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Abstract 

The double-time-temperature spin Green's function method is used to study the magnetic 
properties of layered ferromagnets with arbitrary spin S, within Tyablikov's decoupling 
approximation. According to the extent to which interlayer coupling suppresses two­
dimensional spin fluctuations, we divide the low-temperature region into two new ones, and 
give the asymptotic expressions for magnetisation and susceptibility over different temperature 
regions, including the low-temperature region, the vicinity of the Curie temperature and the 
high-temperature region. We also give the Curie temperature in an asymptotic form when 
inter layer coupling is weak. 

1. Introduction 

Over twenty years have been devoted to the study of layered magnetic materials 
(see e.g. De Jongh and Miedeman 1974). In particular, the discovery of high-Te 
superconductors with layered structure in their parent materials has stimulated 
greatly the study of this field in connection with superconductivity. The physics 
of layered quasi-two-dimensional (quasi-2D) magnets is now a well developed 
branch of magnetism (De Jongh 1990). 

Layered magnetic systems are usually described by the Heisenberg model. 
Several methods have been developed to deal with this model and numerous 
results have been achieved since it was first proposed. It is well known that 
long-range ordering (LRO) can only occur at zero temperature for the homogeneous 
2D Heisenberg model, but finite interlayer coupling can realise LRO at finite 
temperatures no matter how small this coupling (Liu 1989). For a system with weak 
interlayer coupling, although it shows a three-dimensional magnetic-paramagnetic 
phase transition at temperature Te, at low temperatures (T«Te) it exhibits 
different temperature characteristics. When the temperature is much lower, the 
spin thermal fluctuation energy (rvkBT) may be much smaller than the interlayer 
coupling strength J.1., or kBT« J.1., and thus spin fluctuations are suppressed by 
the interlayer coupling, and the system exhibits 3D temperature characteristics. 
On the other hand, for kBT » J.1., spin fluctuations are not suppressed sufficiently 
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and the system exhibits quasi-2D temperature characteristics (Singh et al. 1990; 
Kopietz 1992; Du and Wei 1992). 

It is generally believed that spin-wave theory is useful at low temperatures. 
At sufficiently high temperatures, the spin fluctuations become nonlinear and the 
spin-wave description breaks down. At intermediate temperatures, a quantum 
Monte Carlo simulation can be used, and the Weiss molecular field theory 
is useful in the vicinity of the transition temperature. The high-temperature 
series expansion method is only suitable for high-temperature regions. The 
double-time-temperature spin Green's function method introduced by Bogolyubov 
and Tyablikov (1959), and applied to Heisenberg ferromagnets (FMs) with spin! 
by Tyablikov (Tyablikov 1959; Zubarev 1960), proves a very popular theoretical 
approach to magnetic materials. 

This approach agrees with the noninteracting spin-wave theory at very low 
temperatures and with statistical theory at very high temperatures, and the 
predicted Curie point in FMs is very close to the other theories. Since the 
extension of the theory to higher spin by Tahir-Kheli and ter Haar (1962) and 
improvement of the decoupling approximation (Callen 1963; Tahir-Kheli 1963), 
the theory has become a useful method to study the Heisenberg model. Using 
this method, Lines (1964) studied the transition temperature of layered FMs and 
antiferromagnets with spin !, while we (Wei and Du 1993) have studied layered 
antiferromagnets with arbitrary spin S. In this paper, we use this method to 
study analytically and numerically the suppression by interlayer coupling of 2D 
spin fluctuation in layered FMs with arbitrary spin S. The fundamental equations 
are given in Section 2; in Section 3 we discuss spontaneous magnetisation; in 
Section 4 we discuss the Curie temperature; in Section 5 we discuss susceptibility; 
and our conclusions are given in Section 6. 

2. Fundamental Equations 

The Heisenberg ferromagnetism model on a simple cubic lattice with intralayer 
and interlayer lattice parameters of a and c respectively is given by 

H = -fL. Si . Sj - h L Si . Sj - gP,B h L Sf . (1) 
(ij) (ij) j 

Here (ij) means the sum over nearest neighbours, J and J.L are intralayer and 
interlayer nearest neighbour ferromagnetic interactions respectively, and h is an 
external magnetic field which, for convenience, is always taken opposite to the 
positive axis z (hz = -h). 

To analyse FMs with arbitrary spin S we introduce, according to Callen (1963), 
the Green's function 

G~(i, j) = ((st(t) I exp(bSj)Sj)), (2) 

where b is a parameter. Using the equation of motion technique for Green's 
function and the Tyablikov decoupling approximation (Tyabilkov 1959; Zubarev 
1960) 

((st Sf I exp (bSj) Sj) ) -+ (SZ ) ((st I exp (bSj) Sj) ) , (3) 
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we have the following expression for the Fourier component of Green's function: 

cb (k) _ E . 
E - 2rr[E - E(k)]' 

(4) 

E(k) = gMB h + 4J(8Z )(2 + 8)[1 -1](k)] , (5) 

where 

8=hjJ, (6) 

(k) = cos(kx a) + cos(ky a) + 8cos(kz c) . 
1] 2 + 8 

(7) 

Callen's method allows us to derive a self-consistent equation for (8 Z ): 

Z (8 - n)(l + n)2S+1 + (8 + 1 + n)n2S+1 

(8 ) = (1 + n)2S+1 _ n 2S+1 ' (8) 

where 

1 1 
n = N ~ exp[,BE(k)]-l . 

(9) 

With these equations, we can calculate and discuss spontaneous magnetisation 
(h = 0) and magnetic susceptibility for different interlayer coupling strengths 8. 

3. Spontaneous Magnetisation 

(3a) Low-temperature Region 

When h = 0, the summation over k in equation (9) has been carried out 
by many authors (Tyabilikov 1959; Zubarev 1960; Tallir-Kheli and ter Haar 
1962; Callen 1963; Tahir-Kheli 1963) for the homogeneous case (8 = 1). For the 
layered structure, we do it by using expansions of Bessel functions instead of 
the usual long-wavelength approximation, which is very tedious when calculating 
higher-order terms of temperature. Expanding the Bose distribution function in 
(9) into a series of exp[,BE(k)] and finishing the integral over k, we have 

00 

n = L exp[-4m(2 + 8)J,B(8Z )] [10 (4mJ,B(8Z )W Io(4m8J,B(8Z )) , (10) 
m=l 

where 10 and II are the zeroth- and first-order Bessel functions of imaginary 
argument respectively. 
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For low-temperature regions we have T « T1 = 4JSjkB rv Te. When the 
interlayer coupling h. (= 8J) is very small, kBT may be much greater than 
J.l., in which case interlayer coupling may not suppress the 2D spin fluctuations 
sufficiently. We therefore define a characteristic temperature To to distinguish 
this case: To = 4J.l. SjkB. The low-temperature region is now divided into two 
new ones: T« To :::; T, and To « T « T1. 

For T « To :::; T1, using the asymptotic expressions for the Bessel functions 
10 and h in (10), we may easily obtain 

1 T (T) 1/2 [ 28 + 1 T 
n = (2rrR)3/2 T1 To ((~) + 8R ((~) To 

2062 + 46 + 9 r(l) (I.-) 2 
] + 128R2 ." 2 To +. .. , (11) 

with R = (SZ)jS and ( is the Riemann zeta function. 
Expanding the right-hand side of (8) in powers of the small quantity n, we 

obtain an iterative solution for the small quantity (SZ) - S, 

(SZ) _ ~ _ 1 ~ (~) 1/2 [r(;!) 28 + 1 r(2) ~ 
1/2 - 2 (2rr)3/2 T1 To ." 2 + 8 ." 2 To 

+ 2082 + 48 + 9 (G) (~)2] __ 1_ ((~) (~)2 ~ [((~) 
128 To (2rrh T1 To 

28 + 1 5 T] + --((2)- - .... , 
2 To 

(12) 

(13) 

It is easy to show that the T 3/ 2 law is satisfied and these are just the results 
of a homogeneous simple cubic lattice as 8 = 1. Therefore 3D characteristics are 
reflected in this temperature region. A term T3 appears in the magnetisation, 
which does not exist in the spin-wave theory (Dyson 1959), and it can be 
eliminated by improving the simple decoupling approximation (Callen 1963). 
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For To «: T «: T1 , transferring Io(4m5J(3(SZ) in (10) into an integral, and 
after a lengthy integration, we have 

n = _1_ ~ [In ( 2T ) + ((2) ~] + ..... 
27f R Tl RTo 4R Tl 

(14) 

We must keep in mind that To «: T «: Tl is in the low-temperature region, 
or T «: Te , which means (SZ) -+ S, and so n is a small quantity, that is 
(T /Tl)ln(2T / RTo) «: 1 for any interlayer coupling strength. In the same way, 
we can obtain the spontaneous magnetisation 

Z 1 1 T [(2T) ((2) T] (S ) 1/2 = 2" - - - In - + - -
27f Tl To 4 Tl 

__ 2 (~)2 [In(2T) + ((2) ~ln(2eT)] 
(27f)2 Tl To 4 Tl To 

... , (15) 

x {1+ _1 ~ [In(2eT) + ((2) ~]} _ ... , 
27fS Tl To 2 Tl 

(16) 

where the terms in the first square brackets in equations (12), (13), (15) and 
(16) are just the results of linear spin-wave theory (Du and Wei 1992). The 
temperature dependence of the magnetisation in logarithmic form reflects the 
quasi-2D magnetic characteristics of the system (Singh et al. 1990; Kopietz 
1992). Thus, at low temperatures (T «: Te ), for a system with weak interlayer 
coupling (JJ. «: J), with an increase of temperature above zero the deviation 
of the magnetisation from its zero-temperature value changes from a T 3 / 2 to 
TInT behaviour. When the interlayer coupling is not very weak (JJ. -+ J), the 
temperature region To «: T «: Tl does not exist and only the T 3/ 2 behaviour is 
retained. 

(3b) Temperatures Just Below the Curie Temperature 

Just below the Curie temperature (assuming h = 0), the average magnetisation 
(SZ) is small and n is large. Equation (8) can, therefore, be expanded in inverse 
powers of n (Tahir-Kheli 1963), the result being 

)
-1 

- ... , (17) 

where 

C1 = i[~S(S + 1) - ~J. (18) 
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Furthermore, E(k) is proportional to (SZ), and the exponential in the Bose 
distribution can be expanded, giving 

where 

F(-I) 2(2+8)J(SZ)(3 
1 + 2n = 2(2 + 8)J( SZ)(3 + 3 

F(I) = 1, 

[2(2 + 8)J( SZ )(3]3 F(3) 
.!-.O.-----'-----'-4-5---'-'---=------'--'- + ..., 

1 
F(m) = - 2:)1 - 1](k)]m, 

N k 

F(2) = 382 + 88 + 10 
2(2 + 8)2 ' 

F(3) = 582 + 88 + 14 
2(2 + 8)2 

(19) 

(20) 

Using equations (19) and (17), we obtain the magnetisation just below the 
Curie temperature, 

Z 2S(S+I) [T ( T)]1/2 
(S)= {3[F(-I)+6C1]}1/2 Tc 1- Tc ' (21) 

where the Curie temperature T c is defined by 

k T _ 4(2 + 8)JS(S + 1) 
B c - 3F(-I) . (22) 

This result is the same as that of Lines (1964) for S = ~; the critical exponent 
of magnetisation is ~, as in layered antiferromagnets (Wei and Du 1993). 

For a layered ferromagnet with S = ~, we have calculated numerically the 
magnetisation as a function of temperature for J.1../ J = 0·5 and 0·0005. The 
results are shown in Fig. 1, the dotted and dashed lines representing the asymptotic 
formulae (12) and (15) respectively. The low-temperature characteristics of the 
magnetisation can be seen clearly as stated above: J.1.. / J = 0·5 is not very small, 
so only the T 3/ 2 law is retained; for J.1../J = 0·0005« 1, the T3/ 2 law is only 
valid over a very narrow temperature region, and when the temperature increases 
(T « T c), the TInT law agrees with the numerical result very well. This feature 
is similar to that of a quasi-2D antiferromagnet (Kopietz 1992). 

4. Curie Temperature 

When the interlayer coupling strength 8 (=J.1../ J) is much smaller than unity, 
the Curie temperature can be expressed in the asymptotic form (see equation 20) 

F( -1) = 2 + 8 L 1 (23) 
N k 2 - cos(kx a) - cos(ky a) + 8[1 - cos(kz c)] . 
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Fig. 1. Temperature dependence of magnetisation for two inter layer coupling strengths, 
J.l. / J = 0·5 and 0·0005, corresponding to the Curie temperatures kB Tcl4J S = 0·801 and 
0·285. The dotted and dashed curves represent the asymptotic formulae (12) and (15) 
respectively. We take S = ~. 

Transferring the sum over k into an integral in the first Brillouin zone, and 
integrating over the two variables kx and ky, we have 

2+01'11" F(-l) = -2 dkz t K(t). 
7r 0 

where t = 2/(2 + 0 - ocos kz), and K(t) is the complete elliptic integral of the first 
kind. In the limit of a small interlayer coupling strength 0, using the asymptotic 
expression K(t) = !In[16/0(1 - coskz)]' then after integrating over kz we have 

F(-l) = 2 + 0 In(32) . 
27r 0 

In the weak coupling limit, we therefore get 

k T. = 87rJS(S + 1) /In(32) 
B c 3 0 ' (24) 

which shows that interlayer coupling J 1. (=oJ) is essential to keep LRO in 
layered Heisenberg FMs. This formula is slightly different from the one given by 
Liu (1989), with 32/0 instead of his 8/0. We have also calculated numerically the 
Curie temperature as a function of interlayer coupling strength based on (22). The 
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result is plotted in Fig. 2, where the dashed curve represents the asymptotic 
result from (24). It is found that the asymptotic result is very close to the 
numerical result when 8:::; 0·02. 

0'2 

Fig. 2. Curie temperature Teas a function of the inter layer coupling strength 8 = J.L / J. 
The dashed curve represents the asymptotic formula (24). 

A pure 2D ferromagnet does not have LRO at finite temperatures. A small 
interlayer coupling can lead to LRO at nonzero temperatures, and the critical 
exponent of magetisation is ~, as in 3D homogeneous ferromagnets. Although 
J.L = 1O-4 J, the Curie temperature is as large as about 25% of the value for 
the 3D homogeneous ferromagnet, and such aTe can be detected experimentally 
(Kopietz 1992). 

5. Susceptibility 

At a temperature above the Curie temperature, spontaneous magnetisation 
vanishes and the susceptibility X is of interest. Considering the linear response 
of magnetisation to the applied magnetic field, we define X by 

(25) 

For small h existing in E(k), (SZ) is small and equation (17) is still valid. 
Expanding n and using (17) and (25), we may obtain the susceptibility X implicitly 
in the equation 

4J,88(8 + 1) 1 1 
3 = N~A+(2+8)[1-1](k)l' (26) 
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where 

(27) 

Employing a similar relation, Dalton and Wood (1967) studied the susceptibility 
of the 2D and 3D cases for an Isling-like ferromagnetic model. Yablonskiy (1991) 
studied the 1D and 2D cases for the Heisenberg model. Tahir-Kheli and ter Haar 
(1962), Callen (1963) and Tahir-Kheli (1963) also studied the 3D ferromagnet. 
We shall discuss the susceptibility between the 2D and 3D cases (0 ::; 8 ::; 1) in 
terms of the above equation. 

(Sa) Temperatures Just Above the Curie Temperature 

When approaching the Curie temperature, X ~ 1 and accordingly oX «: 1. The 
dominant contribution to the summation in (26) therefore comes from small 
values of k. Using the long-wavelength approximation (Tahir-Kheli 1963), we 
have 

= (gf-LB)2 ((2 + 8)T Tc)2 1 
X 28J 21fTM (T - Tc)2 ' 

(28) 

where 

kB TM = 4(2 + 8)JS(S + 1)/3, (29) 

indicating that the critical exponent of susceptibility for Heisenberg ferromagnets 
between the quasi-2D and 3D cases is -2. In the quasi-2D cases (8-+0), using 
an elliptic integral like (23), equation (26) is changed into the following form: 

4J(3S(S + 1) = -;. r t K(t) dB, 
3 1f io (30) 

where t = 2/[2 + oX + 8(1-cosB)]. 
Using the asymptotic conditions oX «: 1 and 8 «: 1, we obtain 

= (gf-LB)2 [sinh (1fTM(T - Tc))]-2 
X 88J (2 + 8)T Tc 

(31) 

The asymptotic form of this equation for 8 =f:. 0 is just (28), in which case the 
coefficient of (T - Tc )-2 is much larger. 

In the pure 2D cases (8 = 0), Tc = 0, and equation (31) becomes 

= (gf-LB)2 ex (81fJS(S + 1)) . 
X 64J P 3kB T 

(32) 

This result is same as that of Yablonskiy (1991) and in agreement with that of 
Dalton and Wood (1967). In the 2D case, the susceptibility is in the form of an 
exponential with temperature T -+0. 
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A: J.l!J = 0'0005 
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C:Jl.IJ= 0'05 

D:J.l!J= 0'5 

1'2 E:J.l!J= 1'0 
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0'4 

A 

0 0'5 1'0 1·5 

kBT/4JS 

Fig. 3. Temperature dependence of the inverse susceptibility for several interJayer coupling 
strengths, where X is normalised by (9MB? / J. 

(5b) Temperatures Much Beyond the Curie Temperature 

In this temperature region, X ~ 1, and accordingly A ~ 1 and t->O. The 
complete elliptic integral in (30) is approximately K(t) =.71' (1+t2 /4)/2. Thus, 
a high-temperature expansion for the susceptibility is obtained: 

48+2 (TM)3 ] 
+ (2+8)2 T + .... (33) 

In the pure 2D case (8 = 0), if we take K(t) = 71'/2, the Curie-Weiss law for 
susceptibility is obtained (Yablonskiy 1991). 

The numerical result for the inverse susceptibility above Teas a function of 
temperature for several interlayer coupling strengths is shown in Fig. 3. Just 
above the Curie temperature, the inverse susceptibility increases slowly; the 
weaker the interlayer coupling, the more slowly the inverse susceptibility increases 
(see equation 28). When the temperature is well beyond the Curie temperature, 
the inverse susceptiblity approximates a straight line, and thus the Curie-Weiss 
law is satisfied. 

6. Conclusion 

The effect of interlayer coupling on the magnetic properties of layered 
ferromagnets with arbitrary spin S has been studied with the use of the double­
time-temperature spin Green's function method. According to the extent to which 
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interlayer coupling suppresses 2D spin fluctuations, we define a characteristic 
temperature To and divide the low-temperature region (T« T1 ) into two new 
ones. With an increase of temperature from one region (T « To ::; T1 ), to another 
(To «T « T1 ), the temperature dependence of the magnetisation changes from 
a T3/2 to a TInT behaviour for small interlayer coupling (8« 1). For a finite 
interlayer coupling, the critical exponents of magnetisation and susceptibility in the 
vicinity of the Curie temperature are ~ and -2 respectively. For weak interlayer 
coupling, the Curie temperature is dependent logarithmically on the ratio of 
interlayer to intralayer coupling strength, and approaches zero for the pure 2D 
case. At the same time, the susceptibility varies exponentially with temperature 
when the temperature approaches zero. The high-temperature expansion form for 
the susceptibility is given in the high-temperature region for arbitrary interlayer 
coupling strength. 
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