appendix). For 
the same reason degeneracies exist at the zone centre and the zone boundary for 
x = 0 and 1· O. These degeneracies are lifted for x = 0·25, o· 75~for in these 
cases the Brillouin zone is the primitive one. Fig. 4 shows similar results for 
the BC phase with q in the [010] direction. Fig. 5 gives the dispersion curves 
for the IC phase with q in the [001] direction. In this direction two sets of 
dispersion curves (labelled V and F) are presented for x = 0·50 because the 
symmetry classification of some phonon modes is now dependent on the choice 
of origin as discussed earlier. The set V is obtained with the origin at a vacant 
0(4) site, while the set F is obtained with the origin at a filled site. Fig. 6 
shows similar results for the BC phase, with q in the [100] direction. Note that 
for Figs 3 and 4 the dispersion curves are folded onto themselves (self-folding), 
but for Figs 5 and 6 this is no longer the case (see the Appendix). 
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Fig. 3. Dispersion curves of YBa2CU306+x for IC phase with q in the [100J direction. The 
diamond indicates the disappearance of branches. 
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Fig. 4. Dispersion curves of YBa2Cu306+x for BC phase with q in the [010] direction. The 
diamond indicates the disappearance of branches. 
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Because of the large number and complex structure of the phonon dispersion 
branches it is difficult to draw conclusions from Figs 3-6. However, the following 
overall features can be observed. 

(1) The high-energy modes at ",19 THz (",600 cm- l ) generally show a 
hardening with the removal of oxygen. 

(2) The modes at 10·5 THz (",350 cm- l ) show a softening with the removal 
of oxygen. 

(3) For most branches the overall frequency changes are small, but certain 
modes have significant shifts. Most of the energy shifts are linear with 
respect to oxygen removal. 

In the discussion below we will focus on these points and attempt to give a 
physical interpretation of the effects. 

It should be noted that in general there is no simple one-to-one correspondence 
between modes for different values of x. Although some modes involve predominantly 
the motion of one or a few ions, most involve substantial motion of all the ions. 
Thus as the structure is changed by the removal of oxygen, the character of the 
modes also changes. One clear instance of this is the disappearance of modes as 
oxygens are removed. In our supercell calculation three branches are lost at each 
q for every removal of one oxygen (corresponding to a decrease of D..x = 0·25). 

We consider the case of q in the [100] direction of the IC phase shown in Fig. 3. 
For each change of D..x = 0·25 one dispersion branch branch of each symmetry 
L11 , L13 , L14 vanishes. The regions where these disappearances occur are labelled 
by the diamond. The simplest case is the group of L13 branches at ",13·5 THz 
(",450 cm- l ), which are well separated from other modes of the same symmetry. 
These modes involve predominantly motion of the 0(4) ions (the chain oxygens) in 
the direction of the chain (the b direction) with some counter motion of the Cu(l) 
and 0(1) ions. In Fig. 7 we show the atomic displacement of this CU04 group for 
all these modes at the point q = O. For YBa2Cu307 (column 1) the four modes 
originate from a single branch of the conventional Brillouin zone. The highest 
frequency mode is a true q = 0 mode with neighbouring chains vibrating in phase. 
The two degenerate modes come from q = (±i, 0, 0) in the conventional zone 
and thus have a phase difference of 1T /2 between neighbouring chains. In Fig. 7 
we show a particular choice for these two-other linear combinations of them are 
equally valid. The lowest mode comes from the zone boundary q = (~, 0, 0) in the 
conventional zone and thus has a phase difference of 1T between adjacent chains. 

When one oxygen is removed from the supercell to form YBa2Cu306· 75 the 
supercell becomes the primitive unit cell of the structure. Folding of the Brillouin 
zone no longer exists and the degeneracies are lifted (see Fig. 7). The vanishing 
of one of the modes (e.g. Fig. 3c) can be understood physically in the following 
way. The four modes of the YBa2Cu307 structure are almost degenerate. Thus, 
to a good approximation, linear combinations of these will also be stable modes, 
in particular, one in which the oxygen to be removed is vibrating while the other 
three are stationary. It is this mode which vanishes. The remaining three modes 
are shown in the second column of Fig. 7. These are now true q = 0 modes. As 
can be seen, the highest mode has the three remaining chains vibrating in phase, 
the intermediate mode has the outside chains in anti-phase and the central chain 
stationary, and the lowest mode has the outside chains in phase with the central 
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chain in anti-phase with a larger amplitude. At first sight one might expect 
the order of frequencies to be reversed. It is presumably the influence of the 
Coulomb interactions which results in the observed order. 

When another oxygen is removed to give the YBa2Cu306· 5 structure, another 
mode vanishes. This is essentially a linear combination of the highest and 
lowest of the YBa2Cu306· 5 modes. The remaining two modes (in column 3) are 
actually the zone-centre mode [0(4) in-phase] and zone-boundary mode [0(4) 
out-of-phase] of a two-cell supercell which for this structure (YBa2Cu306· 5) is 
the primitive unit cell. The two oxygens are at equivalent sites and thus have the 
same amplitude. When another oxygen is removed to give the YBa2Cu306· 25 
structure only one mode remains, and this also vanishes in the YBa2Cu306 
structure. There is an overall softening of this group of modes as oxygens are 
removed, presumably due to an overall relaxation of the lattice in this region, 
although this is not obvious. The amplitudes of other atoms also vary with 
oxygen content, but they are insignificant compared with those of the ions shown 
in Fig. 7. 

The vanishing modes of .,11 and .,14 symmetry are somewhat more difficult to 
analyse as they are not well separated from other modes, but possess features 
similar to those of the .,13 modes discussed above. The vanishing of modes in 
the other directions, labelled by the diamonds in Figs 4-6, can be analysed in a 
similar way. However, for a q along [001] in the IC phase (Fig. 5) and for q 
along [100] in the BC phase (Fig. 6), because of the different form of folding 
(see the Appendix), the vanishing branches no longer correspond to the same 
branch of the conventional Brillouin zone. The symmetries of the modes which 
vanish vary from case to case, but can always be determined using standard 
group-theoretical methods. 

We now turn to the high-frequency modes. The .,11 modes in both the IC 
and BC phases (Figs 3a and 6a) involve predominantly the vibrations of the 
0(2) ions in the x direction. In the first case (Fig. 3a) the four highest branches 
originate from the same branch in the conventional Brillouin zone. In the other 
case (Fig. 6a) there are two highest branches which originate from different 
parts of the conventional Brillouin zone. These harden as oxygens are removed 
from the chains. The same effect is seen in the highest .,12 and .,13 modes 
(Figs 3b, 3c, 6b and 6c). These modes involve predominantly the vibrations 
of 0(3) in the y direction. Similar effects on these planar oxygen modes can 
be seen for q in the y and z directions (Figs 4 and 5). This hardening of the 
planar oxygen modes happens despite having oxygens removed from the chain 
rather than the plane. This suggests that the hardening must be a consequence 
of the long-range Coulomb interactions between the oxygen ions rather than 
the short-range interactions, because the chain and the plane are situated far 
apart. In reality this has been observed (Reichardt 1990; Pintschovius 1990; 
Pintschovius et al. 1991) for the limiting structures (x = 0,1). This hardening 
is also observed in other Cu-O-based high-Tc superconductors when they are 
reduced to their semiconducting phases (Reichardt 1990), and may be related to 
the superconductivity of these Cu-O materials. 

However, not all the high-energy planar oxygen modes increase in frequency 
as the oxygen atoms are removed. The frequencies of the modes of .,14 symmetry 
(Figs 3d and 6d) at ",17 THz (",570 cm-1), which involve large 0(1) amplitudes 
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Fig. 9. Changes in dispersion curves of YBa2Cu307 as oxygen is removed, with q in the 
x, y, z directions respectively. The arrows indicate the direction of the frequency shifts, and 
the labels indicate the ion(s) with the largest vibration amplitudes together with the direction 
of vibration. The symbol + indicates a mode involving significant vibrations of many ions, 
and the symbol g designates Raman-active modes. 
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in the z direction, increase significantly with oxygen removal but those at the 
same frequency which involve large 0(2) motion change very little. Presumably 
it is the combination of the changes in the short-range forces, Coulomb forces 
and the polarisabilities of the ions which bring about the hardening of the former 
and not the latter modes. 

In the medium-energy range ",6·5-10·5 THz (",220-350 cm- 1), some phonon 
modes soften significantly (Figs 3b, 3c, 4b, 4c, 5b and 5d). These modes involve 
predominantly the vibrations of the 0(1) and Cu(l) ions. The vibrations of the 
four .:12 modes at ",9 THz (",300 cm-I, Fig. 3b for 0 7) are shown in Fig. 8. In 
this group of modes the Cu(l) ions are stationary while the two neighbouring 
0(1) ions vibrate in antiphase, in the y direction. The way in which these modes 
change, on removal of oxygen, can be understood in the same way as for the 
other groups of modes described above. The softening of these modes is most 
likely due to the overall softening of this region of the lattice when oxygens are 
removed. 

The response of the phonon modes of YBa2Cu307 with respect to oxygen 
removal is summarised in Fig. 9. The phonon branches are labelled according to 
the ions which have the dominant vibration amplitudes at q = 0. The symbol + 
in front of a label indicates that the mode is more complex, involving many ions. 
We should stress however that the vibrational character of a branch will vary 
continuously with q, and branches which are close together will also pick up the 
vibrational character of one another as oxygens are removed. The Raman-active 
modes are indicated by the symbol g. The other modes are infrared-active. The 
arrows on these diagrams indicate the dispersion curves which shift significantly 
in response to oxygen removal. 

The phonon density of states (PDS), for both the IC and BC phases, for x = 0, 
0·25, 0·50, 0·75 and 1· 00, are presented in Fig. 10. They are neutron-weighted 
(Yim et ai. 1992). The momentum transfer Q is taken to be in the range ° :S I Q I :S 4·4 A-I for all the PDS. One can see a gradual decrease in intensity 
at medium energy as oxygens are removed. The high-energy peaks in the PDS 
are also shifted with oxygen removal. These two features are well known in the 
PDS of YBa2Cu306+x (x = 0,1) (Renker et ai. 1988a, 1988b). The PDS of the 
stoichiometric materials (x = 0,1) are the same in the IC and BC phases as 
the structures are identical. The PDS of the non-stoichiometric materials are 
different in the IC and BC phases, due to the different oxygen orderings in the 
supercell (see Fig. 2), but the differences between the two phases are small. 

4. Conclusion and Summary 

In this work we have studied the effects of varying the oxygen concentration 
on the lattice dynamics of the high-temperature superconducting materials 
YBa2CU306+x' Using a supercell approach, which assumes that the 0(4) oxygen 
sites are occupied in a periodic way, we have been able to obtain comprehensive 
results for the phonon dispersion curves and the phonon densities of states for 
the five cases x = 0,0·25,0·50,0·75 and 1·00. 

Our calculations are based on a simple shell model. The model parameters are 
adapted from our previous work (Yim et ai. 1992) on the stoichiometric structures 
x = 0, 1. A systematic interpolation scheme is used to obtain the parameters for 
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Fig. 10. Phonon density of states of YBa2Cu306+x for different values of x, for both the 
BC and IC phases. 
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the non-stoichiometric cases. In the latter cases we have considered two types of 
oxygen ordering, where entire chains are removed (IC) and where oxygens are 
removed identically from all chains (BC). At a temperature below the standard 
tetragonal-orthorhombic transition the former structure is likely to be the stable 
one, but it is of interest to see whether the phonon spectra of the two cases 
have significant differences. In fact the differences are small and so this would 
not be an effective experimental probe of oxygen ordering. 

Because of the complex nature of the phonon spectra of these materials, the 
changes due to the variation in the oxygen content are also complex, and in 
general quite small. We have, however, identified several groups of modes where 
substantial frequency shifts occur. In some cases the modes soften as oxygen is 
removed, in other cases they harden. We have studied some of these in detail 
and have presented the form of the dominant atomic motion in these modes. 
Some tentative explanations for the changes in mode frequencies are proposed. 
As oxygen is removed the total number of modes decreases. We have identified 
which modes vanish in this way and have provided a physical picture of the way 
in which this occurs. 

Finally, we comment on the possible comparison with experiment. Direct 
comparison is difficult since in real samples the distribution of the oxygens will 
not be periodic as we have assumed. However, we believe that our results should 
validly predict the observed trends. This is in agreement with the observed results 
for the limiting cases x = 0 and 1. An interesting prediction concerns the number 
of potentially observable Raman modes. The Raman-active modes are those 
q = 0 modes which transform as one or more of the symmetric Xi Xj terms. For 
the stoichiometric materials there are 15 such modes. For the non-stoichiometric 
materials the number of q = 0 modes increases and hence one might expect these 
modes will increase in proportion. In practice these modes will not be sharp 
and may well not be resolvable. However, at low temperature and with good 
quality samples it may be possible to see the appearance of additional peaks in 
the Raman spectra, corresponding to these additional modes. 
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two-dimensional lattice; (a) laxlb, lax2b and lax4b unit cells; (b) corresponding BZs, 
showing the folding transformation; (c) cross-folding, in which dispersion curves from other 
parts of the BZ are mapped onto the x axis; and (d) self-folding, in which dispersion curves 
along the y axis are folded into the smaller BZ. 
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Appendix 

We briefly describe the transformation of the Brillouin zone which occurs when 
the size of the unit cell is increased. This is most easily shown by a simple 
two-dimensional rectangular structure (Fig. 11). In this figure the supercell is 
expanding along the y direction. One can notice that there are two types of 
folding of the dispersion curves. For dispersion curves along the direction of 
expansion, viz. the y axis, the curves are folded onto themselves; this we refer 
to as self-folding. Along the x axis, dispersion curves from the zone boundary 
are folded onto the existing dispersion curves on that axis. We refer to this as 
cross-folding. 

In the YBa2Cu306+x (x = 0,1) system, a (lax4bxle) supercell is used for the 
BC phase, resulting in a (lkaxO·25kbxlke) Brillouin zone. The dispersion curves 
along the kb axis are self-folded onto themselves twice. In the IC phase the supercell 
(4axlbx Ie) is used and hence the Brillouin zone is of dimensions (0· 25ka xlkbx Ike). 
Here it is the dispersion curves along the ka axis which are self-folded onto 
themselves twice. For other symmetry axes the cross-folding is as follows: 

Axes BC phase 

{(k a ,m/4,0) m = 0,1,1,2} 
Self-folding 

{(0,m/4,kc) m = 0,1,1,2} 

IC phase 

Self folding 
{(m/4, kb,O) m = 0, 1, 1, 2} 
{(m/4,0,kc) m=0,1,1,2} 

In each case the dispersion curves on the m = 1 lines are doubly degenerate. 
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