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Abstract

The recent experimental progress in laser cooling and trapping of neutral atoms brings the
atomic samples into the ultracold regime where the bosonic atoms and fermionic atoms
are expected to have different dynamic behaviours in the laser fields. In this paper we
systematically introduce the theoretical study of interaction of an ultracold atomic ensemble
with a light wave in the frame of a vector quantum field theory. The many-body quantum
correlation in the ultracold regime of atom optics is studied in terms of vector quantum field
theory. A general formalism of nonlinear atom optics for a coherent atomic beam is developed.

1. Introduction

In this paper we introduce a new theoretical method to describe the interaction
of atoms with photons in the frame of a vector quantum field theory. In order
to understand the motivation and reason to develop such a field-theoretical
description of atoms, we give a brief review of the development of the theory of
interaction of matter with light in this section.

(1a) Semiclassical Theory and Full Quantum Theory

Atoms and photons have played the central roles in our study of the interaction
of matter with light. In the semiclassical theory, the light field is treated as a
classical quantity whereas the motion of the electrons of the atoms is treated by
means of quantum theory. This theory successfully explains the discrete spectral
lines of atoms and forms the basis of the semiclassical laser theory (Sargent
et ale 1974). However, such a semiclassical theory fails to explain spontaneous
emission by atoms, which has to be phenomenologically introduced. The successful
treatment of spontaneous emission leads to the development of a fully quantum
mechanical theory in which the light field is quantised so that the vacuum photon
fluctuations can be taken into account. Such a fully quantum mechanical theory
of light and matter not only exactly describes the quantum statistical properties
of the laser, but also it results in the development of quantum optics (Haken
1970; Louisell 1973; Walls and Milburn 1994).
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In quantum optics, the motion of internal electrons of atoms in the presence
of a quantised light field is described by a density matrix master equation
which is a result of a quantum mechanical ensemble average. In the theory, the
centre-of-mass motion of the atoms is treated classically. The word 'classically'
here has two implications: (1) the centre-of-mass motion of every individual
atom is treated classically; and (2) the atoms in the sample are statistically
considered to be distinguishable. The latter means a basic assumption that the
response of a sample of atoms to a light field can be described statistically as
an averaged cumulation of the individual contributions of every atom in the
sample. In this sense, quantum optics effectively treats a single atom. Such a
single-atom theory has been very successful in existing experimental conditions
with low atomic densities and high temperatures. However, in recent years a
new technique called laser cooling and trapping of atoms has been developed.
By this technique, thermal motions of the atoms can be cooled down to a regime
where a quantum mechanical description of the centre-of-mass motion of atoms
is necessary. For such laser-cooled atoms, a research area called atom optics is
emerging (Mlynek et ale 1992; Walls and Milburn 1994).

(lb) Atom Optics

Atom optics is an extension of quantum optics in which the centre-of-mass
motion of atoms is quantised in terms of quantum mechanics. In atom optics,
both the internal electronic motion and the external centre-of-mass motion of
atoms are treated quantum mechanically. However, the existing atom optics
theory still only treats a. single atom, and the quantum statistical properties of
identical atoms due to indistinguishability are ignored.

With the photon recoil limit broken, experimental research in laser cooling
and trapping of neutral atoms has recently made rapid progress. Now it is
no longer a theoretician's dream to generate an ultracold atomic source in a
laboratory, where the atoms are expected to be mutually indistinguishable and
obey different quantum statistics depending on whether they are bosonic atoms or
fermionic atoms. The groups at the National Institute of Standards Technology
and University of Colorado have recently successfully observed Bose-Einstein
condensation in which the bosonic rubidium atoms (87Rb) lost their individual
distinguishability and degenerately condensed into a macroscopic single quantum
state in the ultracold regime (Anderson et ale 1995). One month later, a group
at Rice University also realised Bose-Einstein condensation of bosonic lithium
atoms (7Li) (Bradley et ale 1995). Hence it is now the right time to study such
ultracold atomic samples. Evidently the single-atom theory is no longer valid to
describe the interaction of the ultracold atomic sample with a light field. In the
ultracold regime, atoms have a thermal de Broglie wavelength longer than the
optical wavelength so that quantum correlations between atoms, due to many-body
collective effects, and quantum statistics, due to the indistinguishability of atoms,
are of crucial importance. To study the interaction of such atomic samples with
a light field, new methods must be developed.

(1c) Quantum Field Theory

The purpose of this paper is to give a review of the development of a vector
quantum field theory of the interaction of ultracold atoms with a light wave
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(Zhang et ale 1993, 1994; Lenz et ale 1994; Lewenstein et ale 1994; Ruprecht et
ale 1995). Quantum field theory is the most effective tool to study many-body
systems. However, the existing treatment of a many-atom ensemble in quantum
statistical mechanics employs a scalar quantum field theory in which the atoms
are assumed to have no internal structure. Such a scalar quantum field theory
is not valid to describe the atoms in the presence of a light field. To take
into account the internal transitions of electronic states of atoms, we develop
a vector quantum field theory. In Section 2 we systematically introduce the
basic methods and techniques of such a vector quantum field theory. Both a
two-level atomic ensemble and a multi-level atomic ensemble are studied in the
frame of the vector quantum field theory. In Section 3 the vector quantum field
theory is applied to study the many-body quantum correlation in atom optics
with ultracold atoms. The effect of quantum statistics on the motion of atoms
in the ultracold regime is shown. In Section 4 we develop a general formalism
of nonlinear atom optics for a coherent atomic beam. Several typical nonlinear
atom optics phenomena, such as an atomic soliton, nonlinear Bragg scattering
and a nonlinear atomic cavity, are studied on the basis of nonlinear atom optics.
The analogy with nonlinear optics for photons is discussed.

2. Vector Quantum Field Theory of Ultracold Atoms

We consider a physical system composed of N identical atoms confined to a space
of volume V. In the so-called thermodynamic limit, N and V may go to infinity,
but the density n = N/V remains fixed at a preassigned value. For the case of
laser cooling and trapping, both the number N of atoms and the volume V of the
trapped atoms may be finite. However, they are still large enough that the study of
their dynamic behaviour requires statistical mechanics. The statistical properties
of a many-atom system depend on two important parameters: the thermal de

Broglie wavelength AdB = V21fn,2 /mkBT and the average interatomic separation
f = 1/3 Vii. The thermal de Broglie wavelength is a measure of the average spatial
extent of the wave packets that represent the atoms and hence it represents a pure
quantum effect. At high temperatures, where the spatial extent of atomic wave
packets is small compared to the average interatomic separation f, the atoms,
though identical, are mutually distinguishable. In this case, classical statistical
mechanics is enough to describe their statistical properties (or dynamics). However,
at sufficiently low temperatures, the value AdB can be quite large compared to the
interatom separation f so that the atomic wave packets will overlap each other. To
some extent, the atoms will lose their individual distinguishability and quantum
statistics becomes important. For convenience, we call atoms satisfying the condition
AdB 2:: f ultracold atoms. To describe the overlapping of the atomic wave packets,
or the indistinguishability of the ultracold atoms, the wavefunction of the atoms
must be replaced by a quantised field in terms of the second quantisation rule.

(2a) From Scalar Quantum Field Theory to Vector Quantum Field Theory

In this section we consider an ensemble of N structureless, noninteracting
and indistinguishable atoms. In terms of quantum mechanics, the centre-of-mass
motion of the structureless atoms in this ensemble is described by the single-atom
Schrodinger wave equation
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(2·1·1)

where 'H = -li2\l2j 2m + ~x(r) is the Hamiltonian of a single atom, Vex(r) is
the external potential of, for example, a trap potential, and 'l/J( r) is the scalar
wavefunction of the centre-of-mass motion of the structureless atoms. To study
the many-atom quantum statistical properties of the ensemble, we follow the
standard canonical quantisation technique to quantise the wave equation (2 ·1·1).
At first, we consider the wavefunction 'l/J( r) as a classical scalar field composed
of the atoms and write down a Lagrangian for the ensemble such that the
corresponding Lagrangian equation leads back to (2· 1· 1). Such a Lagrangian
has the form

L = Jd3r £('l/J, 'l/J*) = Jd3r 'l/J*(r) (iii ~~ + 1i~~2 'l/J - ~x(r) 'l/J) · (2·1·2)

In terms of (2 ·1· 2) we have the canonically conjugate momentum of the scalar
field 'l/J(r)

8L( 'l/J, 'l/J*) = ili'l/J* .
7l'(x) = 8(8'l/J/Ot) (2·1·3)

In terms of the rule of canonical quantisation, the canonically conjugate momentum
1r and the field 'l/J(r) have to be considered as quantum operators which satisfy
the usual equal-time commutators

['l/J(r), 'l/J+(r')]q = 8(r - r'), (2·1·4)

where we have used the notation [A,B]q = AB-qBA with q = 1 corresponding
to Bose-Einstein statistics and q = -1 to Fermi-Dirac statistics. The complex
conjugate field 'l/J* has been replaced by the Hermitian conjugate field operator
'l/J+ in equation (2 ·1· 4). The atoms which satisfy Bose-Einstein statistics are
called bosonic atoms; otherwise we speak of fermionic atoms. Which particles will
be bosonic atoms and which fermionic atoms depends on the total spin angular
momentum of the atoms. For bosonic atoms, the total spin angular momentum
is an integral multiple of li and for fermonic atoms, a half-odd integral multiple
of Ii. In terms of the canonically conjugate momentum and the field operator,
the total Hamiltonian operator of the atomic ensemble has the form

H= Jd3r(7l'~~ -£('l/J,'l/J*)) = Jd3r'l/J+(r)1{'l/J(r). (2·1·5)

There are two ways to determine the quantum statistical properties of the
many-atom ensemble. One is to work out directly the quantum state I¢) of the
ensemble in terms of the Schrodinger equation in its second quantisation form

. 811» = HI1» .1liat (2·1·6)
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Equation (2 ·1· 6) is different from (2 ·1·1). Equation (2 ·1·1) just describes
the quantum features of the centre-of-mass motion of a single atom. Equation
(2 ·1· 6) describes the quantum statistics of the ensemble composed of many
atoms. Instead of using (2 ·1· 6) one can determine the quantum statistics of the
ensemble directly in terms of the Heisenberg equation of motion of the quantum
field operator

·h 8'IjJ = ['IjJ,H].
1 at (2·1·7)

Equation (2 ·1· 7) has an identical form to the single-atom Schrodinger equation
(2 .1 .1), but the wavefunction 'l/J in (2· 1 .1) is now replaced by the field operator
which obeys the commutators (2 ·1· 4). Equations (2 ·1· 6) and (2 ·1· 7) are
equivalent in physics, but the correct choice of the equations can bring great
convenience in practical applications. Equation (2 ·1· 6) or (2 ·1· 7) with (2 ·1· 4)
and (2 ·1· 5) completely determines the quantum statistics of an ensemble composed
of noninteracting, indistinguishable and structureless atoms. However, in the
presence of a light field, the atoms can no longer be considered structureless
particles, since the internal transitions of electrons occur due to optical excitations.
On the other hand, the noninteracting atoms are only an ideal case. In a realistic
world, the interaction between atoms and atoms, or atoms and other particles
such as vacuum photons due to spontaneous emission, cannot be avoided. Hence,
we must develop an appropriate model to describe the interaction of an ensemble
of ultracold atoms with a light field. In the following sections we will see that
a vector quantum field theory is the most appropriate model to describe the
ultracold atoms.

(2b) Vector Field Theory of a Two-level Atomic Ensemble

In this section, we consider an ensemble composed of many two-level ultracold
atoms interacting with a light field. The ideal two-level model is a simplified
treatment for realistic atoms. Such an ideal model is quite a reasonable
approximation to describe the internal electronic transitions of atoms in the
near-resonant optical frequency regime, and has been a useful tool in studying
the interaction of atoms with light fields. To initiate our discussion, we start
with a single atom in the ensemble which couples to a monochromatic laser field
with frequency WL and vector potential A. In the dipole approximation, the
single-atom Hamiltonian has the form

H == HA + HL + HF + HA-L + HA-F ,

h2V2

HA == - -- + ~x(r) + hwaa+a,
2m

H L =! Jd3r[Eo(~~r + :0 (9 XA)2],

H F == L hWk BtA BkA ,
kA
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HA-L = -J.A= -(J12a+J21a+).A,

HA-F = -n L(9kA)*BtA exp(-ik. r)(a + a+) + h.c. ,
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(2·2·1)

where HA , HL , and HF are, respectively, the free Hamiltonian of the atom confined
in a external potential Vex(r) with transition frequency W a, of the laser field
with frequency WL, and of the vacuum electromagnetic field which is introduced
to describe the effect of the spontaneous emission of the atom. The Hamiltonian
HA-L describes the interaction of the atom with the laser field, while HA-F is the
interaction Hamiltonian of the atom with the vacuum electromagnetic field. The
vector J ij = iWL JLij (i -=I j = 1, 2) is the matrix element of the transverse electric
current operator J and JLij is the matrix element of the dipole moment of the atom.
Here we take JLij = JLji = JL as a real number, while BtA and B kA are the bosonic
creation and annihilation operators of the vacuum electromagnetic field. The
coefficient 9kA = i(21T"Wk//i~)! JL.ekA is the coupling strength of the atom to the
vacuum electromagnetic field, with V e denoting the quantisation volume and ekA
the polarisation vectors of the vacuum fields. The atomic transition is described
by the Pauli spin operators a and a+. As in Section 2a we can write down the
single-atom Schrodinger equation for the centre-of-mass motion of the atom

./i8'l/J =H'l/J.
1 at (2·2·2)

Since the internal transitions of electrons of the atom are included in the
Hamiltonian (2·2 ·1), where the Pauli spin operators a and a+ appear, the
centre-of-mass wavefunction of the atom is no longer a scalar and is instead a
vector 'l/J(r) = 'l/Jl(r) 11) + 'l/J2(r) 12), where the state vectors 11) and 12) denote
the internal ground state and excited state of the atom, and 'l/Jj(r) (j = 1,2)
are the two components of the vector. To extend equation (2·2·2) to include
many-atom quantum statistics, we now interpret the vector wavefunction 'l/J(r) as
a vector field which describes the ensemble composed of many two-level atoms.
The quantisation of such a vector field still follows the standard technique of
canonical quantisation for a scalar field as shown in Section 2a. We will not
repeat the procedures and only give the final results here. The total Hamiltonian
of the atomic ensemble interacting with a laser field has the form, after the
second quantisation (Zhang and Walls 1993b),

2 J [n?V2

] JH sy s = f; d3r'l/Jj(r) - 2m + Vex(r) 'l/Jj(r) + d
3
r 'l/Jt(r)hwa 'l/J2(r) + HL + HF

-Jd3rJ12. A'l/Jt(r)'l/J2(r) -IiJd3 r :~:)gk>.)*Bit>.e-ik.r'l/Jt(r)'l/Jl(r)
k>"

- Ii Jd 3 r ~)9k>')*Bit>. e-ik
•

r 'l/Jt(r)'l/J2(r) + h.c . (2.2·3)
k>"

The quantum field operators 'l/Jj ( r) and their Hermitian conjugate fields 'l/Jt (r)
satisfy the equal-time commutators
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[tt/Ji(r), tt/Jj(r')]q = [tt/Jt(r), tt/Jt(r')]q = 0,

[tt/Ji(r), tt/Jt(r')]q = 8ij 8(r - r') ,

825

(2·2·4)

where q = 1 corresponds to Bose-Einstein statistics and q = -1 to Fermi-Dirac
statistics, which is the same as in the scalar case. On the other hand, the
quantised laser field satisfies the commutation relations in the Coulomb gauge
(Louisell 1973)

[Ai(r), Aj(r')] = [Di(r), Dj(r')] = 0,

[Di(r), Aj(r')] = in8[;(r - r') (i, j = x, y, z), (2·2·5)

where D = -EO E = -Eo aA/at is the electric displacement vector, with E
denoting the strength of the electric field and 87;(r - r') the transverse delta
function. In terms of the total Hamiltonian (2·2·3) we can write down the
Heisenberg equations of motion for the vector quantum field tt/J

. 8'l/Jj = ['l/Jj, HsyslIn at (j = 1, 2) , (2·2·6)

which is the second-quantisation version of the single-atom Schrodinger equation
(2·2·2). By using the commutation relations (2·2·4) and eliminating the vacuum
electromagnetic fields Bk>.. and Bt>.. in the interaction picture, equations (2·2·6)
can be reduced to the following forms:

in att/Jl = (- n?'V
2

+ ~x(r)) tt/Jl - JL. E(- )tt/J2
at 2m

+inJd3r L(r-r')'l/Jt(r')'l/Jl(r')'l/J2(r) +G1(r ,t ) ,

in att/J2 = (_ n
2

'V
2

+~X(r))tt/J2-1i(~+i1/2)tt/J2-JL.E(+)tt/J1
at 2m

- inJd3r L*(r - r') 'l/Jt(r') 'l/J2(r') 'l/Jl(r) + G2(r ,t),

(2·2·7a)

(2·2·7b)

where 1 = 4IJLI 2wi / 31ic3 is the spontaneous emission rate of a single atom in
the ensemble. The usual Lamb level shift of a single atom induced by the
vacuum electromagnetic fields has been included in the detuning ~ in equation
(2·2· 7b). The nonlinear terms in equations (2·2·7) describe the two-body
collective correlations or collisions between excited-state and ground-state atoms
which originate from the exchange of vacuum photons between atoms due to
spontaneous emission. The correlation coefficient has the definition (in the Markoff
approximation)

L(r - r') == 1[K(r - r')/2 - iW(r - r')] (2. 2· 8a)
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for

K(r - r') == ~ [Sin2(} sine + (1 _ 3cos2(} ) (cose _ Sine)]
e e2 e3

'

W(r - r') == ~ [- sin 2(} cose + (1 _ 3cos2(}) (Sine + cose)]
e e2 e3

'
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(2·2·Sb)

(2·2· Sc)

where we define e == kLlr - r'l and () is the angle between the dipole moment J,t

and the relative coordinate r - r'. The noise terms

Gj (r, t) == -n[rj(r, t)'l/Jl + 'l/Jl rl(r, t)] (j :f: l == 1, 2) (2·2·9a)

in (2·2·7) come from the effect of vacuum fluctuations on the atomic quantum
field. The vacuum noise operators have the definitions

rj(r,t) == Lgk,\Bk,\(to)e-i[Wk+(-l)iwL]t+iker
k,\

and satisfy the following statistical correlations:

(rl(r, t) rj(r', t')) == (rt(r, t) rj(r', t')) == 0,

(j == 1, 2) (2·2·9b)

(r l(r, t) rj (r', t')) == 8jl L Igk,\ 12 e-i[Wk+(-l)lWL](t-t')+ik e (r-r')
k,\

(2.2·9c)

(2·2·10)

The brackets ( ) denote an average over the vacuum states of the free electromagnetic
field. On the other hand, in terms of the Hamiltonian (2·2·3) and the commutation
relations (2·2·5), the positive frequency and negative frequency parts of the
quantised laser field E(±) satisfy the quantum propagation equations

1 82E (±) 82
\72E(±) - - == - p(±)

c2 8t 2 J-to 8t 2 '

where p(+) == [p(-)]+ == J,t'l/Jt(r) 'l/J2(r) defines the positive frequency part of the
polarisation of the atomic ensemble. Equations (2·2·7) are two coupled nonlinear
stochastic Schr6dinger equations, and determine the dynamics of ultracold atoms
in the presence of a laser field together with equations (2·2·10). So far, we have
developed a general vector quantum field theory for a two-level ultracold atomic
ensemble. However, realistic atoms always have more than two internal levels.
Although the atoms can be approximately described by a two-level model in
a single-frequency, near resonant laser field, the two-level model is not valid in
the following cases: (1) if the light field is composed of two circularly polarised
counterpropagating components; (2) if the light field has more than a single
frequency component; or (3) if there exists an external magnetic field which results
in the Zeeman splitting of the hyperfine structure of the atoms. Hence a more
exact model should be developed to include the multi-sublevel structures of the
atoms. For this purpose, in the following section we will extend the two-component
vector quantum field theory to a multi-component vector quantum field theory.
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(2c) Vector Field Theory for a Multi-level Atomic Ensemble

Here we consider a more complicated model in which the Zeeman sublevels
of the atoms are included. The multi-component vector quantum field can be
expressed as

~(r) = L ~mg IJgmg) + L ~me IJeme) , (2·3·1)
m g me

where IJgmg) and IJe me) are respectively the ground states and excited states of
the atoms with J{3 the angular momenta and m{3 = J{3, J{3 -1, ... , -J{3 (f3 = 9, e)
the magnetic quantum numbers. In terms of the atomic field (2·3·1) we can
write down the total Hamiltonian for the ensemble as in Section 2b:

J ( fi2\J2 )
Hsys = L d3

r 7P;t;)r) - 2m + ~x(r) 7Pmg(r)
m g

J ( fi2\J2 )
+ L d3

r 7P~Jr) - 2m + ~x(r) + nWme 7PmJr)
me

- L Jd3r {Jmgme •A 7P~g (r) 7PmJr) + nr~;mJr, t) 7P~g (r) 7PmJr)
mgme

+ fir~lmg (r, t) ~~e (r) ~mg (r) + h.c.] ,

1

(+) . ""'" (
21rWk) "2 ••r mgme(r, t) = IJ-Lmgme 0 Z:: fi"V': €k)" Bk).. exp[lk.r -l(Wk + WL)t] ,

k)" e

1

r (+ ) ( ). ""'" (
21rWk) "2 ••memg r, t = IJ-Lmemg• Z:: fi"V': €k)" Bk).. exp[ijc . r - l(Wk - WL)t] , (2·3·2)

k)" e

where J mgme = iWLJ-Lmgme = iWL(JgmgIJ-LIJeme) is the matrix element of the
transverse currents of the atoms and Wme = Wa +8wme are the transition frequencies
corresponding to different sublevels, with 8wme the Zeeman splitting in the external
magnetic field. The other parameters have the same definitions as in Section 2b.
The equal-time commutators for the multi-component vector field have the forms

[~m(r), ~m/(r')]q = [~~(r), ~~/(r')]q = 0,

[~m(r), ~~/(r')]q = 8mm, 8(r - r'), m, m' = {m g, me}. (2·3·3)

As in Section 2b we can derive the Heisenberg equations of motion for the
multi-component vector quantum field:
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attP (n
2V2

) ( )in ---!!!..!L = - -- + ~x(r) ttPmg - L J-tmgme •E - ttPme
at 2m me
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+in L Jd3r' Lmgmemg'me,(r-r')'I/J~e,(r')'l/Jmg,(r')'l/Jme(r)
{memg' ,me'}

+Gmg(r,t),

attP (n
2
V

2
) .in~ = - -- + ~x(r) ttPme - n(~me + l,/2)ttPmeat 2m

- ~ 11_ E(+)fJ/,L...J rmem g• o/mg
m g

-v: L Jd3r' L:ngmemg'me,(r-r')'I/J~g,(r')'l/Jme,(r')'l/Jmg(r)
{mg,mg',me'}

+ Gme(r,t) ,

Gmg(r, t) = - n L {ttPme(r) r},t:m
g
(r, t) + r~;~e (r, t) ttPme(r)} ,

me

Gme(r,t) = - n L{ttPmg(r)r~;me(r,t) +r},t;~e(r,t)ttPmg(r)},
m g

(2·3·4)

where, = 41(JglJ-tIJe)12 w~/3nc3(2Je + 1) is the single-atom spontaneous emission
rate and ~me = WL - Wme are the detunings of the laser field from atomic
resonance. The nonlinear correlation coefficients now have the definitions

Lmgmemg'me,(r - r') = ,[Kmgmemg'me,(r - r')/2 - iWmgmemg'me,(r - r')]

(2·3·5a)

for

, 3 [ sin~ (cos~ sin~)]Kmgmemg'me,(r - r) ="2 amgmemg'me'T + {3mgmemg'me' 7 - 7 '

(2·3·5b)

, 3 [ cos~ (sin~ cos~)]Wmgmemg'me,(r - r ) = '4 - amgmemg'me' -~- + (3mgmemg'me' 7 + 7 '

(2·3·5c)

2Je + 1 ( ~ cJgmg c Jgmg'
amgmemg'me' = 2J + 1 L...J Jemelv Jeme'lv

9 v={O,±l}

L C:J::::1'" C:J:::::1,,' ~ yt,,(fj, <p) Y1'" (e,<p)) ,
{v,v'=O,±l}
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{3mgmemg'me' = amgmemg'me'
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2Je + 1 ( ~ J m J m' 81T )
2J +1 c: CJ:m:lyCJ:m:'lY'3"Yt'"y(lJ,CP)Yly,(B,cp),

9 {v,v'=O,±l}

(2·3·Sd)

where C;:::::lV are the Clebsch-Gordon coefficients and Y1v(0, cp) the spherical
harmonics, with (0, cp) giving the orientations of dipole moments of the atoms.
On the other hand, from Hamiltonian (2·3·2) we have the quantum propagation
equations for the quantised laser field:

\72E(±) _ ...!:.- 82
E(±) 8

2

c2 8t 2 = J-Lo 8t 2 p(±) · (2·3·6a)

Equations (2·3·6a) have the same forms as (2·2·10), but the total polarisation
of the ensemble is now given by

p(+) = [p(-)]+ = L JLmgme r¢~g(r)r¢me(r).

{mg,m e}

(2·3· 6b)

In the absence of an external magnetic field, one can easily prove that when a
linearly polarised laser field is used to excite the atomic transition Jg = 0 ----t Je = 1,
equations (2·3·4)-(2·3·6) reduce to (2·2·7)-(2·2 ·10) for the two-level atoms.
Hence the two-level model is only valid for an atom with transition Jg = 0 ----t J; = 1
coupled to a single-frequency linearly polarised laser field. In the following sections,
we will assume for simplicity that this condition is always satisfied.

3. Many-body Quantum Correlation in Atom Optics

In Section 2 we introduced the general theoretical methods and techniques to
study a many-atom ensemble interacting with a laser field. A vector quantum
field theory was developed. In this section our purpose is to apply the vector
quantum field theory to different physical systems where special conditions apply.

(3a) Bosonic and Fermionic Atoms in a Linear Beam Splitter

The most typical system studied in atom optics is an atomic beamsplitter
which is composed of a standing-wave laser beam. When a monochromatic atomic
beam passes through a standing-wave laser beam, the interaction of the atom
with the laser beam results in the transfer of photon momenta to the atom. As
a result, the atom will be 'kicked' by photons in two different directions along
the standing-wave laser beam and the centre-of-mass motion of the atom in the
incident beam is changed after interaction. In the standard atom optics language,
we say that the atomic beam is diffracted by the standing-wave laser beam,
which effectively acts as a grating for an atomic wave. The details of diffraction
of the atoms by a standing-wave laser have been well studied in a single-atom
theory of atom optics (Martin et ale 1988; Arimondo et ale 1981a, 1981b). As
we have pointed out, the single-atom theory is valid only when all atoms in
the incident beam are statistically distinguishable. In this section we study the
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diffraction of an atomic beam composed of ultracold atoms which are mutually 
indistinguishable. The realisation of such an ultracold atomic beam requires a 
high degree of cooling and transverse collimation so that the thermal de Broglie 
wavelength of the atoms is comparable to the average interatomic separation in 
this beam. With the breaking of the photon recoil limit in laser cooling and the 
realisation of Bose-Einstein condensation of atoms in a confined space, an ultracold 
atomic beam will not be too far from reality. In order to study the diffraction 
of such an ultracold atomic beam by a standing-wave laser beam, the vector 
quantum field theory will need to be employed so that the quantum statistics of 
the atoms is taken into account. To initiate our discussion, we assume that the 
incident atomic beam propagates in the z direction and a plane-wave laser beam 
propagates in the y direction. The vector potential operator of the plane-wave 
laser beam can be expressed as A = y'n/2WL EO V ecos(kL y)[be- iwLt + b+eiwLt ], 

with band b+ the annihilation and creation operators for the laser photons. In 
addition we assume that the flight time of the atoms through the laser beam is 
short enough and the laser field weak enough that spontaneous emission can safely 
be neglected in this case. Under these assumptions the Hamiltonian (2·2·3) is 
reduced in the interaction picture to the form 

H = t, J d3r 7fJj(r) ( - n;:2)7fJj(r) - J d3 r 7fJ"t(r)nb.7fJ2(r) 

- !ng*b+ J d3r 7fJt(r) COS(kL y) 7fJ2(r) + h.c., (3·1·1) 
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Fig. 1. Schematic diagram for 
diffraction of an atomic beam by a 
standing-wave laser beam. 

where 9 = iy'27rwL/nV JL. e is the single-photon Rabi frequency of the atoms. 
From equation (3 ·1· 1) we see that the interaction term has a periodic structure 
in the y direction which is the physical origin of the diffraction of the atomic 
beam. The diffraction of atoms will lead to the splitting of the atomic beam 
into many plane-wave components in the y direction (see Fig. 1). Hence in 
general the atomic quantum field can be expanded in terms of the plane-wave 
components (Zhang and Walls 1993a) 
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n 

(3·1·2) 
n 

where Po = Ipolez is the momentum of the incident atomic beam; nnkL the 
momentum gained by atoms in the y direction in the possible Inl-photon interaction 
processes; e z and ey the unit vectors in the z and y direction, respectively; and 
V the quantisation volume. The operators an and en describe the annihilation of 
a ground-state and an excited-state atom in diffraction mode n. Their Hermitian 
conjugate operators a;t and e;t describe the corresponding creation processes of 
atoms. These operators satisfy the commutators 

(q= ±1). (3·1·3) 

Evidently equation (3 ·1· 2) leads to a multi-mode coupled Hamiltonian in the 
Hilbert space expanded by the plane-wave diffraction modes. For such a multi-mode 
quantum system, the exact solutions must depend on the numerical simulation. 
However, physically the multi-mode quantum system can be reduced to a system 
with a few modes. Here we consider a typical case in atom optics where the 
zeroth-order Doppleron resonance is satisfied. The idea to achieve the Doppleron 
resonance is to select an appropriate laser detuning so that only the diffraction 
modes whose photon recoil frequencies match the laser detuning are resonantly 
enhanced. The other diffraction modes off Doppleron resonance may be neglected. 
The condition for the nth-order Doppleron resonance is ~ = (2n + 1)2wr with 
nkl/2m the single-photon recoil frequency. For zeroth-order Doppleron resonance, 
only the diffraction modes with indices n = 0, ±1 are important. In this case 
the standing-wave laser beam just acts as an atomic beamsplitter. For such an 
atomic beamsplitter, the simplified Hamiltonian for the diffraction of atoms has 
the form in the interaction picture 

_ J2 + + Hl - - - ngb a e + h.c. , 
4 

(3·1·4) 

where we have defined a+ = at and e = (C-l +ct}/v'2. The combination operator 
C still satisfies the commutation relations (3· 1 ·3). To study the quantum statistics 
of atoms in diffraction, we need to find the time evolution of the quantum state 
1<[» of the system in terms of the Schrodinger equation 

in 81<[» = H11<[» . 
8t 

(3·1·5) 

We assume that the initial state of the photon-atom system is 1<[>(0)) = 1.8) 01¢a) 010), 
where 1,8) is a coherent state for the laser field, I¢a) is the state vector describing 
the initial quantum statistical properties of the incident ground-state atomic 
beam, and 10) is the vacuum state for the excited-state atomic beam which is 
initially assumed to be 'empty'. For a short flight time T or interaction time of 
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the atoms through the laser beam, in terms of equation (3 ·1· 5), the diffraction
results in the evolution of the initial quantum state 1<1>(0)) into

14>(r)) = 14>(0)) + i g(3~ al(3) 01</>a) 01 1) - g2(3r
2

[b+ a+al4>(O))
2v2 16

x V2 ,Ba21,B) ® I¢a) ® 12)] + 0(73
) (3 ·1· 6a)

for bosonic atoms, and

14>(r)) = 14>(0)) + i g(3~ al(3) o I</>a) 01 1) + g2(3r
2

b+a+al4>(O))
2v2 16

+0(73
) (3·1·6b)

for fermionic atoms. The second terms in (3· 1· 6a) and (3 ·1· 6b) describe the
annihilation of a ground-state atom and the creation of an excited-state atom.
Hence they correspond to the usual single-atom diffraction which obviously has the
meaning that diffraction modes n == 1 and -1 are populated by an excited-state
atom after interaction. In atom optics language, this means that the incident
atomic beam is split into two parts with momentum ± lik L in the y direction.
The third terms of (3·1· 6a) and (3 ·1· 6b) describe the self-exchange processes
of the ground-state atoms, which do not lead to a change of the initial atomic
state. The self-exchange processes evidently depend on the quantum statistics of
the atoms and hence we see different signs appearing before the third terms of
(3 ·1· 6a) and (3· 1 .6b) for bosonic atoms and fermionic atoms. For bosonic atoms
we have an additional term J2 ,Ba21,B) ® I¢a) ® 12), which gives the probability
that two ground-state atoms are excited and then diffracted into n == ± 1 modes.
A similar two-atom diffraction process does not happen for fermionic atoms
because one cannot have two fermions occupying the same quantum state due
to the Pauli exclusion principle. The interesting quantum statistical properties
in the diffraction quantum state can be observed in the macroscopic dynamical
behaviours of the atoms. To show the effect of quantum statistics on the
macroscopic dynamics of atomic diffraction, we calculate the spread of the total
transverse momentum of the atomic beam in the diffraction in terms of (3 ·1· 6).
For bosonic atoms we have

!::.p == ( \ 4>(r)It,Jd3r 1jJj(r )(p - Po)21jJj(r)I4>(r)) ) ~

= .,fN "hkL 0,r J1 + NG(2) (0) 0,2r2/8
2V2

and for fermionic atoms

!::.p= .,fN"hkL0,r
2V2 '

(3·1·7a)

(3 ·1· 7b)

where n == 91,B1 is the Rabi frequency, N == (¢ala+al¢a) is the average atomic
number in the incident atomic beam, and G(2)(0) == (¢ala+2a21¢a)/N2 is the
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second-order correlation degree of the ground-state atoms in the incident beam.
We see that the spread of transverse momentum for bosonic atoms depends on
both the average atomic number and the higher-order quantum correlation, but
for fermionic atoms only on the average atomic number in the incident beam.
For an incident single-atom beam with I¢a) == 11), we find that bosonic atoms and
fermionic atoms have the same spread of transverse momentum, which is identical
to the result obtained in single-atom theory (Arimondo et ale 1981a, 1981b).
Generally speaking an atomic beam composed of bosonic atoms has a larger spread
of transverse momentum than that of a beam of fermionic atoms. This means that
the atomic beam composed of bosonic atoms is diffracted by the standing-wave
laser beam through a larger diffraction angle than both the single-atom beam
and the beam composed of fermionic atoms. Physically this is easily understood
since bosonic atoms statistically exhibit enhanced quantum collective behaviours.

(3b) Quantum Pair Correlation of Ultracold Atoms in an Optical Crystal

In the above section we studied the quantum statistics of atoms in a linear
atomic beamsplitter composed of a standing-wave laser beam. In the example
of the atomic beamsplitter, the atoms have a large velocity perpendicular to
the propagation direction of the laser beam. The diffraction occurs in the
direction parallel to the laser propagation direction. In this section we study
another example where the atoms move along the standing-wave laser beam. In
this case the standing-wave laser just acts as a one-dimensional 'optical crystal'
for ultracold atoms. We show that under some special conditions the motion
of ultracold atoms in the standing-wave laser beam is very similar to that of
electrons in a realistic crystal or superconductor in solid physics. We start by
seeking a solution of equation (2·2·7). In (2·2· 7b) the excited state decays with
time due to spontaneous emission. The spontaneous decay of the excited-state
atoms will result in a loss of atoms from the standing-wave laser beam. To
reduce the loss of the excited-state atoms via spontaneous emission, we choose
the laser detuning to satisfy the conditions ~ »,,/, p2/2mn, n == 2/-L. Eo/n
so that the population of the excited state is small. In this case the usual
adiabatic approximation can be used to eliminate the excited-state component of
the atomic vector field in equations (2·2·7); this leads to a reduced scalar field
equation for the ground-state atomic field (Zhang 1993):

in a'l/Jl == (- n,2\l2 + V(T))'l/Jl + Jd3r' Q(r,r')'l/Ji(r') 'l/Jl(r') 'l/Jl(r) , (3.2.1a)at 2m "

where V (r) is the effective single-atom dipole potential and has the definition

nlnl2

V(r) == -- cos2(k
L .r).

4~
(3·2·1b)

The nonlinear term in (3·2 -La) originates from the vacuum photon exchange
between atoms and describes the light-induced dipole-dipole interaction. The
light-induced dipole-dipole interaction potential in the standing-wave laser beam
has the definition
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Q(r, r') = nln~2 I'W(r - r') COS(kL.r) cos(kL. r').
2~

W. Zhang

(3·2·1c)

The physics indicated in (3·2· 1) is very obvious. For ultracold atoms a
standing-wave laser beam effectively acts as a periodic potential for individual
atoms and the vacuum photon exchange induced between individual atoms by the
excitation of the standing-wave laser leads to an effective two-body interatomic
interaction potential which is a direct result of our vector quantum field theory.
Since the interatomic interaction potential has the spatial exchange symmetry
Q(r,r') == Q(r',r), we can write down an effective Hamiltonian for the motion
of the ultracold atoms in the standing-wave laser beam:

u,« = Jd3 r 'l/Jt(r) Ho'l/Jt(r)

+ ~Jd3 r Jd3 r ' 'l/Jt(r) 'l/Jt(r') Q(r, r') 'l/Jl(r') 'l/Jl(r) , (3·2·2)

where Hi, == -n2\l2/ 2m + V(r) is the single-atom Hamiltonian. To determine
the dynamic behaviour of the ultracold atoms in a standing-wave laser field, it
is helpful to make a comparison of the motion of electrons in a crystal lattice
(Haken 1976) with a lattice potential V(r) and a phonon-induced many-electron
interaction Q(r, r'). Although the physics is totally different for the two cases,
the mathematical forms of the systematic Hamiltonians are identical. Hence
we apply the same methods used to study the motion of electrons in a crystal
lattice to treat the motion of ultracold atoms in a standing-wave laser. The first
step is to determine a complete set of eigenfunctions ¢K(r) for the single-atom
Hamiltonian H o¢K == EK ¢K. For simplicity we discuss only the one-dimensional
case where the atoms move along the laser beam, which is assumed to propagate
in the x direction. Since the single-atom potential has periodic structure in
the x direction, in terms of the well-known Bloch theorem the eigenfunctions
may further be written in the form ¢K(r) == exp( -iKx) uK(r), with the periodic
functions uK(r) satisfying UK(X+ AL/2, y, z) == UK(X, y, z). Hence we see that
the standing-wave laser beam effectively acts as a one-dimensional 'optical crystal'
for the ultracold atoms with the lattice constant AL/2 in the x direction, where
AL is the laser wavelength. On the other hand, the periodicity of the potential
leads to an energy-band structure of the eigenvalues E K. The periodic functions
uK(r) and the energy eigenvalues E K can be calculated by numerical methods,
but this is not the main task in this section. Here we assume that they are
known. In terms of the eigenfunctions and the energy-band structure of the
energy eigenvalues of the single-atom Hamiltonian, we now discuss the filling
of the ultracold atoms into the energy bands. For convenience, we limit our
discussion to bosonic atoms. At first we assume that the atoms are cooled down
to a temperature which is close to the edge of the bottom energy band, where the
energy eigenvalues may be expressed approximately as E K == Eo + n2K 2/2m*.
The value Eo depends on the choice of the laser parameters and determines
the lowest energy of the atoms in the 'optical lattice'. The effective mass of
the atom in the 'optical lattice' is defined by m* == n2/ (82E K/ 8K 2)o, with the
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subscript 0 denoting the edges of the energy bands (K = 0). Near the edges of
the energy bands, the motion of the atoms in the 'optical lattice' is analogous
to that of atoms with mass m* in free space. Hence when ultracold atoms with
a temperature below the edge of the bottom energy band are filled into the
'optical lattice', one expects that most bosonic atoms will condense at the edge
of the bottom energy band and form a macroscopic condensate at the lowest
energy state. However, with an increase of the filling number of the ultracold
atoms near the edge of the bottom energy band, the interatomic interaction will
become important. The interatomic interaction will result in collisions of atoms
which will 'kick' atoms away from the condensate. If the number of atoms filled
into the 'optical crystal' is finite, so that the effect of the interatomic interaction
may be treated as a perturbation, the atom 'kicked' out by collisions will move
like a free atom near the edge of the bottom energy band with an effective kinetic
energy n?K 2 /2m* and an effective mass m*. To exactly describe the collisional
excitations of atoms from the lowest-energy condensate state to the 'free-moving'
states near the edge of the bottom energy band, we expand the atomic quantum
field in terms of the single-atom eigenfunctions

'l/Jl(r) = L o« <PK(r).
K

Equation (3·2·3) transforms the Hamiltonian (3·2·2) into the form

Heff = L EK aI aK + ~ L U(K1 , K 2 , K) all aI2aK2+K aKl-K ,
K Kl,K2,K

where the collisional integral is

U(K1, K 2 , K) = Jd3r Jd3r ' eiK(x-x') UK! (r)* UK2 (r')*

x Q(r, r') UK2+K(r') UK1-K(r) .

(3·2·3)

(3·2.4)

At low temperatures, where most of the bosonic atoms occupy the lowest energy
state Eo (K = 0), the Hamiltonian can be diagonalised into the form

Heff = L E(K) bI b«+ EO,

K:(;O

(3·2·5)

where E(K) = VEK(EK + 2NUo), EO = NEo + N 2U
O/2 and the coefficient

Uo = Jd3r Jd3r' luo(r)12Iuo(r')12Q(r,r'). In equation (3·2·5) the operators b«
and bI are determined by the well-known Bogoliubov transformation

b« = ~K ate - 'T]K a~K' bI = ~K aI - 'T]K a-K, (3·2·6a)

where the transformation coefficients satisfy the relations

~~ - 'T]~ = 1, ~K = V[l + (EK + NUo)/ E(K )]/ 2 . (3·2·6b)
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Physically the operators bK and bk describe the annihilation and creation of
a 'quasi-particle'. Here the quasi-particle is composed of a pair of correlated
ultracold atoms with momenta h.K and -liK near the edge of the bottom
energy band. Such pairs of correlated ultracold atoms represent the collisional
excitations of atoms from the lowest-energy condensate state. For the light-induced
dipole-dipole collisions discussed here, the interatomic dipole-dipole interaction
is generally attractive. This leads to a negative collisional coefficient U0 which
corresponds to a negative scattering length. The negative collisional coefficient
will result in an imaginary excitation energy €(K) when the filling number of
atoms increases to the value N; = EK /2IUol for certain excitations ±liK. This
means that the Bogoliubov transformation and the quasi-particle picture will no
longer be valid to explain the excitations of the atoms near the edge of the
bottom energy band by dipole-dipole collisons when the lowest energy state has a
large population of atoms. In fact it is well known that the attractive interatomic
interaction results in the so-called Bose instability in the case of a superfluid.
Fortunately in our case, the filling number of atoms in the standing-wave laser
is usually finite for the case of laser cooling and trapping. Hence in general
the dipole-dipole interaction may be treated as a perturbation. In addition, for
fermionic atoms, the discussion is similar to that for bosonic atoms. In particular,
the quantum pair correlation of fermionic atoms will be a direct analogy to the
well-known Cooper pairs of electrons in a superconductor (Haken 1976). Finally,
we point out that the quantum pair correlation of atoms can be formed only
at a very low temperature. With increasing temperatures, the thermal collisions
will predominate over the attractive dipole-dipole interaction induced by vacuum
photon exchange, at which point such quantum pairs of atoms will be destroyed
by thermal collisions.

4. Nonlinear Atom Optics

Before the appearance of lasers, optical phenomena were almost always linear.
Nonlinear optics for light waves was born just after the invention of the laser. The
high degree of spatial and temporal coherence and the high intensity of a laser
beam enables us to study nonlinear optical phenomena. Similarly, one may ask
the question whether it is possible to study nonlinear effects of atomic de Broglie
waves in atom optics. By analogy to nonlinear optics, the study of nonlinear
atom optics relies on two conditions. One is that a coherent atomic source is
necessary to provide a coherent atomic beam which has analogous properties to
the laser beam in nonlinear optics. The other is that a nonlinear 'medium' for a
coherent atomic de Broglie wave should exist to provide an atomic nonlinearity.
Although an atomic source for a coherent atomic beam is not yet available in
the laboratory, research towards the Bose-Einstein condensation of atoms in a
confined space has recently made great progress. The groups at the National
Institute of Standards Technology and University of Colorado, and also at Rice
University, have observed Bose-Einstein condensation in an atomic trap. The
realisation of Bose-Einstein condensation of atoms in a confined space was a big
step towards a coherent atomic source or 'atom laser', where the bosonic atoms
playa similar role to that of the photons in a conventional laser. Hence an 'atom
laser' is no longer only an idea for theoreticians to study. In this section we will
not discuss the mechanisms and principles of how to realise an 'atom laser'. Our
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purpose is to develop a general nonlinear theory for atom optics which would
apply if such an 'atom laser' were to be used in atom optics systems. We will
show what the nonlinear 'medium' is for coherent atomic de Broglie waves.

(4a) General Formalism for Nonlinear Atom Optics

The optical nonlinearity is caused when an intense laser beam propagates
through an optical medium. Such a nonlinearity is usually represented by an
intensity-dependent polarisation of the medium. In this section we show that a
light field will act as a 'nonlinear medium' for a coherent atomic beam which
is analogous to the laser for photons. A coherent atomic beam would fulfill
at least the following two conditions: (1) the atomic beam should have a high
single-mode degeneracy of bosonic atoms; and (2) the propagation of the atomic
beam in space will not affect such a single-mode degeneracy. These conditions
require that the atomic beam has a high degree of macroscopic coherence. The
single-mode degeneracy of bosonic atoms in a coherent atomic beam is similar
to the intensity of a single-mode laser beam in coherent optics. Hence we may
also refer to the single-mode bosonic degeneracy as the intensity of a coherent
atomic beam. By the above arguments, a single-mode coherent atomic beam
may be considered to be just a propagating spatially uniform Bose-Einstein
condensate. In general, it is difficult to produce a spatially uniform Bose-Einstein
condensate by atomic cooling and trapping techniques. Hence in this paper we
consider the general case. To describe the propagation of a coherent atomic
beam in a laser beam, the vector quantum field theory is necessary. Since the
coherent atomic beam is composed of a Bose-Einstein condensate which has
a high bosonic degeneracy, the vector field operators tt/Jj (r) may approximately
be replaced by the macroscopic coherent wavefunctions ¢j(r) = (tt/Jj{r)). The
difference caused by such a replacement depends on the bosonic degeneracy of
the atomic beam and may be neglected for a 'high-intensity' coherent atomic
beam. With such an assumption, the nonlinear Schrodinger equations (2·2·7) for
a quantum field can now be reinterpreted as nonlinear Schrodinger equations for
the macroscopic wavefunctions of a coherent atomic beam. Due to the presence
of optical excitations, the atoms in a laser field are either in the excited state
or in the ground state. However, only the atoms which remain in the ground
state after the interaction can transport spatial coherence at large distances
(Chebotayev et ale 1985). This condition is realised when the interaction of atoms
with a laser field is in the adiabatic regime, where the laser detuning ~ is larger
than other characteristic frequencies such as the Rabi frequency Inl == 12JL. E Inl
and the spontaneous emission rate I. In this case the excited-state component
of the macroscopic atomic wavefunction has the adiabatic solution (Zhang and
Walls 1993b)

(4·1·1)

.._Jd3 r L(r - r')* <pi(r')<P2(r') <Pl(r)n(+) <Pl(r)
<P2 (r) ~ - ~ /. + i'y/ 2)

G2

+ 1i(~ + i'Y/2) ,

where we have defined the Rabi frequencies n(±) == 2JL.E(±) In. In the adiabatic
regime the propagation of a coherent atomic beam is determined by a scalar nonlinear
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Schrodinger equation of the ground-state atomic macroscopic wavefunction in
terms of equations (2·2·7) and (4·1·1):

acP ( Ji2\72 ) JiJi-
1 == - -- + V(r) + VR(r) cPl + d3r ' x(r, r') cPi(r') cPl(r') cPl(r)at 2m

+ Jd3r'Jd3r" 'Tl(r, r', r") ¢i(r") ¢i(r') ¢l(r") ¢l(r') ¢l(r) + ... ·

(4·1·2)

The first term in (4· 1 . 2) describes the propagation of a single-atom beam in
linear atom optics. The effective single-atom dipole potential has the definition

tiIO(+)(rW,
V(r) = 4(~ + i'Y/2

and an additional random potential

VR(r, t) == {Jin(-)[f1(r, t) + rt(r, t)] + h.c.}/2(~ + i1/2)

(4 ·1· 3a)

(4 ·1· 3b)

describes the effects of spontaneous emission by which the atoms are scattered to
other incoherent channels. The second and third terms respectively correspond to
the two-body and three-body collisions of atoms which are induced by the vacuum
photon exchanges. In analogy to conventional nonlinear optics, we recognise
that the two- and three-body interactions correspond to a third- and fifth-order
nonlinearity for the coherent atomic beam. Hence the physics implicit in (4 ·1· 2)
is that when the coherent atomic beam propagates in a laser beam, the optical
excitations result in the vacuum photon exchange between atoms which leads to
a nonlinearity for the atomic wave. In other words, the laser beam effectively
acts as a nonlinear 'medium' for a coherent atomic beam. The third-order atomic
nonlinear coefficient has the definition

iJi(1/2 + i~) . () ()
x(r, r') == ~I A'2 , '2 I ~\'2 [(1/2 - l~)L(r - r') n + (r) n - (r')

-IL(r - r')1 2In(+)(r')1 2 + h.c.]. (4·1·4)

In general the fifth-order atomic nonlinearity TJ( r, r', r"), or the three-body
interaction of atoms in the laser beam, is of order rv 13/(~2 + 12/2)3/2 and
may be neglected in the adiabatic regime where ~ » 1.

(4b) Atomic Soliton in a Laser Beam

In the above section we developed a general formalism for nonlinear atom
optics of a coherent atomic beam. In this section we apply the formalism to
study the propagation of a coherent atomic wave packet in a travelling-wave laser
beam. A coherent atomic wave packet is composed of a spatial non-uniform
Bose-Einstein condensate, which is analogous to a coherent laser pulse for photons.
The schematic diagram in Fig. 2 shows the geometry used in our discussion. An
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Fig. 2. Schematic diagram of atomic
solitons guided by a laser beam.

ultracold atomic source is used to load a coherent atomic wave packet into the
laser beam. The ultracold atomic source is assumed to achieve the condition
for Bose-Einstein condensation. The atomic wave packet propagates along the
direction of the laser propagation, which is specified in the z direction. The atomic
wave packet is assumed to have a centre wave vector K 0 and a corresponding
kinetic energy E a, so that we have

</Jl(r, t) = </J(r, t) eiKoz-iEat . (4·2·1)

In terms of (4· 1 . 2)-(4· 1 ·4), we have the nonlinear Schrodinger equation for the
ground-state atomic wave packet (Zhang et ale 1994)

. (8¢ 8</J) 1iV'~ 1i2 a2¢ 1i1f2(+)12

In - + v - = - - </J - - - + </J
8t 9 8z 2m 2m 8z2 48

+ Jd3r ' x(r, r') ¢*(r') ¢(r') ¢(r) , (4·2·2)

where we have neglected the loss term and the random potential in the adiabatic
regime. The effective detuning has the definition 8 = ~ - kLvg - kLVr /2 with
vg = 1iKo/m denoting the gr9up velocity of the atomic wave packet and Vr = 1ikL/m
denoting the photon recoil velocity. The third-order nonlinear coefficient for
atoms interacting with a travelling-wave laser beam has the form

n In(+)(r)\2
x(r,r')= 'Y 482 [Xs(r,r')+Xa(r,r')],

Xs(r,r') = 2W(r - r')cos[kL(Z - Z')] ,

Xa(r, r') = - K(r - r')sin[kL(z - z')] . (4·2·3)
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The nonlinear coefficient x(r, r') is composed of an exchange symmetric part
Xs(r,r') == Xs(r',r) and an exchange asymmetric part Xa(r,r') == -Xa(r',r).
The asymmetrical part is caused by the many-atom spontaneous emission
in the travelling-wave laser beam, which results in the breaking of spatial
geometric symmetry. For a standing-wave laser beam, the nonlinear coefficient is
always exchange-symmetric. Equation (4·2·2) is a three-dimensional nonlinear
Schrodinger equation. In general it is difficult to find its exact solutions in
3D space. However, physically we can simplify the equation by introducing
some restrictions. At first we assume that the travelling-wave laser beam has a
Gaussian transverse profile so that

O(+)(r) == 0 0 exp[-(x2 + y2)/2W£] ,

where 0 0 is the peak Rabi frequency and W L is the transverse width of the
laser beam. Second, we assume that the transverse width of the loaded atomic
wave packet is much narrower than that of the laser beam. By means of these
assumptions, we can seek an approximately transverse-longitudinal separated
solution of equation (4·2·2) with the form ¢(r, t) ~ u(x, y) ib(z, t) exp(-iET tin).
The transverse motion of the atomic wave packet satisfies the Helmholtz equation

where

[\7~ + k~ n;ff(X, y)]u(x, y) == 0,

[
02 ( x

2+ y2)] !
neff (x, y):=::::! 1 - 2;nk~ 1 - W[

(4· 2 ·4a)

(4· 2 ·4b)

is the effective refractive index for the atomic wave propagating along the laser
beam. In (4·2· 4b) we have assumed that the transverse width of the atomic wave
packet is narrower than that of the laser beam so that the Gaussian transverse
profile of the laser beam can be expanded to first order. For a laser frequency
detuned below the atomic resonance, equation (4·2· 4a) has an identical form to
the Helmholtz equation describing the propagation of a light wave in a parabolic
dielectric waveguide. Hence we conclude that a travelling-wave laser beam with
a negative detuning just acts as an atomic waveguide. Such an atomic waveguide
has the bounded transverse Hermite-Gaussian eigenmodes

_ (2n+m n!m !)- ! exp(-unm(x,y) - Wavrr x
2

+ ¥2) n; ( ;a) u: (:a) ,
(4·2·5)

with Wa == (2nI8IW£lm05)t the transverse width of fundamental mode uoo(x, y),
which is determined by the laser parameters and the mass of the atom. By
choosing the appropriate parameters for the laser beam and the atom, we can
realise the propagation of the atomic wave with the fundamental mode. This case
is similar to that in waveguide optics where one can realise a single transverse
mode for a guided light wave by choosing an appropriate core diameter for an
optical waveguide such as a fibre. Here we assume that the transverse profile
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of an initial loaded atomic wave packet matches the spatial distribution of the
bounded fundamental mode. In this case, we have the propagation equation for
the longitudinal envelope q>(z, t) of the atomic wave packet

(
8q> 8q» 1i2 82q> Jin at + vg 8z = - 2m 8z2 - n dz' X(z,z') 1<I>(z')1

2 <I>(z) ,

where the nonlinear coefficient has the definition

x(z, z') = Jdx JdyJdx' Jdy'luoo(x', y')1 2
Iuoo(x,y)1 2x (r ,r').

(4·2·6)

Equation (4·2· 6) is a one-dimensional, nonlocal, nonlinear Schrodinger equation.
In analogy to the propagation of an optical pulse in an optical Kerr-type nonlinear
medium, the function X(z,z') is similar to the third-order nonlinear optical
response function in nonlinear optics (Agrawal 1989). The only difference is
that the nonlinear optical response function of an optical medium to an optical
pulse occurs in the time domain. In this sense, the function X(z,z') may be
considered as the nonlinear spatial response function of a 'light medium' to
a coherent atomic wave packet. Physically such a nonlinear spatial response
function describes the light-induced elastic collisional strength of atoms. In
nonlinear optics, the nonlinear optical response function of an optical medium
to an optical pulse may be replaced by a delta function in the time domain,
since the material response is usually faster than the duration of the propagation
pulses (Agrawal 1989). The equivalent question in nonlinear atom optics is
whether the function X(z, z') [or x( r, r')] can effectively be treated as a delta
function potential in space so that (4· 2 .6) can approximately be replaced by a
local nonlinear Schrodinger equation where the soliton solution is apparent. In
general this is not true, and we must treat the nonlocal nonlinear Schrodinger
equation. However, if the two-body interaction x(r, r') is weak enough that
no two-body bound states exist, and the incident atomic wave packet has a
width larger than the region where the two-body potential varies, the usual
pseudopotential approximation can hold (Pathria 1972). For the present case,
the function x(r, r') depends on the functions W(r - r') and K(r - r'), which
have sharp peaks in the region of the atomic absorption wavelength AL. Hence
if the width of the atomic wave packet is larger than the optical wavelength, we
can make the pseudopotential approximation, or 'shape-independent' potential
approximation, by the replacement (Pathria 1972)

41ran2

x(r, r') ~-- 8(r - r'),
m

where a is the s-wave scattering length corresponding to the actual dipole-dipole
interaction potential. In the Born approximation we have

a == m 2 Jd3r ' x(r, r') exp(iq. r').
41rn
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The scattering length a is negative for an attractive potential and positive for a 
repulsive potential. In the pseudopotential approximation equation (4·2·6) has 
the form 

(4·2·7) 

where we have made the transformations 

(= Z - Vgt, t = t, 

where N is the total number of atoms in the wave packet and the nonlinear 
coefficient now has the definition 

41rn2 1al J J 4 Xo = N m dx dy luoo(x, y)1 , 

where we have considered the negative scattering length for the light-induced 
dipole-dipole interaction which is an attractive potential. It is well known that 
(4·2·7) has a family of soliton solutions of the form (Yajima 1974) 

CI> = A sech ( ~~o (( - Bt))exP[iXo A2t/2 - i(mB2/2n)t + imB(/n] , 

with soliton amplitude A = Jmxo/4n. So far we have proved that when a 
coherent atomic wave packet propagates along a travelling-wave laser beam, 
the travelling-wave laser beam acts just as a nonlinear atomic waveguide which 
allows soliton propagation of an atomic wave under appropriate conditions. The 
light-induced dipole-dipole interaction is the origin of the atomic nonlinearity in 
such a waveguide. It is valuable to point out that if the characteristic region 
where the nonlinear coefficient varies is comparable to or less than the spatial 
soliton width, the nonlocal nonlinear Schrodinger equation (4·2·6) still allows 
the persistence of the robust soliton even in the presence of nonlocality (Moloney 
1992). 

(4c) Nonlinear Bmgg Scattering of a Coherent Atomic Beam 

In this section we study another nonlinear atom optics phenomenon. We 
consider a coherent atomic beam which passes through a standing-wave laser beam 
as shown in Fig. 3. The structure shown is similar to the case discussed in Section 
3a. However, there we neglected the vacuum photon exchange between atoms due 
to spontaneous emission, which may be justified if a high-Q single-mode resonant 
cavity or a microwave field is used to act as an atomic beamsplitter. In general, 
when the spontaneous emission is included, only the ground-state atomic wave can 
transport the atomic coherence for a long distance. As a result, the propagation 
of a coherent atomic beam is described by (4 ·1· 2) in the adiabatic regime. To 
simplify our discussion, we assume that the incident atomic beam is parallel to 
the yz plane, with a central momentum vector (Px = O,Py = nKoy,pz = nKoz) 
and a kinetic energy E. In the off-resonance adiabatic regime, we neglect the 
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Fig. 3. Schematic diagram for 
Bragg scattering of a coherent atomic 
beam by a standing-wave laser beam. 
Here A denotes the incident atomic 
beam, B the near-field interference 
region, C the standing-wave laser 
beam, and D the detection screen. 

effect of atomic absorption on the profile of the laser beam (Zhang and Walls 
1993b) and have the Rabi frequency 

(4·3·1) 

where the transverse Gaussian profile of the laser beam has been taken into 
account. In terms of (4 ·1· 2) we have the following nonlinear Schrodinger equation 
for the propagation of a coherent atomic beam passing through a standing-wave 
laser beam: 

(4·3·2) 

In (4·3·2) the single-atom potential has a periodic structure in the y direction 
which results in the diffraction of the atomic beam when it passes through the 
laser beam. In addition, the single-atom potential is also a function of the 
coordinates x and z due to the transverse Gaussian profile of the laser beam. 
However, if the width of the atomic beam in the x direction is narrower than that 
of the laser beam, we can ignore the effect of the propagation of the atomic beam 
in the x direction. For stationary propagation the macroscopic wavefunction 
describing the coherent atomic beam can be expanded in terms of the diffraction 
modes 

where iPn(y, z) is the spatial slowly varying envelope of the diffracted atomic 
beams. Substituting (4·3·3) into (4·3·2) and neglecting the second derivatives 
of the diffracted atomic wavefunctions iPn(y, z) in the slowly varying envelope 
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approximation, we obtain the multi-mode coupled wave equations for the diffracted
beams:

i(8<Pn +vn 8<Pn
) =Wn <1>n + g(T) (2<1>n + <1>n-l + <1>N+l)aT ay

+ L 'fJnjlq <1>; <I>l<I>q ,
jlq

(4·3·4)

where T = z/vg defines the effective time variable, vg = liKoz/m is the group
velocity of the atomic beam in the z direction, W n = (no + 2n)2w r is the
de Broglie frequency for the nth diffraction mode with Wr = likl/2m defining
the single-photon recoil frequency, and V n = (no + 2n)vr is the group velocity
of the nth diffraction mode in the y direction with Vr = likL/m defining the
single-photon recoil velocity. We have denoted no = Koy/kL and generally no
need not be an integer. The linear coupling coefficient between different diffracted
beams has the definition g(T) = n6exp(-T2/Tcr)/16~ with TO = WL/vg defining
the flight time of atoms through the laser beam. The linear coupling coefficient
is effectively a time-dependent function due to the transverse Gaussian profile of
the laser beam. If the nonlinear terms do not exist, then equations (4·3·4) are
identical to those in the single-atom diffraction theory for a low-density atomic
beam. For a coherent atom beam, the light-induced dipole-dipole interaction
leads to a nonlinear mixing of the diffracted modes. The nonlinear coupling
coefficients in the slowly varying envelope approximation have the forms (Zhang
and Walls 1993b)

'fJnjlq(T) = -(3g(T)(8j,l+q-n+l + 8j,l+q-n-l + 28j l+ q-n) , (4·3·5)

where (3 = 2,lfW(r) d3rl/~. If we ignore the physics implicit in (4·3·4),
mathematically the equations are identical to the nonlinear coupled-wave equations
describing the propagation of light waves in a nonlinear periodic medium. Hence
we conclude that for a coherent atomic beam, a standing-wave laser beam acts
as a nonlinear periodic medium for the atomic waves. Equations (4·3·4) can
be solved by numerical techniques. Here we consider a simple example where
the diffraction of atoms occurs in the Bragg resonance regime (Martin et ale
1988). The diffraction of a single-atom beam in the Bragg resonance regime
has been experimentally demonstrated (Martin et ale 1988). To satisfy the
Bragg resonance condition, the momentum component of the incident atomic
beam in the y direction must be arranged to match one single-photon recoil
momentum. Experimentally this can be realised by controlling the angle between
the atomic beam and the standing-wave nodes so that the incident momentum
PyO = -mlikL · The integer m denotes the diffraction order. For m = 1 and
no = -1, one has the first-order Bragg scattering. The higher-order Bragg
scattering has similar characteristics to the first order. Therefore we need only
consider the first-order Bragg scattering. In this case, only two diffraction modes
with indices n = 0 and 1 can resonantly couple with each other. Physically, the
first-order Bragg resonance corresponds to an absorption and stimulated emission
process from the undiffracted (no + 2n = -1) to the diffracted (no + 2n = 1)
momentum eigenmode. Hence for the first-order Bragg scattering, we can neglect
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the higher-order diffraction modes with indices n 2: 2 in the numerical simulation.
In this case, the standing-wave laser beam simply acts as a nonlinear atomic
beamsplitter and the macroscopic atomic wavefunction in (4· 3 .3) now has the
simple form in the Bragg resonance regime

¢1 (r) = [~o(y, z) exp( -ikLY) + ~1 (y, z) exp(ikLy)]exp(iKoz z - iEt/li) . (4·3·6)

(4·3·7)

To numerically simulate the nonlinear Bragg scattering of the coherent atomic
beam, we assume that the incident atomic beam has a Gaussian density profile
with wave vector in the y direction matching the single-photon recoil momentum

<Pin(Y, -00) = vPO exp ( - 2~~ - ikLY) eiKozz-iEt/1i ,

(4·3·8)~l(Y, -(0) = o.

where w y is the beam width in the y direction and Po = Jo/vg is the density of
the atomic beam which is provided by an ultracold atomic source localised at
z = -00. Fig. 3 above is a schematic diagram for Bragg scattering of atoms. The
atomic source continuously releases the ultracold atomic flow with the rate J 0

which has the equivalent meaning to the light intensity in conventional coherent
optics. In terms of (4·3·6) and (4·3·7) we have the following initial conditions
for equations (4·3·4):

~o(y, -(0) = vPO exp(- y
2

2 ) ,
2wy

Under conditions (4·3·8) we numerically simulate the spatial propagation of the
incident atomic beam in terms of (4·3·4) and (4·3·8). The spatial density
distribution is shown in Figs 4 and 5. For comparison, in Fig. 4 we give the
results for a low-density atomic beam with a negligible nonlinearity. The laser
parameters in Fig. 4 are chosen to satisfy the condition go = J~oo g(T) dr = 1r /4
so that the incident atomic beam splits into two components with identical
density profiles. In terms of the result in Fig. 4a, when the incident atomic
beam passes through the laser region, the interaction of atoms with the laser
beam results in the splitting of the initial atomic beam into two coherent beams
with group velocities ± VR respectively in the y direction. In the near-field
region the two coherent components overlap and we see density oscillations due
to the interference of the two coherent beams (see Fig. 4b). With an increase
in propagation distance, the two coherent beams gradually separate and the
interference vanishes in the far-field region where we have two fully separated
beams with Gaussian profiles, as shown in Figs 4c and 4d and also in Fig. 4a.
The splitting of the atomic beam is due to the exchange of atoms between two
diffraction modes. Such an exchange means that some atoms in the incident beam
change their momentum in the y direction. The change of atomic momentum
is caused by the mechanical effect induced by the standing-wave laser beam.
The number of exchanged atoms between two diffraction modes depends on
the linear coupling strength go. When the laser parameters are chosen to give
go = tt , the exchange of atoms between two diffraction modes experiences a cycle
and the atoms are completely diffracted back to the initial incident beam when
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Fig. 4. Density distribution of the atomic beam for linear Bragg scattering. The parameters
chosen are go = 7r / 4 and f3po = 0·001.

the nonlinear coupling is negligible. In this case, the incident beam remains
unchanged after interaction with the laser. However, for a coherent atomic beam
with a high density, the nonlinearity is important and the diffraction of atoms will
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be affected by it. To see how the nonlinearity affects the diffraction of the coherent
atomic beam, we choose a typical linear coupling strength go := 1T which does not
result in any change of the incident atomic beam in the low-density linear case.

In Fig. 5 we give the numerical results for the nonlinear beamsplitter when
go := 1T. We see that in the presence of atomic nonlinearity, the incident atomic
beam coherently splits into two components and one of the split components
exhibits two-peaked structure in far-field region. Evidently, the splitting of the
atomic beam is caused by the nonlinear coupling terms. Physically the nonlinearity
in (4·3·4) is analogous to a Kerr-type nonlinearity in nonlinear optics. Such an
atomic Kerr-type nonlinearity results in self-phase and cross-phase modulation of
the diffracted atomic beams. Due to the self-phase and cross-phase modulation in
the presence of the atomic nonlinearity, a density-dependent phase shift is added
to the linear phase shift in the usual linear beam-splitter. As a result, we see
the difference between linear Bragg scattering and nonlinear Bragg scattering of
an atomic beam. In summary, we again see that the light-induced dipole-dipole
interaction plays an important role in the propagation of a coherent atomic beam
in a laser beam. Such an interatomic interaction can be employed to design
different devices in coherent atom optics, just as the optical nonlinearity can be
used to make different optical devices in coherent optics.

(4d) Nonlinear Atomic Cavity: Manipulating a Bose-Einstein Condensate

To further show the possible applications of the atomic nonlinearity to coherent
atom optics, in this section we study a nonlinear atomic cavity which yields
modulation and compression of a coherent atomic wave packet composed of a
spatially non-uniform Bose-Einstein condensate. The atomic cavity is formed
by two spatially separated atomic mirrors in the longitudinal x direction of the
atomic centre-of-mass motion, and a harmonic trap in the transverse direction.
In addition a laser beam perpendicular to the cavity axis induces an effective
nonlinear atomic interaction via photon exchange and absorption. A schematic
diagram of this arrangement is shown in Fig. 6. The cavity is perpendicular
to the direction of the Earth's gravitational field, so that its longitudinal modes
are not affected by gravity. The purpose of the harmonic trap in the transverse
direction is to prevent the atoms from falling out of the cavity due to gravity. The
transverse confinement could be provided by, for example, a trapping magnetic
field or microwave field. Before the laser field is turned on, a coherent atomic
wave packet is loaded into this cavity from an ultracold atomic source which is
assumed to achieve the condition of Bose-Einstein condensation. The nonlinear
atomic cavity is analogous to the nonlinear optical cavity in coherent optics. Here
the laser beam acts as a nonlinear crystal for the intracavity atomic wave. To
simplify our discussions, we consider a simple case where the cavity is set to the
operation of a single transverse mode. This is the case if the atoms initially occupy
the ground transverse mode of the transverse trap prior to application of the
laser field. In addition, to obtain a nonlinear interaction for an extended time, we
choose the incident laser beam width to fill the atomic cavity so that the transverse
distribution of the laser beam can be considered uniform in the cavity. Under these
assumptions, we have a reduced one-dimensional nonlinear Schrodinger equation
for the longitudinal-envelope atomic wavefunction ¢(x, t) in terms of the general
formalism of nonlinear atom optics given in Section 4a and Zhang et ale (1995):



848 w. Zhang

t'~12

2.5 0.8

2 (b)
0.6 L J (c)

1.5
1<1>1

2
1<1>1

2
0.4

1

0.5 0.2

0' , ;" '\ '> I r 0
-10 -5 0 5 10 -10 -5 0 5 10

y/wy y/wy

0.8

0.61 A (d)

/<1>1
2

0.4

0.2

0
-10 -5 0 5 10

y/wy

Fig. 5. Nonlinear Bragg scattering of a coherent atomic beam. The parameters chosen are
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Fig. 6. Schematic diagram for a nonlinear atomic cavity.
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(4·4·1)

where we have defined the parameter Vo == lif258/(482 +1 2 ) and a characteristic
length

K == 1A£(8AL ,B/1r~WT + 31/2!)/[WT(482 +12)1r!] ,

which is due to the nonlinearity caused by the light-induced dipole-dipole
interaction and the photon absorption. The coefficient ,B is determined by a
spatial integral of the dipole-dipole potential (Zhang et ale 1995). In equation
(4·4·1), VL(x) is introduced to describe the effect of the atomic mirrors at the
ends of the atomic cavity. In addition, the spontaneous emission decay is included
in (4·4· 1) to describe the loss of atoms from the cavity into other incoherent
channels due to inelastic scattering during the spontaneous emission. Such an
inelastic scattering process has been neglected in the previous sections where we
assumed a large laser detuning and a short period of interaction of atoms with the
laser beam. However, in the present case we include the loss due to spontaneous
emission for general consideration. In terms of (4.4. 1), we clearly see that the
real part of the nonlinear potential is analogous to the Kerr-type nonlinearity of
conventional nonlinear optics, and the imaginary part of the nonlinear potential is
similar to the self-saturation absorption of conventional nonlinear optics. Hence
we conclude that the laser beam acts as a nonlinear absorption 'crystal' for the
cold atomic wave when the effects of spontaneous emission are included. In
view of this discussion, it is clear that the proposed nonlinear atomic cavity
is analogous to a conventional optical cavity with a saturable absorber (Yariv
1967). Here the laser beam plays the role of the saturation absorption cell for
the atoms. We numerically simulate (4·4. 1) for the initially loaded macroscopic
atomic wavefunction
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( N)! ((X-L/2)2 )<I>(x, 0) = Vir exp - 2 + iKo X ,
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(4·4·2)

where W x is the initial width of the atomic wave packet in the longitudinal
direction and L is the cavity length.
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Fig. 7. Self-phase modulation of a coherent atomic wave packet in a nonlinear atomic cavity.
The spatial density distributions plotted correspond to a sequence of times varying (a) from
T == hK 01rt / mL = 0 to 51r, and (b) from T = 61r to T = 121r. The other parameters chosen
for the simulation are W x = L/4v12,8 = 1000-, and K,(N-l)/-fiWx = 0·3.

When the laser field is turned on the motion of the atomic cloud is affected
by its interaction with the laser. In terms of (4·4· 1) this interaction leads to a
loss and a nonlinearity for the intracavity atomic wave. The magnitude of the
loss and the nonlinearity of atoms can be controlled by choosing both the laser
and the atomic parameters appropriately. In the example shown here, we choose
a laser detuning large enough to reduce the random scattering of atoms into
other incoherent channels due to spontaneous emission and permit a negligible
loss of ground-state atoms in the cavity. In such an off-resonance regime, the
dipole-dipole interaction is weakened as well. However, one can still obtain a
considerable nonlinearity by choosing the appropriate peak density and transverse
width of the atomic wave packet. In this case, the laser field just acts as a
'nonlinear crystal' with a Kerr-type nonlinearity for the intracavity atomic wave.
Such an atomic nonlinearity results in the self-phase modulation of the intracavity
atomic wave. In Fig. 7 we show the time evolution of the atomic density in the
cavity due to the self-phase modulation. Such a self-phase modulation of atomic
waves is very similar to that of a coherent optical pulse in a lossless nonlinear
optical cavity. On the other hand, since some loss of ground-state atoms to
other incoherent channels always occurs due to spontaneous emission, we finally
simulate the intracavity atomic dynamics including the effects of spontaneous
emission. The results are plotted in Fig. 8, which displays the compression of
the spatial distribution of the atomic wave packet. This compression is induced
by the combined effects of self-phase modulation and the intracavity atomic loss.
When spontaneous emission is not negligible, the atoms in the cavity are partially
scattered into incoherent channels by random photon recoil. The incoherently
scattered atoms account for the atomic cavity losses. As we have seen in (4·4· 1),



Vector Quantum Field Theory of Atoms 851

for a coherent atomic wave packet the atomic cavity losses depend on the spatial
distribution of the atomic density in this cavity. In terms of (4·4· 1), the total
loss of the atomic cavity has the form I'(z) ~ VO"Y/281i[1-~I¢(x)12]. Fig. 9 shows
the spatial dependence of the total cavity losses at different times. We see that
the edge of the atomic wave packet 'feels' a larger loss rate than the centre of the
wave packet. As a result, a dip appears in the spatially dependent cavity loss
rate. The shape of the dip changes with time, due to the self-modulation of the
atomic density profile. This spatial dip in the loss rate modifies the atomic wave
packet and narrows its spatial distribution at the centre of the atomic cavity.
This is similar to passive mode-locking in a conventional optical cavity with a
nonlinear absorber (Yariv 1967), which can be used to compress a coherent light
pulse to generate an ultrashort pulse. The only difference is that the compression
of optical pulses is in the time domain whereas the compression of the coherent
atomic wave packet occurs in the spatial domain.

Fig. 8. Self-induced compression of
a coherent atomic wave packet in a
nonlinear atomic cavity due to the presence
of spontaneous emission. The laser
and atomic parameters chosen for the
simulations are W x = L/4V2, 8 = 10/,
and K(N - 1)/J1TWx = 0·3. The various
times are solid curve (r = 0), dashed
curve (r = rr), dotted curve (r = 2rr) and
dash-dot curve (r = 3rr).
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Fig. 9. Spatial dependence of the total
loss rate of the nonlinear atomic cavity.
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5. Summary

In this paper we have systematically introduced theoretical methods to study
the interaction of ultracold atoms with a laser field in the frame of a vector
quantum field theory. Both the atoms and the laser field are treated as quantum
fields. A stochastic nonlinear Schrodinger equation for ultracold atoms and a
quantum propagation equation for laser photons are derived. These equations
form the basis on which to study many-body quantum statistics and atomic
nonlinearity in atom optics. As a straightforward application of the theory, we
construct a general formalism of nonlinear atomic optics for a coherent atomic
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beam. Applying the formalism to the propagation of a coherent atomic wave packet
in a travelling-wave laser beam, we find that the travelling-wave laser beam acts
as a nonlinear atomic waveguide which allows the propagation of atomic solitons.
For a standing-wave laser beam, we study the diffraction of a coherent atomic
beam in the Bragg resonance regime. We find that the photon exchanges between
ultracold atoms in the coherent beam induce an effective atomic nonlinearity
for the atomic waves which is analogous to an optical Kerr-type nonlinearity
for coherent light waves. Such an atomic nonlinearity can result in self-phase
modulation and cross-phase modulation of the diffracted atomic waves. Finally,
we have discussed a nonlinear cavity for ultracold atoms which is analogous to
the nonlinear optical cavity in coherent optics. In these examples we see that
in the ultracold regime, the interaction of atoms with photons exhibits many
novel phenomena which cannot be explained by the single-atom theory. With the
recent realisation of Bose-Einstein condensation of rubidium and lithium atoms,
the quantum statistics of ultracold atoms is expected to play an important role
in the study of atomic physics and quantum optics. The vector quantum field
theory introduced here will be the most useful tool with which to study such
cold atomic samples.
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