
Chaos and Its Impact on the 
Foundations of Statistical Mechanics* 

Gary P. Morriss and Lamberlo Rondoni 

School of Physics, University of New South Wales, 
Sydney, NSW 2052, Australia. 

Abstract 

Aust. J. Phys., 1996, 49, 51-77 

In this work we present a brief derivation of the periodic orbit expansion for simple dynamical 
systems, and then we apply it to the study of a classical statistical mechanical model, the 
Lorentz gas, both at equilibrium and in a nonequilibrium steady state. The results are 
compared with those obtained through standard molecular dynamics simulations, and they are 
found to be in good agreement. The form of the average using the periodic orbit expansion 
suggests the definition of a new dynamical partition function, which we test numerically. An 
analytic formula is obtained for the Lyapunov numbers of periodic orbits for the nonequilibrium 
Lorentz gas. Using this formula and other numerical techniques we study the nonequilibrium 
Lorentz gas as a dynamical system and obtain an estimate of the upper bound on the external 
field for which the system remains ergodic. 

1. Introduction 

Our aim in this paper is to study the properties of chaotic dynamical systems, 
with particular emphasis upon mechanical systems that evolve continuously in 
time. However, it is often true that the easiest demonstration of the necessary 
techniques is that for simple mappings. Therefore, although there are subtle 
differences between the behaviour of mappings and flows, we introduce the 
theoretical tools which we use by applying them to the quadratic map. In 
particular, we concentrate on the recently developed periodic orbit expansion 
(POE) theory (Hannay and Ozorio de Almeida 1984; Artuso et al. 1990; 
Cvitanovic 1992; Cvitanovic et al. 1992). Then, one can always think of a 
mapping as an approximation to a continuous time system, as if it constituted 
a numerical scheme to solve continuous time evolution equations. For instance 
xn+1 = Xn + J.LF(xn) can be interpreted as the Euler (one-step finite difference) 
scheme for the numerical solution of dx/dt = kF(x), where J.L = kAt. Alternatively, 
F could implicitly be defined in terms of the equations of motion of a given 
physical system, and give the exact variation of x in a given interval of time. 
Then, the mapping would not be just an approximation to a given time evolution, 
but it would yield the exact values of x for a discrete set of times. It is within 
such a framework that we also make use of mappings to represent continuous 
time evolutions of physical models. 
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The idea of studying statistical mechanical models using the theory of chaos is 
justified in part by recent results, such as the discovery of the conjugate pairing 
rule for the Lyapunov exponents of nonequilibrium systems (Evans et al. 1990), 
and an equivalent result obtained by Gaspard (Gaspard and Rice 1989). These 
connections between transport coefficients and nonlinear stability properties have 
provided new reasons for studying model systems such as the Lorentz gas (Lorentz 
1905; Machta and Zwanzig 1983). Several different approaches have been used, 
in particular the POE method (Vance 1992; Morriss and Rondoni 1994; Rondoni 
et al. 1995) based on the idea of singular measures, which we illustrate for the 
quadratic map in Section 2. In Section 3 we introduce the Lorentz gas both at 
and away from equilibrium, and we present some numerical results for the system, 
obtained using standard molecular dynamics techniques. Section 4 is devoted to 
the nonequilibrium Lorentz gas, where molecular dynamics is used to calculate 
the diffusion coefficient, the pressure, and the conductivity as a function of an 
applied external field. In Section 5 we discuss the application of the POE method 
to the equilibrium Lorentz gas, and we show how it can be used to calculate 
thermodynamic averages. This is followed, in Section 6, by the development of 
a new dynamically (periodic orbit) based partition function, and numerical tests 
of this function are reviewed. In Section 7 we show that analytic expressions can 
be obtained for the Lyapunov numbers of periodic orbits of the nonequilibrium 
Lorentz gas, which give a very powerful tool in the application of the POE, and 
in the understanding of the Lorentz gas model as a two-dimensional mapping. 
Section 8 reports our POE results for the nonequilibrium case, Section 9 deals 
with the Lorentz gas as a two-dimensional dynamical system, and Section 10 
concludes the paper. 

2. The Quadratic Map 

Consider a one-dimensional mapping X n +1 = f(xn), such as the quadratic 
map, where f takes the form f(x) = fLX(l - x) and :r E [0,1]. Imagine that we 
have a normalised initial distribution where only one point, xo, has a nonzero 
probability. This distribution function can be written as a delta function at Xo, 
that is 8(x - xo). Under the action of the mapping this distribution will change 
and after one application the delta function will have moved to the new point 
f(xo). The operation of the mapping on the delta function distribution can be 
written as 

8(x - f(xo)) = r1 ds 8(x - f(s)) 8(s - xo). 
.fo 

(1) 

Clearly, in this equation, the second delta function selects that value of s that 
is equal to Xo and substitutes this value for s in the first delta function. The 
delta function shifts from the position of the initial point xo, to the position that 
Xo is mapped to by one application of the mapping, that is f(:ro). In a similar 
way we can ask what is the distribution after n applications of the mapping, 
and the result is a delta function at r(xo) so that 

8(:1.: - r(xo)) = 11 ds 8(x - r(.s)) 8(s - :ro). (2) 
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We can immediately generalise this procedure by imagining the operation of 
the mapping upon some initial distribution function Po(x) (perhaps composed 
of a weighted sum of delta functions). Clearly the initial distribution will be 
transformed to a new distribution PI (x) after one iteration of the map, where 

Pl(X) = 11 dsl5(x-f(s))po(s). (3) 

After n iterations the initial distribution will be transformed to Pn(x), where 

Pn(X) = 11 ds l5(x - 1"(s)) po(s). (4) 

In this example the distribution continually changes with time, but in statistical 
mechanics we are interested in steady or stationary behaviour, and therefore it 
is important to find stationary solutions for the distribution function. That is, 
we require the solutions (if they exist) of 

p(x) = 11 ds l5(x - f(s)) p(s). (5) 

In practice there will be a number of solutions of equation (5), as for example 
p(J:) = l5(x-J:*), where x* is a fixed point [f(x*) = x*], is a solution. If there 
is more than one fixed point, then any linear combination of delta functions, 
based on those points, will also be a solution. Similarly, solutions based upon 
nth order periodic points [fn(xn = xT] can also be constructed. These are a 
particular class of singular measures. In general, however, there will be a natural 
distribution (or measure) to which most points in the interval [0, 1] will converge. 
This natural measure does not emerge easily from equation (5), whereas solutions 
based upon periodic points are relatively easy to find. Our goal will be to generate 
a sequence of singular measures based upon periodic points, which approach the 
natural measure. By that, we mean that the sequence of averages, calculated 
using the sequence of singular measures, approaches the average calculated from 
the natural measure, for any system property. 

To start, consider a singular measure of the form 

n 

p(n)(x) = L CjL 15(x- Sij), (6) 
j i=l 

where {Sj1' ... , Sjn} are the n points of the jth n-cycle, and Cj is its normalised 
weight. This nth order singular distribution is the generic nth term in an infinite 
sequence of approximate distributions. Is p(n) (J:) a solution of equation (5)'1 

j .l n 

p(x) = . ds l5(x - f(s)) L Cj L l5(s - Sij) 

o ji=l 

n j'l = L Cj L ds l5(x - f(s)) l5(s - Sij) 

j i=l 0 
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n 

L Cj L 8(:1: - f(Sij)) 
j i=1 

n 

L Cj L 8(x - Sij) = p(n)(x). 
j i=1 

The third equality comes from using the delta function 8 (s - Sij) in the integral, 
and the last equality follows because f simply permutes all the points in a cycle. 
Hence the singular measure is a solution, but we still need information about 
the weights C j . 

To introduce the concept of a measure consider a system of N particles divided 
into two boxes labelled 1 and 2. If PI is the measure of box 1, and P2 is the 
measure of box 2, then the number of particles in box 1 is Nl = PI N and the 
number of particles in box 2 is N2 = P2 N. If we evolve the system in time, 
then after some initial transient, some particles from box 1 remain in box 1 and 
others move to box 2. The number remaining in box 1 is Nl-+1 = /11 N 1 , while 
N1-+2 = /12 N1 transfer from box 1 to box 2. Regardless of the initial distribution 
N i , the definition of the natural measure /1i is given by the limit as t -+ 00, of 
Ni-+i == /1i N i . If the natural measure is unknown, we may determine it by 

1. Ni-+i 
/1i == 1m -­

t-+oo Ni 
(7) 

The same process can be used to find the Cj . We construct a set of boxes 
OIl each of the periodic points of order n and find the number of points which 
return to the box after n applications of the map. Consider a single periodic 
point Si, and an interval 6.x which contains only that periodic point of length 
n. The number of points in that interval is 

Ni = N r p(x) dx 
Jbox 

where N is the total number of points in [0,1]. From equation (4), after n 
iterations of the map, the measure is 

p(x) 6.x = 1 ds 8(x - r(.s)) p(s) 6.x, 
bos' 

where P is used in both sides of the equation because it is stationary. Here 6.05' 
is the intersection of 6.x' with the range of values of 05 that map into the interval 
6.x. That is, the points 6.s' are the only points of 6.x which come back after n 
iterations. Using the identity 

8(G(s)) = L 8(8,- s;) = L 8(s - 05;) , 
i IG (s;)li Ai 

(8) 

where 05; is a zero of G(s), but is not a zero of IG'(s)1 = A, and considering that 
6.s' contains the periodic point Si, but no other preimages of x under fn, we 
have 
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Therefore the number of points remaining in ~x after n iterations of the map is 

Here the ~ becomes = in the n -+ 00, ~x -+ 0 limit. Repeating the process 
for all the points in the cycle we find that the weight associated with the jth 
periodic cycle is 

where 

n 

Aj = Ir' (Sji)1 = II 1!,(Sji)1 (9) 
i=l 

is the Lyapunov number for the cycle j which is independent of the point i. The 
singular measure that we need is then 

n 

p(n)(x) = CLAjl L8(x - Sij), (10) 
j i=l 

where C is the normalisation. In this way we generate a sequence of stationary 
singular measures by considering all values of n. Note that at every n we exclude 
the periodic points of period m where m divides n. The periodic points of period 
m have already been used in the mth approximate (they are not prime orbits 
of length n), so we do not consider them again in the nth approximate. 

Table 1. Structure of periodic cycles for the quadratic map at I-' = 4 

Order Solutions Number of cycles 
1 2 3 4 5 6 7 8 9 10 

1 2 2 
2 4 2 1 
3 8 2 2 
4 16 2 1 3 
5 32 2 6 
6 64 2 1 2 9 
7 128 2 18 
8 256 2 1 3 30 
9 512 2 2 56 

10 1024 2 1 6 99 

To develop the sequence of singular measures for the quadratic map we need 
to know a few details concerning periodic points. The mapping is quadratic, so in 
general there are two fixed points. If we find the fixed points of two applications 
of the map, then these fixed points are the periodic points (of period or length 2) 
of the map. The equation we need to solve is a quadratic with each x replaced 
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by the original quadratic, and is hence of order four with four solutions. Two of 
these solutions will be the original fixed points, the new points are a 2-cycle. At 
each order n there are 2n solutions of fn(x) = X which imply a set number of 
cycles of various lengths. For the quadratic mapping at J.l = 4 all the solutions 
are real and the structure of cycles is given in Table 1. 

If we calculate the average value of some quantity W using the singular measure 
from equation (10), the result is 

1 n 

(W) = 1 dx p(x) w(:r:) = cI: Aj1 I: W(Sij) , 
JEP" ,=1 

(11) 

where Pn is the set of all prime distinct cycles of length n. The normalisation 
constant is easily found by considering the case where W = 1. The final result 
for the nth order average of W is 

(W)n =I: Aj1 t W(Sji) / .I: Aj1 n = I: Aj1 n(w)j /I: Aj1 n. (12) 
JEPn t=l JEP" JEPn JEP" 

From equation (12) we can identify the true probability of a particular periodic 
cycle as 

(13) 

Table 2. Periodic orbit expansion applied to the quadratic map at J.L = 4·0 

n (x) (x 2 ) # cycles 

2 0·62500 0·46875 2 
3 0·54167 0·40625 6 
4 0·50000 0·37500 12 
5 0·50833 0·38125 30 
6 0·50354 0·37766 .52( 54) 
7 0·51240 0·38430 120( 126) 
8 0·51017 O· 3826:3 230(240) 
9 0·50914 0·38185 482(504) 

10 0·50904 0·38178 940(990) 
11 0·50795 0·38097 1962(2046) 
12 0·50731 0·38049 385:3( 4020) 

exact 0·5 0·:375 

For the quadratic map at fl = 4·0 we can calculate the average value of 
x and the average of its square exactly using the known analytic distribution 
function, and also numerically using the periodic orbit expansion. This exercise 
well illustrates the use of the singular measure to calculate average values. The 
results are given in Table 2. Here we have used periodic points of order 2 
to 12, and we can study the convergence of this procedure. Notice also, that 
the number of cycles found numerically differs from the exact number (given in 
parenthesis) for order 6 and larger. This is a common numerical difficulty, which 
can easily be remedied for the quadratic map, but in general symbolic dynamics 
is used to help enumerate all the periodic points. For lllore complicated systemti, 
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the symbolic dynamics is often not completely understood and determining all 
the physically allowed cycles has not been done in a systematic way. 

We have introduced the idea of the periodic orbit expansion for the quadratic 
map. This is one example of an approach to the construction of the natural 
measure for many hyperbolic chaotic systems using approximations based upon 
measures supported on the unstable periodic orbits (UPOs). The reason why the 
method is expected to work is that the relevant attractor can be hierarchically 
approximated through sets of progressively longer and longer UPOs (Grebogi et 
aZ. 1988; Morriss et aZ. 1995), and the (weak) limit of these measures can be 
proved to be the natural measure for Axiom-A flows (Parry 1986). As we have 
seen the UP Os are grouped into sets of prime orbits Pn , and one attaches a 
stability weight to each UPO which is inversely proportional to the product of its 
expanding Lyapunov numbers Ai. The process of generating the average formula 
for a continuous time system is the same, and effectively results in replacing n 
by the period r and replacing sums by integrals, that is 

n l Tj 
dt w(t). L W(Sji) by 

i=l 

What needs to be done then is to consider the set of UPOs of finite n, and then 
to extrapolate the results to the n -> 00 limit. If B is a function of phase only, 
then the average value of B over the chaotic set can be written as 

(B) = lim L Ail r i B(s) dS/ L Ti Ail, 
n----+oo Jo 

iEPn iEPn 

(14) 

where Ti is the period for the ith UPO, over which the integral is performed. 

3. The Lorentz Gas 

The Lorentz gas can be considered as a classical model for electrons moving 
independently through a crystal, and can be extended to simulate tiH' motion 
under an applied electric field. In nonequilibrium statistical mechanics, self 
diffusion in fluids can be studied as the limiting case of mutual diffusion where 
the two species only differ in a coZour label (Evans and Morriss 1990), and 
the smallest non-trivial system of this type contains two particles (one of each 
colour) (Moran and Hoover 1987). This two particle system in periodic boundary 
conditions is exactly equivalent to the Lorentz gas when the colour field is zero, 
and its extension to nonzero fields leads to a more complicated dynamics for 
the wandering particle between collisions. The Lorentz gas is clearly one of the 
simplest deterministic systems which exhibits diffusion in the absence of a field 
and a steady current away from equilibrium, and has therefore been recently 
re-examined to study irreversibility. 

The equations of motion for the Lorentz gas give straight line trajectories 
between collisions, and the usual elastic collision rule. The constraint of either 
constant energy (or constant kinetic energy) for a two particle system implies 
that the speed of the wandering particle is constant. For cubic periodic boundary 
conditions the wandering point particle always has an infinite hor-izon (that is, 
for special initial conditions it can pass through the whole lattice without a 
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collision). To avoid this we adopt a triangular lattice, and choose the density 
sufficiently large so that the horizon is finite. We refer to the elementary cell 
(EC) as the hexagon whose replicas tile the whole two-dimensional plane. As 
the speed of the wandering particle is constant, the momentum has only one 
degree of freedom: its direction. So we can write p == (Px, Py) = p( cos e, sin e) 
where e is the angle between the x axis and the momentum vector (see Fig. 1). 
In turn, the position of the moving particle is more conveniently represented 
in polar coordinates, so (x, y) = 7'(cos¢, sin¢). Thus,7', ¢ and e are the only 
degrees of freedom of the model. The thermodynamic state point for the Lorentz 
gas can be characterised in terms of the disk spacing 'W, so if d is the distance 
between the centres, then 'W = d - 20'. In what follows we take the radius 0' = 1, 
and it is straightforward to show that the density is related to the spacing by 
p = [2/(w+2)]2/y3. For large scatterer spacing (or low density), the Lorentz gas 
has an infinite horizon. To get a finite horizon we need w :S 4/ y3 -2. 

p d 

x 

Fig. 1. Geometry of the Lorentz gas. For the scatterer at collision, 
the polar angle <p gives the position, while () gives the angle between 
the momentum vector and the x axis. The system is parametrised 
by W / (J", where w is the spacing between scatterers. 

In the presence of a field the wandering particle is acted upon by the 
combined effects of the external field and the thermostat. The thermostat ensures 
stationarity, by requiring that the kinetic energy of the particle is a constant of 
motion (so that the speed is fixed). The equations of motion for the Lorentz gas 
subject to an applied external field Ie pointing in the negative x-direction, with 
an isokinetic (Gaussian) thermostat, are given by 

iJ = py/M, (15) 

where (P.T' Fy) is the impulse force due to a collision with a scatterer, and the 
constraint of constant kinetic energy is imposed by choosing 

p.F - IePx 
a= 

p2 

We take the fixed magnitude of the momentum P of the wandering particle, and 
its mass AI, to be unity. Then, the temperature is given by kT = 1. Changing 
to polar coordinates for the momentum gives 

e = Esine, (16) 
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where € = fe/Po This equation can be integrated over a given interval of time, 
tlt = t1 - to, and it yields 

tan(0I/2) = tan(00/2)ee.o.t . (17) 

Integrating the equations of motion for the cartesian coordinates (in the absence 
of a collision), we find that the changes in x and y are parametrised by the angle 
0, so 

P (sin01) X1-XO = -In -.--
lvIs smOo 

d _ p(Ol - ( 0 ) 
an Y1 - Yo - Ms· (18) 

Here we summarise the best available results of numerical simulations for the 
Lorentz gas. There are a variety of direct simulation methods that can be used 
to compute the diffusion coefficient D at equilibrium. In particular, the value 
of D obtained from a combination of the use of the Einstein relation and the 
Green-Kubo formula. The Einstein relation for D in two dimensions can be 
written as 

(19) 

where () indicates an ensemble average, and tlr(t) is the displacement of the 
wandering particle in time t. The Green-Kubo formula for the same quantity is 

D = 100 
ds !(v(O) ov(s)) , (20) 

where v(s) is the velocity of the wandering particle at time s. Any ensemble 
which is modelled in a computer simulation necessarily contains a finite number 
of elements, thus an ensemble average actually means an approximation of phase 
space integral by a finite sum. Similarly, we cannot take the limit as t --+ 00 

in the Einstein relation, but only estimate it based on the ratio at large time. 
Here we construct an ensemble of systems uniformly distributed in that part of 
phase space not occupied by the scatterer, and uniformly distributed over the 
surface of the unit ball in momentum space. It is found that the mean square 
displacement converges quickly with increasing ensemble size, but slowly with 
increasing T, while the Green-Kubo integral converges quickly with increasing 
T, but slowly with increasing ensemble size. Thus to get the best estimate 
of D we choose a sufficiently large value of the quickly convergent variable, 
and then extrapolate the diffusion coefficient as a function of the inverse of the 
slow variable. The Green-Kubo diffusion coefficient converges like a random 
variable with increasing ensemble size, while the mean square displacement is a 
monotonically increasing linear function of T. In this paper we will concentrate 
on a system where w = 0·2360685, where the best result for D is 0·197±0·001. 

The instantaneous expression for the pressure tensor P( t) can be written as 
a function of the instantaneous values of position and momentum to obtain 

N N 
PV = "Pi Pi _ 1 " r·· F· . 

~ 2 ~ >J >J' 
i=l rn i,j=l 

(21) 
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where V is the volume of the system, F ij is zero except at a collision, and Pi 
is constant between two collisions. 

4. The Nonequilibrium Lorentz Gas 

In an external field, we obtain the conductivity L(c) as the ratio of the mass 
current to the external field L(c) = J(c)/E, where the mass current, 

J(c) = lim 6r(t)/t. 
t ---> 00 

The usual diffusion coefficient D is given by the zero field limit of L(c). Further, 
the field dependent conductivity L( c) depends upon the direction of the external 
field, with respect to the lattice of scatterers. We need only consider the angle 0: 

between one of the lines joining the centres of two nearest neighbour scatterers 
and the field direction, in the range 0 :::; 0: :::; 7r /6, as any other angle can be 
mapped into this range using the lattice symmetries. At the ends of this range, 
0: = 0 and 0: = 7r /6, the triangular lattice of scatterers is symmetric with respect 
to reflection in the field direction. At any other value of 0: however, this symmetry 
is broken and the conductivity L(c) becomes a second rank tensor, so that 

(22) 

In all our calculations the field direction is taken to be along the x-axis and we 
calculate the two mass currents /r and Jy , which allows us to calculate Lxx and 
L y:r . Although when c = 0 we have L:rx = Lyy = D and Lxy = Lyx = 0, at other 
values of the field these equalities do not hold. In the literature only the values 
0: = 0 (Baranyai et ai. 1993; Cvitanovic et al. 1992; Morriss and Rondoni 1994) 
and 0: = 7r /.6 (Moran and Hoover 1987; Vance 1992) have been considered. 

The results in Figs 2 and 3 give the diffusion coefficient as a function of 
field at 0: = 0 and 0: = 7r /6. In both cases there is a great deal of structure 
in conductivity versus field curves. The source of the structure is the result 
of a competition between the detailed variation in the probability of particular 
trajectories, and the shape of the channels between the scatterers that these 
trajectories must move in. Some understanding of these mechanisms can be 
obtained by considering small periodic orbits, as a function of field. In Figs 4 
and 5 we present the conductivities Lxx and Lyx as a function of angle at a 
fixed field of c = 1. We see the appearance of a local maximum at approximately 
0: = 0·2 and a local minimum at approximately 0: = 0·44. The existence and 
position of the relative maximum and minimum remain at other values of the 
field but no exhaustive study of the field dependence has been attempted. In 
Fig. 5, we observe that the cross-conductivity Lyx is zero at both 0: = 0 and 
(\' = 7r /6, as expected by symmetry, and rises to a simple maximum mid-way 
between these endpoints. The magnitude of Ly:r is approximately one twenty-fifth 
the magnitude of L:rx , which is consistent with a purely nonlinear effect. As only 
(\' = 0 and (\' = 7r /6 have heen considered previously, this is the first time that 
this cross-conductivity has been calculated. 
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Fig. 2. Conductivity Lxx as a function of field at a = o. Each 
small diamond is a direct time average over 5 x 107 collisions 
so the error bars are less than the size of the symbols. Each 
square is the time average over a much longer run (109-1010 

collisions), which shows the good convergence of our results. 
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Fig. 3. Conductivity Lxx as a function of field at a = 7r/6. 
Each small diamond is a direct time average over 5 x 107 

collisions. Each square is the time average over a much longer 
run (as in Fig. 2). 

5. Periodic Orbit Expansion for the Equilibrium Lorentz Gas 

61 

To compute the averages discussed in the previous sections, within the POE 
framework, a useful tool is the so-called symbolic dynamics. This consists of 
assigning a symbol sequence to each UPO, and it is claimed that for a UPO 
the symbol sequence uniquely defines the orbit. The terms in the POE can be 
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Fig. 4. Field dependent conductivity Lxx in the direction of 
the field, as a function of field angle with the field fixed at 
E: = 1. Each small diamond is a direct time average over 5 x 107 

collisions. Each square is the time average over a much longer 
run (as in Fig. 2). 

0.012 

0.01 

0.008 

0.006 I­
L (1) 

yx 0.004 

0.002 

o 

-0.002 
o 

E=l 

I 
e ..... • 

I I 

... 
.. 

.. 
". eo 

I I 

0.08 0.16 0.24 0.32 0.4 0.48 0.56 

a 

Fig. 5. Field dependent conductivity Lyx perpendicular to 
the direction of the field, as a function of field angle a with 
the field fixed at E: = 1. Each diamond is a direct time average 
over 5 x 107 collisions. 

enumerated by determining all possible symbol sequences composed of a fixed 
length which are physically realisable. Sequences that contain paths that pass 
through scatterers must be pruned from that list. How many symbols are needed 
is an open question but for practical purposes a finite set is sufficient, especially 
at equilibrium. We will use symbolic dynamics to distinguish different UPOs 
in our simulations and to determine their degeneracy (that is the number of 
different orbits related by discrete symmetries). 
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o o 

o o 
Fig. 6. Symbols associated with each of the possible flights between scatterers. 

(a) (b) 

(c) (d) 

Fig. 7. Examples of length 2 UPOs: (a) is the (06) short 
flight orbit; (b) is the (511) long flight orbit; (c) is the (411) 
tick orbit; and (d) is the (15) V orbit. 

63 

To each section of trajectory between collisions we assign a symbol depending 
upon the vector separation of the the initial and final scatterers for that segment. 
In Fig. 6 we show the labels for the twelve possible flights. Due to the finite 
horizon, these are the only flights that are possible in the absence of a field. 
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At w = 0·2360685 there are four types of length 2 UPOs; the short flight (S) 
between nearest neighbour scatterers; the long flight (L) between second nearest 
neighbours; the tick shaped orbit (T), consisting of a long flight and a short 
flight; and the V shaped orbit (V) of two long flights (see Fig. 7). It is easy to 
see that the S UPO can have the following symbol sequences: (06), (28), (410). 
For the long flight orbit L the possible sequences are (17), (39), (511). The tick 
shaped UPO consists of a short flight followed by a long flight and in this case 
there are 12 distinct symbol sequences: (05), (27), (49), (611), (81), (103), 
(07), (29), (411), (61), (83), (10 5). The last orbit V has two long flights and 
there are six possibilities: (711), (91), (113), (15), (37), (59). All of these six 
possibilities are distinct. 

The total number of length 2 orbits is 24, which is made up of three S, twelve 
T, three L, and six V orbits. One way of thinking about these orbits is in terms 
of short and long flights. Short flights are between nearest neighbours and long 
flights are between second nearest neighbours. Clearly, it is possible for UP Os 
composed of two similar flights to have more symmetry than UPOs composed of 
different flights. This symmetry determines the degeneracy of the orbit. For the 
T orbit we have seen that there are 12 different symbol strings which all have 
the same contribution to an average property. 

Table 3 presents orbits with two collisions (length 2) at w = 0·2360685, giving 
both the fundamental symbol sequence and the degeneracy. The Lyapunov 
numbers are given by exp[.XTJ, where>. is the Lyapunov exponent, T the period. 
We note that all the orbits from the groups S, L, T and V are periodic in the 
EC. But the Sand L orbits actually are periodic in the whole phase space so 
that .6.r(t)2 is bounded for all t, while the T and V orbits are not closed and 
.6.r(t)2 rv t 2 at large t. 

Table 3. Periodic orbits of length 2 

Orbit Degeneracy AT Symbol 

S 3 1·34836495 (06) 
T 12 3·10378194 (05) 
L 3 3·43337893 (17) 
V 6 4·63460493 (15) 

All length 3 UPOs can be considered as variations upon length 2 UP Os (see 
Fig. 8). The first is the small triangle T made up of three short flights (which 
we can think of as adding an extra short flight to S). The symbol sequences for 
this orbit are (2610), (210 6), (048), (084). The variation of the long flight 
UPO L changes one long flight into a glancing collision and hence two short 
flights. For example (1 7) becomes (027). The variation on the tick orbit T 
replaces the long flight with a glancing collision of two short flights, so that (05), 
becomes (046), which in turn becomes (026) under time reversal and rotation. 
This orbit consists of three short flights but is not closed. The variation on the 
V orbit replaces one of the long flights with a glancing collision. For example 
(1 5) becomes (02 5). The resulting orbit is open and consists of two short and 
one long flight. Table 4 gives the orbits with three collisions. 
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(a) (b) 

(c) (d) 

Fig. 8. Examples of length 3 UPOs. (a) is the (084) S' orbit; 
(b) is the (168) L' orbit; (c) is the (640) T' orbit; and (d) is 
the (2411) V' orbit. 

Table 4. Periodic orbits of length 3 

Orbit Degeneracy )..T Symbol 

S' 4 3·09704399 (048) 
L' 12 6·29878521 (027) 
T' 24 6·84276485 (026) 
V' 24 9·51433277 (025) 
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To explore the utility of the periodic orbit expansions, we calculate three 
different properties; the potential contribution to the hydrostatic pressure, the 
diffusion coefficient, and the average Lyapunov exponent. The average Lyapunov 
exponent is given by 

(23) 

The potential part of the pressure p<P for the system is given by 

(p<PV) = }~.~.2: ~ P.rAi1/ ,2: TiAi1 , 

'EP" collIsIons .EP" 

(24) 

where p is the momentum immediately after a collision and r is the vector 
joining the centre of the scatterer to the point of collision. 
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We use a numerical scheme to search for UPOs. From a long chaotic trajectory 
we scan the collision sequence, at the collision time, for approximate recurrences 
of a phase point (Oi,cPi)' If II(Oi+j,cPi+j) - (Oi,cPi) II < 8 for sufficiently small 8, 
then we save (Oi, cPi) as a possible initial condition for an UPO of length j. Each 
initial condition is then refined using a Newton-Raphson iteration scheme, and 
both of its Lyapunov numbers Ai are calculated using the method outlined in 
Section 7. The existence of a particular UPO ensures the existence of its time 
reverse, and the Lyapunov exponents for the time reverse are the negatives of 
those for the forward time UPO. Sampling the forward and reverse UPO as a 
pair ensures good convergence of the conductivity. In practice our method of 
sampling UPOs ensures that we sample the most probable ones thoroughly, but 
it is possible that UPOs with relatively high Lyapunov numbers (and hence low 
weight) may be neglected. The POE results for w = 0·2360685 are given in 
Table 5. 

Table 5. Periodic orbit expansion for w = O· 2360685 

n # cycles D DShanks p<PV ..\ 

2 24 0·3769 0·5430 1·4053 
3 64 0·0901 0·2160 0·6457 2·0757 
4 108 0·3146 0·2124 0·5411 1·6618 
5 252 0·1269 0·2004 0·6326 1·9803 
6 716 0·2477 0·2032 0·6164 1·7699 
7 2184 0·1771 0·2048 0·6332 1·9733 
8 5952 0·2228 0·2032 0·6511 1·8926 
9 19196 0·1885 0·2011 0·6482 1·9607 

10 51072 0·2084 0·6628 1·9329 
direct 0·1970(10) 0·665(1) 

The results for the pressure as a function of spacing are presented in Fig. 9. 
At equilibrium, the pressure tensor is diagonal and the kinetic part is trivially 
related to the total kinetic energy. 

2.5 

2 

1.5 

0.5 
o 0.1 

~ time average 
o UPO 

0.2 
w 

0.3 

Fig. 9. Potential pressure times volume versus inter-disk spacing w. The small squares, 
fitted with the curve, represent the results of direct simulations of around 106 collisions. The 
large squares represent the results obtained from the use of UPO measures, as computed for 
UPOs up to length 12. 
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The fact that the POE formalism gives correct averages from the Lorentz gas 
suggests that there is a deeper link between the POE formalism and equilibrium 
statistical mechanics. In the next section we exploit this idea further. 

6. Dynamical Partition Function for the Lorentz Gas 

The complete framework of classical statistical mechanics can be based on two 
postulates (Tolman 1938; Thompson 1972). The first postulate is that of equal 
a priori probabilities for the distribution of ensemble members on the surface 
of constant energy, where each ensemble member is an isolated system with the 
same number of particles N, volume V, and energy E. This postulate implies 
that the micro-canonical ensemble has a distribution given by 

8(H - E) dr 8(H - E) dr 
dJ.tmc(r) = f8(H - E) dr = SeE) , (25) 

where SeE) is the area of energy surface H(r) == H(q,p) = E. This is the 
probability that the system will be found inside a phase space volume element 
dr, centred around r == (q,p). It is much more usual to find that a system is 
not isolated, and the generic situation is to consider an equilibrium system in 
contact with a reservoir. An ensemble of such systems, each in contact with 
the same reservoir, constitutes the canonical ensemble. The form of the phase 
space distribution function for a canonical ensemble of systems can be a second 
postulate 

(26) 

Equation (26) defines what we will refer to as the canonical measure where k 
is Boltzmann's constant. The denominator is the canonical partition function 
Zc(N, V, T) which normalises the measure on the whole phase space, thus dfLc 
is the probability associated with the volume element dr. The logarithm of the 
partition function generates the thermodynamic properties of the system, and in 
particular the pressure is given by the following relation: 

8 
p = kT 8V lnZc(N, V, T). (27) 

Here we introduce a dynamical partition function for the Lorentz gas (Morriss 
et al. 1995), and what will emerge is a new dynamical basis for the microcanonical 
ensemble. We argue that the normalisation factor for the UPO average (equation 
14) is equivalent to the canonical partition function. We define the dynamical 
partition function by 

(28) 

We have already demonstrated that the UPO measure and the micro canonical 
ensemble give the same averages for the Lorentz gas. If this were true for an 
arbitrary phase variable, then we may choose the phase variable which is equal 
to unity on phase element dr and zero elsewhere. The UPO average of this 
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variable would then be equal to the microcanonical probability of phase element 
df, and we would have for the first time a dynamical basis for the assumption 
of equal a priori probability. 

We observe that the dynamical partition function has the dimensions of time. 
This is analogous to the classical partition function for an N particle system 
which has the units of action to the Nth power. Before we take the logarithm we 
must make Zd(V) dimensionless by dividing by a characteristic time t e , which 
does not affect the physics of the model. In fact it disappears in the difference 
between logarithms, and when partial derivatives are taken. 

We now construct a numerical test for the dynamical partition function to 
see if it does generate the thermodynamics of the system. Integrating (27) with 
respect to the volume, at constant Nand T we can calculate the change in the 
partition function for a given change in volume V, that is 

InZ(V1 ) -lnZ(Va) = dV - = (N -l)ln --..!:. + dV -. l Vl P (V ) lVl p¢ 

V() kT Va V() kT 

1.25 

0.75 

L'11nZ 

0.25 

-0.25 
o 

~~ canonical 
o dynamical 

0.1 
w 

0.2 0.3 

Fig. 10. Changes in the partition function. The curve 
represents the change of the canonical partition function 
obtained by integrating the pressure. The squares represent 
the change in the dynamical (POE) partition function. 

(29) 

We then evaluate Zd(V) numerically at seven different volumes. The accuracy of 
our estimates of Zd(V) vary. At small spacings there are significant contributions 
to the POEs from long orbits, whereas at higher spacings convergence is achieved 
at smaller lengths, but here there are sampling problems due to the much larger 
number of cycles. To compare with the standard thermodynamic method of 
equation (29) we present the change in the logarithm of the partition function as 
a function of spacing in Fig. 10. We choose Wa = 0·025 as our reference point, 
defining .6. In Z(wa) = O. The results obtained by integrating the p¢ (referred to 
as canonical in Fig. 10) are highly accurate due to the accuracy of the pressure. 
It is observed that the proposed dynamical partition function gives results that 
oscillate about the canonical partition function. Because of the consistency of the 
slopes of the canonical and dynamical partition function results, we conclude that 
the dynamical partition function looks a likely candidate for a generating function 
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of the thermodynamics of the Lorentz gas. We note that the numerical difficulties 
in both calculating and enumerating all UP Os up to length 12, as we did, are 
formidable and probably near the limit of our present generation of computers. 

7. Analytic Expressions for the Lyapunov Numbers 

The Lorentz gas can be considered as a mapping rather than a continuous 
flow, by choosing the surface of the scatterers as the Poincare surface of section, 
and studying the evolution from collision to collision. Using periodic boundary 
conditions, it is possible to reduce the dynamics to the surface of the scatterer in 
the EC. Then a point on the Poincare surface is uniquely defined by specifying 
two angles (O,¢) (where 0 is the angle of the momentum immediately after 
collision, and ¢ is the position on the surface of the scatterer). The collision to 
collision dynamics can be represented by a mapping where 

(30) 

and where M is defined implicitly by the integrated equations of motion. Here M 
contains all the information required to compute the stability and thermodynamic 
properties of the system. 

Fig. 11. Angle definitions for the free flight between collision 0 and collision 1. 

The Lyapunov numbers of the periodic orbits of M can be computed as 
follows (Lloyd et al. 1995). The free flight from collision 0 to collision 1 takes 
(Oo,¢o) to (Ob,¢I), where 00 is the momentum angle immediately after collision 
0, and Bb is the momentum angle immediately before collision 1 (see Fig. 11). 
This is followed by collision 1, which transforms (Bb, ¢l) into (01 , ¢d. Thus, the 
stability matrix for one iteration of M, that is J M, is composed of the product 
of the stability matrix for the free flight, J F say, and the stability matrix for 
the collision, Jc . The stability matrix for a periodic orbit of n collisions is then 
constructed from the product of pairs of these matrices, 

n n 

Jorbit = II JM(i) = II Jc(i) lp(i) , (31) 
i=l i=l 

where i labels the free flight, and the order of terms in the product is such that 
the latest collision is the left-most term. The stability matrix for the collision Jc 
can easily be obtained from the collision dynamics. Consider a collision in which 
(Ob, ¢d goes to (01, ¢d. There is no change in ¢l, and OJ = -Ob =f 7r +2¢1, so 
that Jc is given by 
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!l!!J..) 8(h = (-1 2) 
8<Pl 0 1 
8<P1 

(32) 

which is independent of the collision geometry, so we drop the index i. 
Although it is not possible to give a closed form for the part of the mapping M 

which corresponds to a free flight, we can calculate partial derivatives implicitly 
from the equations of motion given the values of (en+1, <Pn+1). So the stability 
matrix for the free flight connecting (eo, <Po) to (616, <PI) can be shown to be 

( 

sineo cos( <PI - eo) 
sineo COS(<P1 - eo) 

h(l) = 
_1_ sin(eo - eo) 
csineo cos( <PI - eo) 

• £1/ sin(<p1 - <PO)) -cslnuo (ri-. £1/ ) cos '1'1 - uo 

cos( <Po - eo) . 
COS(<P1 - eo) 

(33) 

The eigenvalues of (Jorbit J~rbit)! (where the asterisk denotes the adjoint) are 
the Lyapunov numbers (Eckmann and Ruelle 1985) for a periodic orbit, which 
we denote by Al and A2 . These are related to the Lyapunov exponents Ai by 
Ai = exp(Ai Ti), where Ti is the period of the orbit. 

A very useful result follows from consideration of the determinant of the 
stability matrix. Note that det(Jc) = -1 and using the collision dynamics it 
can be shown that 

det(JF(l)) = _ sin eo cos(<Po - eo) . 
sineo cos( <PI - 611) 

It follows that the determinant of the stability matrix for a full periodic orbit is 

det(Jorbid = IT det(JF(i))det(Jc) = IT S~nei_1 . 
i=l i=l Smei- 1 

(34) 

It is well known that a relation holds between the average current and average 
Lyapunov exponents for a system of particles, that is 

(vx/ = (L).x/ = (AI/ + (A2/ . 
T c 

(35) 

However, the fact that equation (35) is an identity for individual UPOs can be 
proved using the properties of the stability matrices we have constructed. First, 
we note that the displacement for the ith free flight is 

1 (Sinei-1) L).Xi = Xi - Xi-1 = -In. , 
c Smei- 1 

(36) 

so the total displacement in the x direction during a complete cycle L).X can be 
written as 

L).X = tL).Xi = ~ t In(s~nei-1) = ~ln IT (S~nei-1) = ~ln(detIJnl). (37) 
;=1 c i=l Smei- 1 c i=l Sme i _ 1 c 

Combining this with equation (36), the PO sum rule follows immediately: 
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(38) 

This result proves to be very useful in analysing the properties of periodic orbits, 
particularly the stable ones which appear at larger values of the field. 

8. Periodic Orbit Expansion for the Nonequilibrium Lorentz Gas 

To demonstrate the convergence ofthe POE for nonequilibrium steady states, we 
calculate the potential contribution to the hydrostatic pressure, the conductivity, 
and the average Lyapunov exponent. For the Lorentz gas in an external field, 
we take the diffusion coefficient to be given by 

() Jx(c) . 1" iTi () d A- I/" A-I Lxx c = -- = hm - ~ Px S S i ~ Ti i 
c n-+oo c 0 

iEP" iEP" 

(39) 

The first equality defines a field dependent conductivity. As c --+ 0, we can 
distinguish two classes of UPOs: a class of orbits with b.xi = 0, which can be 
ignored, and a class for which b.Xi -=I- o. Each orbit with b.Xi -=I- 0 has its time 
reverse, with exactly opposite displacement, b.X_i = -b.Xi. The contribution to 
the numerator of equation (39) of each such pair of orbits is 

b.xi(Ai l - A=D = b.xi(e-AiTi - eLiT') = b.xie-AiTi(l- e(Ai+Li)Ti) 

= b.xe-A;r; (1 - ee~Xi) = -cb.x~ Ail + O(c2), (40) 

where the second last equality is a consequence of the PO sum rule, and we 
use the fact that the largest Lyapunov exponent of an orbit equals the negative 
of the smallest Lyapunov exponent of its time reverse. When c --+ 0, we have 
Ai 1 --+ AiD 1 , where AiD 1 is the inverse Lyapunov number at zero field. Thus, 
combining equations (40) and (39), we recover the UPO based mean square 
displacement formula for the diffusion coefficient at zero field. 

To demonstrate the POE method we consider the results at a spacing of 
w = 0·2360685, at a field of c = 0·1. We observe that the contribution to the 
conductivity Lxx oscillates with the length n of the UPOs, and then the Shanks 
transformation gives a better estimate of the converged result (see Table 6). 

In Fig. 12 we show the improved convergence of the conductivity obtained 
using the Shanks transformation. In Table 7 we compare the best estimates 
obtained for the pressure, Lyapunov exponent and conductivity using the POE 
method with those obtained by direct simulation. 

9. The Bifurcation Diagram 

Here we study the behaviour of the map M defined at the beginning of Section 
4, as a function of the applied external field and we restrict our considerations to 
the case where a = o. In order to visualise the behaviour of M we consider the 
projection of the mapping onto the B-axis. We find a quite complex structure, 
which resembles the bifurcation diagram of a one-dimensional dynamical system 
(Lloyd et al. 1994). 
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Table 6. 

n 

2 
3 
4 
5 
6 
7 
8 
9 

10 

G. P. Morriss and L. Rondoni 

Periodic orbit expansion and Shanks transformation at E = 0·1 and a = 0 

# cycles Lxx LShanks 
xx p</>V 

9 0·4766 0·8470 
30 0·0859 0·2147 0·7867 
73 0·2780 0·2044 0·7987 

198 0·1586 0·1917 0·7123 
550 0·2043 0·1862 0·7114 

1710 0·1742 0·1857 0·6633 
4817 0·1928 0·1893 0·6646 

13460 0·1885 0·1906 0·6306 
33966 0·1926 0·6277 
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length 

Fig. 12. Periodic orbit expansion and Shanks transformation 
results at e: = 0 ·1 and a = 0, showing the convergence of the 
conductivity. 

Table 7. POE average properties 

.>. 

1·5688 
2·0150 
1·6635 
2·0822 
1·8687 
1·9801 
1·9297 
1·9697 
1·9477 

The second and third columns contain the direct simulation results for the diffusion coefficient 
and the pressure. The POE estimates are based on the Shanks transformation for the 
conductivity and the best available result for the pressure and average Lyapunov exponent. 
Notice that the values of the pressure obtained from POE are within 3% of the direct 
simulation results, and those for the diffusion coefficient are within 1% or better. Here a is 

o 
o 
o 
o 

7r/6 
7r/6 
7r/6 

the angle between the (06) short flight and the field direction 

0·0 
0·005 
0·1 
1·0 
0·0 
0·005 
0·1 

0·197(1) 0·665(1) 0·201(3) 0·69(5) 
0·2006(1) 0·6608(1) 0·200(6) 0·66(3) 
0·1918(1) 0·6606(1) 0·191(2) 0·63(3) 
0·165(1) 0·6866(1) 0·168(8) 0·65(5) 
0·197(1) 0·665(1) 0·201(3) 0·69(5) 
0·195(1) 0·6608(1) 0·196(5) 0·66(3) 
0·192(1) 0·6606(1) 0·185(8) 0·66(3) 

('>')POE 

1· 94(2) 
1· 95(1) 
1·96(1) 
1·71(5) 
1· 94(2) 
1·96(1) 
1·97(1) 

In Fig. 13 we present the upper half of the ()-£ diagram, obtained by direct 
iteration of a few initial conditions, ignoring the initial transient behaviour. The 
other half of this diagram is trivially obtained from this by reflection in the line 
() = o. When the field is varied, a series of dramatic changes in the dynamics of 
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the mapping occur. For fields of 2·1 or less the iterations of the initial conditions 
sample most of the B-space. For 2·1 < C < 2·629, a wide variety of dynamics 
emerges. For c > 2·629, the iterations settle onto a stable length 2 orbit with 
symbol string (48), shown in Fig. 14. Note that the curvature of a free flight 
grows with increasing field. Eventually, as the external field grows to infinity, the 
unique stable orbit which survives approaches an orbit composed of horizontal 
straight lines, and arcs of circumference. As a consequence, in the limit c ~ 00, 

the diffusion coefficient goes to zero. For all fields larger than 2·629, there is a 
unique stable orbit, and its basin of attraction is the whole phase space, except 
for the points which lie in the unstable (06) length 2 orbit. 

3 

2 

e 

(; 

Fig. 13. Upper half of the bifurcation diagram for the discrete 
mapping M(q,,8) as a function of field c, projected onto the 
(c, 8) plane. This diagram is symmetrised by mapping (-8) '* 8. 
Above c ~ 2·62902 there is a single line which is the stable 
(48) length 2 orbit, which then becomes a stable length 8 
orbit. After that, there are chaotic bands interspersed with 
periodic windows. The separate feature at 2·3 < c < 2·46 is 
one example of the neutrally stable elliptical orbit (410)=. 

As a dynamical system, the range of fields 2· 1 < c < 2·629 is of particular 
interest. To understand what happens here, we follow the fate of the stable (48) 
orbit, as c is lowered through 2·629. We see that the curvature of the free flights 
in the stable (48) orbit decreases, until they both develop zero-effect glancing 
collisions with another scatterer at Cg ;:::i 2·62902433. Any further decrease in the 
field prunes the orbit. The (48) orbit disappears while it is still stable, and is 
replaced by a length 8 orbit. We might have expected an extra collision to be 
introduced into each of the free flights of the length 2 orbit, thus producing a 
length 4 orbit. However, each additional collision introduces more instability to 
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Fig. 14. Stable length 2 orbit (48) at c = 2·7. As the field is 
in the negative x-direction, the wandering particle moves from 
right to left. 

(b) 

Fig. 15. (a) Three copies of the stable length 2 orbit (48) 
just before it is pruned at c Rj 2·629. If the field is decreased 
further, the curved part intersects the scatterer. (b) The 
same as (a) except that the field has been reduced further to 
c = 2·625, and the stable length 2 orbit has been pruned. It 
is replaced by a stable length 8 orbit (268410648) which is 
similar to the three copies of (48) but has two extra collisions. 

the orbit. Thus, the introduction of as few as possible new collisions per free-flight 
ensures that the new orbit is the most stable possible. In particular, the orbit 
which replaces the (48) orbit, introduces only one new collision for every three 
free-flights. This new stable orbit has length 8, and it consists of three sequential 
copies of the original length 2 orbit, where only two new collisions have been 
added, see Fig. 15a. The length 8 orbit becomes unstable at € ~ 2·50609, and 
is pruned at € ~ 2·5057 (see Fig. 15b). 
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In the bifurcation diagram (Fig. 13), the transition (length-2)---(length-8) is 
expressed by the fact that, as the field is lowered, each of the original two 
points of the stable (48) orbit splits into three different points, while two new 
points are generated. The transformation is pruning driven, not stability driven. 
Clearly, although the bifurcation diagram in Fig. 13 seems reminiscent of those 
for one-dimensional maps, the mechanism at work is quite different. 
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Fig. 16. Plot of the full (4), B) plane at c = 2·43 for a series of 
initial conditions near the neutrally stable (410) orbit. Around 
this point there is a continuum of initial conditions, each 
of which produces a distinct neutrally stable elliptical orbit 
(410)00, centred about the neutrally stable (410) orbit. In 
the inset, the small squares represent the initial conditions, 
while the other points represent their time evolution. Five of 
the initial conditions give elliptical orbits while the other one, 
after an initial transient, gives a chaotic orbit. 

At still smaller fields, the simplest orbits to consider are the short-flight orbits 
of length 2. Among these, the (06) orbit is unstable at all values of the field. 
The (410) orbit however, does change in shape and stability, with field. It exists 
for fields in the range 0 ::; c < 2·46, becoming neutrally stable at c ~ 2·46. For 
fields in the range 2·3 < c < 2·46 there are two different (410) orbits, one of 
which is unstable while the other is neutrally stable. However, around this second 
neutrally stable orbit there is a continuum of initial conditions each of which 
begins a distinct orbit in phase space, whose collision points fill up an ellipse in 
the (¢,8) plane (see Fig. 16). All of these orbits have symbol string (410)00, 
where the superscript stresses that either the number of repeats is very large 
(for a large periodic orbit), or that the symbol sequence is repeated indefinitely 
without closing (a non-periodic orbit). In either case the orbit returns arbitrarily 
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close to the initial condition, hence the x-displacement is zero, and these orbits 
are non-dissipative. The presence of elliptic rather than hyperbolic trajectories 
shows that the hyperbolicity properties of the Lorentz gas can be lost, at some 
values of E. This leads to a loss of ergodicity as time averages along elliptic 
orbits differ from those computed along chaotic orbits. Thus, E = 2·3 sets an 
upper bound for the value of the field at which ergodicity remains. 

10. Concluding Remarks 

In this paper we have reviewed the formalism of POE, and its applications to 
systems of interest in statistical physics, such as the equilibrium and nonequilibrium 
Lorentz gas. In particular, we have seen that POEs reproduce the correct averages 
for thermodynamic, and dynamic quantities, which make them suitable to study 
the phase space distribution functions. This fact has been used to infer the 
possibility that the normalisation of the UPO measures plays the role of the 
partition function, at equilibrium. Our test of such a hypothesis is encouraging, 
although the numerical difficulties met in such an endeavour seriously impair our 
ability to draw definite conclusions. Our results provide us with a new dynamical 
basis for the universally accepted hypothesis of equal a priori probabilities in 
phase space, and shows the usefulness of a detailed knowledge of the microscopic 
structure of phase space. If this program can be carried over to nonequilibrium 
systems, we will have, for the first time, a dynamically based distribution function 
for nonequilibrium. Our results are encouraging also in this direction, although 
the numerical difficulties that are found in the study of nonequilibrium models 
are even harder than at equilibrium. 

The last part of our work, devoted to the study of the nonequilibrium Lorentz 
gas as a two-dimensional mapping, shows that this statistical mechanical model 
has many interesting features from a purely dynamical systems point of view. 
Moreover, a partial answer is found to the question of what is the value of the 
external field for which ergodicity breaks down (Chernov et at. 1993), which is 
important to know as it sets a bound on the validity of the rigorous results 
recently derived for such a system. 
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