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Abstract 

The polarised neutron diffraction experiment is described and the nature of the information 
obtained is outlined. In many cases interpretation of the experiment assumes that the crystal 
is made up of non-interacting molecular or ionic units. The soundness of this assumption is 
examined in the case of copper Tutton salt. Polarised neutrons are scattered by the crystal 
magnetisation density which has a contribution from the orbital motion of electrons. A 
method for including the spin-orbit contribution to this effect is described for the particular 
example of the CoCI~- ion. 

1. Introduction 

The motivation for the work described in this paper is the drive to understand 
the nature of bonding in transition metal complexes. Early thinking about the 
matter recognised that electrons which were not already involved in bonding on 
a ligand could be accepted by empty sites on the metal ion, and so the concept 
of a coordinate covalent bond, where both the electrons involved in a bond are 
donated by one of the atoms in the bond was born. Of course electrons are 
indistinguishable, and so whether the electrons come from one atom or another is 
not a meaningful question to ask. However, donation from one atom to another 
will lead to considerable ionic character. For example, recent theoretical studies, 
illustrated by the interesting work of Rosi and Bauschlicher (1989, 1990), interpret 
bonding in transition metal-water interactions as being electrostatic in character, 
with the major electronic involvement being the reorganisation of the electrons 
on the metal to minimise repulsion between the d-electrons of the metal ion and 
the lone pairs of the water molecule. There can be some covalent involvement 
however, and various pieces of evidence indicate that the covalent character of 
any bonding depends on the nature of the ligand involved. The determination 
of the extent of covalency is of some interest and it is a factor which can be 
probed by polarised neutron diffraction. 

Most of the understanding developed about chemical honding has come from 
thermochemical and spectroscopic studies, both of which are concerned with 
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the energetics of systems. Studies of this kind are complemented by theoretical 
chemistry which by concentrating on energetics has contributed a great deal to our 
understanding of binding in small molecules from the early part of the periodic 
table. But transition metal complexes are difficult systems for theory, because 
the number of electrons is large. Energetics and theory, though, are not the only 
way of approaching questions of chemical bonding. Information is also available 
from diffraction measurements. These give information about the distribution of 
electrons in molecules in the form of the charge and spin density, the latter of 
which maps the distribution of unpaired electrons. These distributions demand 
different information from a wavefunction than the energy which, because of the 
variation theorem, the wavefunction is tailored to give best. It is believed though 
that good wavefunctions, in terms of the variation theorem, are also accurate in 
terms of the three-dimensional distribution of electrons. 

Two types of diffraction are used to obtain electron distributions. X-rays are 
used to probe charge densities while in the right cases polarised neutrons directly 
give spin densities. This paper is primarily concerned with spin densities from 
the polarised neutron experiment, although there is an excursion into charge 
densities to illustrate an important point. 
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Fig. 1. Experimental set up for the polarised neutron diffraction experiment. 

The polarised neutron experiment is uncommon and can only be carried out 
at a few locations, the major one being the Institut Laue-Langevin at Grenoble. 
The possibilities are exemplified in the work of Figgis, Reynolds and coworkers 
(1993a, b, c). The following brief description of the polarised neutron experiment 
follows that of Figgis (1990) and is summarised in Fig. 1. A nuclear reactor 
designed to produce a high fiux of neutrons is the essential requirement. The 
neutrons are moderated at A, taken by a beam guide at B-C, and are made 
monochromatic and polarised by diffraction from a magnetised iron crystal, so that 
their spin is in a particular direction ('up') at D and E. The direction of polarisation 
can be reversed by the flipper at F. Once polarised the monochromatic beam 
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must travel in a magnetic field to maintain the polarisation. The sample at 
G, held at ",4 K and in a magnetic field with H ",5 T diffracts the neutrons 
into the Bragg directions. From the point of view of obtaining spin densities, 
the important point is that the scattering intensity depends on the magnetic 
properties of the sample and depends on whether the neutron polarisation is 
'up' or 'down'. Experimentally, what is recorded are the flipping ratios-the 
ratio of the cross section for spin 'up' neutrons to that for spin 'down' neutrons. 
The flipping ratios can be manipulated to produce magnetic structure factors for 
Bragg reflections which are analogous to the familiar X-ray structure factors. 

Analysis of the magnetic structure factors either by Fourier transformation or 
by least squares fitting of flexible models produces maps of the distribution of 
spin density in the molecule. The spin map gives direct information about the 
distribution of valence electrons on the metal since, in the ground state, only 
the valence electrons will have unpaired spin. 

Theoretically, spin density distribution maps can be calculated very simply 
once a wavefunction is obtained. This is made clear by writing densities in terms 
of the densities of spin-up Pi and spin-down Pl electrons: 

Pspin = Pi - Pl, Pcharge = Pi + Pl . (1) 

Spin and charge densities can be used as a point of comparison with experiment. 
It is, however, preferable to make comparisons with the structure factors since 
this avoids uncertainties which enter with the analysis of the data. Within 
certain approximations both magnetic and X-ray structure factors can be obtained 
theoretically. We have developed analytic methods for obtaining structure 
factors from molecular wavefunctions which are expanded in terms of atom 
centred Gaussian functions. This capability has led to useful interaction with 
experimentalists some of which are described below. 

2. Theory of the Polarised Neutron Experiment 

The scattering cross section for the interaction of the neutron with a crystal 
is given by the square of the scattering amplitude: 

da 2 
drl = [F(ko, k)[ , (2) 

where ko, k are the propagation vectors of the incident and scattered neutron 
respectively. The scattering amplitude is given in the first Born approximation 
by 

( ) A1nJ* F ko, k = - --2 1j; V(r)tPo dr, 
27rn 

(3) 

where M n is the mass of the neutron, V ( r) is the potential of the neutron 
in the magnetic field created within the crystal, and VJo = XO exp(i ko• r) and 
'tP = X exp(i k • r) are wavefunctions for the incident and scattered neutron 
respectively. 
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Fig. 2. The crystal structure of CS2CoCk 

To make progress in calculating scattering amplitudes it is necessary to compute 
V(r). In the majority of transition metal compounds which have been studied 
experimentally, the crystal consists of ionic units which are sufficiently separated 
for them to be considered as non-interacting units. An example is caesium 
tetrachlorocobaltate (Cs2 CoC14 ). A diagrammatic representation is shown in 
Fig. 2. The circles represent Cs+ ions. The tetrahedra are CoCl~- units in 
which four Cl- ions are bound to the cobalt with Co-Cl distances of about 226 
pm. This tetrahedral array constitutes one ionic unit, the other is the Cs+ ion. 
Atoms within each tetrahedral CoCP- unit are considerably closer to each other 
than they are to any other ions in the structure. As a consequence, for crystals 
of this type, the crystal potential can be written in terms of a sum over the 
potentials for each ion in the unit cell convoluted over the lattice density L( r): 

Ycrystal(r) = ("2::: V;nol.j (r - r j )) * L(r) . 
J 

(4) 

This assumption is similar to that made for structure determinations with X-rays, 
but in that case, the summation is over atoms rather than ionic fragments. The 
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molecular potential is given by 

27rfi2 
Vmo1,j(r) = -- LTjk bjk 8(r - rj - rjk) - 2"(JiN S. Bj(r) , (5) 

MIl k 

with Tjk = exp[- ~qtAjkql. In (5), bjk is the experimental scattering length, 
"( the magnetic moment of the neutron in nuclear magnetons, JiN the nuclear 
magneton, S the spin of the neutron, B j the thermally averaged magnetic flux 
of the molecule, q the scattering vector ko-k and Ajk is the experimentally 
determined thermal tensor for nucleus k in molecule j. 

The first term of (5) takes account of scattering from the individual nuclei 
labelled k. The second term is the interaction energy between the spin of the 
neutron and the thermally averaged magnetic flux arising from molecule j. This 
results from spin density and electron currents from the orbital motion of the 
electrons. Putting (5) into (3) gives an expression for the scattering amplitude 
involving the Fourier transform of the magnetic flux within the unit cell. This 
expression will be discussed in a later section. At this stage though, it is 
convenient to examine the assumption inherent in obtaining (4), that the ions in 
the crystal can be treated as being non-interacting. This examination has been 
accomplished by determining the X-ray structure factors of copper Tutton salt, 
(ND4hCu(S04)2· 6D20 . 

3. X-ray Structure Factors for (ND4hCu(S04h.6D20 

Accurate Bragg intensities for (ND4 hCu(S04h.6D20 at 9 K are available 
from the work of Figgis et al. (1993a). In order to test the assumption of 
non-interacting ions it is necessary to consider the familiar general expression for 
the structure factor for a crystal 

N 

F(q) = Lexp(iq.rj),oj, 
j 

(6) 

where q is the scattering vector, rj the position vector for the ion and ,oj the 
Fourier transform of the thermally averaged molecular charge density. While 
this expression containing the charge density is familiar for X-ray diffraction, Pj 
could equally well be a spin density or current density in which case (6) would 
represent the general form of the structure factor derived from (5) and (3) and 
be applicable to polarised neutron diffraction. In calculating the structure factors 
for this situation the computational problem is to evaluate (6) with ,oj derived 
from molecular wavefunctions. 

For most cases there will be more than one ion of each type per unit cell. In 
general these ions will be oriented differently in the unit cell. The wavefunctions 
of these rotated ions are related by a unitary transformation U. Thus the 
wave function at k is related to that at j by 

(7) 

Thus the contribution of each ion to the scattering factor can be simply included 
by making the appropriate unitary transformation to the wavefunction for each 
ion. 
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A further computational task is to account for thermal smearing since experiment 
produces thermally smeared structure factors. In our work thermal smearing 
is handled by partitioning molecular densities into atomic and overlap densities 
using the Mulliken (1955) scheme. From this partitioning, mean atomic densities 
are obtained by convoluting the static atomic densities with the experimentally 
obtained thermal tensors for the respective atoms. What remains is the question 
of dealing with the overlap densities. Previous work has suggested the use of a 
combination of the thermal tensors of the two atoms joined in the bond which 
produces the overlap density (Coppens et al. 1971; Stewart 1969). Thus if two 
atoms A and B are bound with thermal tensors AA and AB and C is centrally 
between them and considered to be the centre of the overlap density, then two 
expressions have been proposed for Ac-one by (Coppens et al. 1971), 

(8) 

and one by (Stewart 1969) 

exp( _~qt Ac q) = exp[-iqt(AA + AB)q]. (9) 

In practice both (8) and (9) give very similar structure factors. 
The major task in the evaluation of (6) is calculating the Fourier transform 

of Pj. Since the majority of molecular wavefunctions are expanded in terms of 
Gaussian-type orbitals we have written a programme to obtain both conventional 
and magnetic structure factors from Gaussian-type wavefunctions. At the heart 
of the programme is the Fourier transform of the product of Gaussian functions 
which appear in the density expressions Pj. The transformations are accomplished 
analytically using a generalisation of the expressions published by Chandler and 
Spackman (1978). Given a Gaussian function centred at A, 

(10) 

it can be shown that 

J xlymznGA GB exp(iq. r) dr = NA NB(7r / p)3/2exp (~2 -etA ri - aB r~ ) 

/1+12 

X L !i(h,/2 - TA,x, -TB,x)9HI(p, Qx) 
i=O 

rn! +m2 

X L !j(ml, m2, -TA,y, -TB,y)gj+m(P, Qy) 
j=O 

nl +n2 

X L h(nl, n2, -TA,z, -'rB,z)gk+n(P, Qz), 

(11) 



Electronic Structure from Polarised Neutron Diffraction 267 

with 

i=min(j,l) () ( ) 
jj(l,m,a,b)=. L. ! j:i al-ibm+il-j, 

2=maX(O,J-m) 

where [n/2] is the largest integer less than or equal to n/2. 
With a programme incorporating the features outlined above (6) can be 

evaluated for copper Tutton salt. Three models were examined for the calculation 
of structure factors: (1) a non-interacting atom model; (2) a non-interacting 
molecule model and (3) an empirical model in which F(q) were calculated from 
a multipole fit to the experimental F ( q). 

For the molecular and atomic calculations a variety of basis sets were used 
ranging from single zeta to basis sets which are triple zeta for the valence 
functions and with polarisation functions added to the largest sets in the case 
of molecules. The basis sets were used in restricted Hartree-Fock calculations 
on the closed shell ions and in unrestricted Hartree-Fock calculations for the 
open shell [Cu(H20)6]2+ ion. Geometries used come from the neutron structure 
(Figgis et ai. 1993a). Thermal parameters were taken from the neutron diffraction 
experiment at 9 K. 

The various models are evaluated by comparing a set of calculated structure 
factors with those obtained experimentally. The measure of comparison used is 
X2, defined as 

2 1 ~ 2 2 
X = - ~(FCi - Foi ) /(J'Oi' 

N. , 
(12) 

where N is the number of structure factors being compared, Fe is the calculated 
structure factor, F ° is the experimental structure factor and (J'5i is the experimental 
standard error. A full discussion of this study can be found in Chandler et ai. 
(1994). Here the principal results are shown in a series of figures. 

Fig. 3 is a plot of X2 for a particular calculation versus the number of basic 
functions per unit cell used in the calculation. The behaviour of X2 suggests 
that for structure factors the basis set is approaching a limit. 

Fig. 4 illustrates the importance of thermal motion even at 9 K. Fig. 4a 
shows X2 versus sinO l\ for F (q) without thermal smearing; the basis set is 
large. Fig. 4b shows the effect of including thermal smearing. If the different 
scales for X2 are noted the extreme importance of including thermal motion is 
immediately apparent. Also of interest is the fact that the charge density is 
not uniformly sampled by sinO/A. High values of sinO / ,\ are dominated by the 
core density, whereas valence density predominates in the low angle scattering. 
Bearing this in mind, it is evident from Fig. 4b that, when temperature factors 
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Fig. 3. Plot of X2 versus the number of basis functions per unit cell. 
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Fig. 4. Plot of X2 versus sinO / >.. for (a) a large basis and no 
thermal motion and (b) for the same basis as (a) but with 
thermal motion included. 

are included, the structure factors not being modelled correctly are those which 
come predominantly from the valence electrons. 

The evidence for the reasonableness of the non-interacting ion model is contained 
in Table 1. In this table X2 and conventional R factors are tabulated for the 
three models, with a number of basis sets shown for the ionic calculations. The 
independent spherical atom model (SPAT) calculated with the largest hasis set 
used for the ions is the poorest model. The agreement from ab indio Hartree-Fock 
molecular calculations improves as the basis sets increase in size. The least 
satisfactory is the single zeta basis (SZ) followed in order of increasing agreement 
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Table 1. Agreement factors between theoretical and experi­
mental structure factors for various theories 

Theory X2 R(F) (%) 

SPAT 40 3·52 
SZ 33 2·82 
DZV 7·9 1·57 
DZP 5·2 1·40 
TZVP 4·3 1·30 
BEMP 2·7 1·14 
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by a basis which is double zeta in the occupied valence orbitals (DZV), one which 
is double zeta with polarisation functions (DZP), and the largest basis (DZTV). 
Details of these bases are given by Wolff et at. (1995). The best non-interacting 
molecule result is striking in that with just two parameters it gives almost as 
good agreement as the empirical model (BEMP) with 184 parameters used in 
fitting the experimental data. It is clear that we have explained, using only ab 
initio theory on isolated molecules, a large fraction of the change in electron 
density on formation of the crystal from its constituent ions. 

Armed with the assurance that, for crystals of the type illustrated in Fig. 2, 
the non-interacting ion model is reasonable, we can return to a consideration of 
polarised neutron diffraction. 

4. Polarised Neutron Diffraction Pattern of CSsCoCls 

Polarised neutrons, as already pointed out, are scattered by the molecular 
magnetic field. For transition metal ions which are not orbitally degenerate, the 
magnetisation density arises, as a first approximation, from the electron spin 
alone. This ignores spin-orbit coupling, which allows an orbital contribution to 
the magnetisation. In the spin only case magnetic structure factors are scalar 
quantities. With an orbital contribution they become vector quantities and their 
transform is a magnetisation density which is no longer colinear with the applied 
magnetic field. The result is that there is no longer a direct association with the 
spin density which carries the information about bonding within the complex 
ions. Theoretical assessment of the magnitude of spin-orbit effects is obviously 
of some importance. This section outlines progress made in this respect and 
gives the application of the theory to diffraction in the case of the orbitally 
non-degenerate Cs3CoC15 molecule. 

To achieve this aim it is convenient to develop a different form for the structure 
factors from that given in (6). After some algebra (2) can be converted to the 
following expression for the scattering cross section for polarised neutrons from 
centrosymmetric crystals: 

([FN + {)Po• F..L[2 + {)2[po X F..L[2) (~7r)3 2::= 8(q - 27rD*m), (13) 
cell 'In 

where m are the Miller indices for the reciprocal lattice vector, D* is a matrix 
whose columns are the reciprocal lattice vectors, {) is a constant and Po is the 
neutron polarisation vector. 
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In (13) the molecular contributions appear in FN which is the nuclear 
contribution to scattering and Fl., the magnetic structure factor, which is the 
magnetic part of the molecular contribution. Expanding Fl. gives 

( 
c2 ) _ 

Fl.(q)= -- L exp(iq.rj)2Bj (q). 
87rILB . 

J 

(14) 

Previous work has developed this expression in terms of the magnetisation 
density (magnetic moment per unit volume). This formulation has proved to 
be intractable for molecules without using approximations. Instead we have 
expressed it in terms of j the Fourier transform of the current density, which is 
easy to visualise since the movement of charge will give rise to a magnetic field. 
In this form 

(15) 

where J itself can be decomposed into a sum of contributions 

(16) 

Here J L is the orbital contribution, which is necessarily zero if there is no orbital 
angular momentum when the wavefunction is real. Also J s is the contribution 
from the net spin of the electrons. Lastly, there is the small diamagnetic 
contribution present in all molecules. In this form, analytic expressions for the 
magnetic structure factors can be obtained. They are readily evaluated from 
molecular wavefunctions using the computational scheme outlined in Section 3. 

To demonstrate the viability of these procedures we have calculated magnetic 
structure factors which include spin-orbit coupling effects for CoCl~- as found 
in the crystalline environment of Cs3CoCk The CoCl~- ion has a 4Bl ground 
state (Barnes et ai. 1989) and so has no orbital angular momentum. However, 
spin-orbit coupling allows the mixing in of states which have orbital angular 
momentum giving a wavefunciton for which J L of (16) is not zero. To obtain 
the wavefunction the following Hamiltonian was used 

H=Ho+HB+Hso, (17) 

where H 0 is the usual Hamiltonian of quantum chemistry 

Ho = -~ LV;-~ L Zn + ~ L~ 
2rne , 47rEo ,; 'n In; 87rEo I" ' 

< < ;#j 'J 

(18) 
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H B includes the interaction with an external magnetic field B 

and where J-tB = lelfi/2rne . The spin-orbit interaction is included with Hso: 

H . ge J-t~ ""' Zn S [ 0] ge J-t~lel ""' Zn S [ (B )] so = Z ---2 ~ T i· Tni X Vi + 2 ~ --:3 i· Tni X X Ti . 
47r1:o e . r ni 81rfo fie . r ni 

n,t n,t 

(20) 

The vector Tni = Tj -Rn is the difference between the position of an electron 
and a nucleus. 

Single determinantal solutions to the Hamiltonian were obtained using the 
unrestricted Hartree-Fock formalism. In order to accommodate the mixing of 
spin functions In) and 1,8) caused by the external magnetic field and spin-orbit 
interaction, the orthogonal molecular spin-orbitals cPP were expressed as a linear 
combination of spin-space product basis functions in the following way: 

(21) 

Details of these calculations and the subsequent discussion can be found in Wolff 
et al. (1995). 

What effect does the spin-orbit interaction have on the agreement with 
experiment? This is summarised in Fig. 5. The calculations employed a variety 
of basis sets. Agreement in this instance is measured in terms of a scale factor 
g. This is the factor which when applied to all calculated structure factors 
minimises X2 in equation (12). Fig. 5 has 1/ 9 plotted on the ordinate. A value 
of 1/ 9 < 1 means that on average the magnitudes of the structure factors are 
too low, a value greater than one means they are too high. It is clear that; 
for all basis sets, the spin only structure factors are too low, both with and 
without the inclusion of thermal smearing. There is a considerable change upon 
including the spin-orbit interaction through (17). The structure factors are now 
too high and the inclusion of thermal smearing improves the agreement with 
experiment rather than worsening it as happens in the other case. Agreement 
between experiment and theory is still not impressive. However, the Hamiltonian 
(17) does not include the two-electron terms which would have the effect of 
shielding the electrons from the nucleus (Z = 27). That this indeed would have 
an appreciable effect has been tested by using an effective nuclear charge of 9 
for the d-orbitals. This is the effective charge obtained using Slater's rules. The 
points from this correction are the open diamond and triangle in Fig. 5; the 
latter includes thermal smearing. This is a substantial improvement in agreement 
with experiment. 



G. S. Chandler et al. 

1.4 

1.3 x x x x 

1.2 

1.1 
1/g 

0.9 

0.8 

0.7 
SZ DZV DZP DZTVP 

Basis set 

Fig. 5. The 1/ g scale factor for magnetic FM and spin-only 
Fsz structure factors: Fsz (no thermal motion) = e; Fsz = 0; 
FM (no thermal motion) = x; FM = *; FM (no thermal 
motion) from an effective Z = 9 = <>; FM from an effective 
Z = 9 = 6. 

5. Conclusion 

Even though the application of polarised neutron diffraction is still in its infancy, 
it has been shown to be capable of revealing important information about bonding 
in transition metal complexes, especially about the extent of covalent interactions. 
So far experiments have been mostly confined to centrosymmetric structures. 
However, sizeable molecules can be handled, much larger than computational 
chemistry can treat with any sort of rigour. Nevertheless, computation can deal 
with small archetypal systems and gives valuable insights to aid the interpretation 
of experiment. 
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