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Abstract

A new derivation for the energy-dependent ∆ width inside nuclei is presented which includes
the all important, energy-dependent nuclear form factor describing the decay of the ∆ particle
from its harmonic oscillator, bound state back to a captured nucleon and outgoing pion.
Additional improvements include relativistic kinematics, generalisation beyond the static limit
in the kinematics, and inclusion of the ∆Nπ energy-dependent vertex form factor. The
new decay width provides a reasonable cut-off at high pion momenta and gives the correct
momentum dependence in the limit of single-particle decay at low momenta. The results
of calculations for the energy-dependent widths and their effects on the energy distributions
of exclusive coherent pion production for 12C +12 C →12 C +12 C∗ (T = 1) + π0 at incident
energies below and above the pion threshold are shown and discussed. The new energy
dependence is compared to the free ∆ width used previously and it is seen that the new
results give a smoother and more realistic shape to the pion energy distributions.

1. Introduction

The study of the excitation and decay of ∆ isobars inside nuclei at intermediate
energies from various probes continues to provide an exciting challenge both
theoretically and experimentally, especially in the search for constructive, coherent
pion production. To find such an extreme quantum signature would be considered
an exciting developement in the field of nucleus–nucleus collisions at intermediate
energies. Questions of the spin–isospin response in nuclei and the relation to
coherent pions are of current interest (Gaarde 1996), as well as examinations
of ∆ excitation and decay by nucleons (Ramachandran and Vidya 1997), light
ions (Fernández et al . 1995), and heavy ions (Badalà et al . 1996). A general
review of ∆ isobar excitations can be found in Gaarde (1991). This paper
is a continuation of a series of papers (Deutchman 1992; Maung et al . 1992;
Deutchman and Li 1993; Deutchman and Erazmus 1995; Deutchman 1996;
Deutchman and Sammarruca 1998) that deals with the constructive coherence
in pion production from the collision of moderate equal-mass nuclei at energies
above and below the pion threshold, where a nucleon in one nucleus is excited to
a ∆ isobar while the other nucleus is excited to a spin–isospin giant resonance.
In particular, theoretical calculations of the pion energy distributions depend
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sensitively on the ∆-decay width. It was realised that the free ∆-decay width
previously used was inadequate and unphysical for the pions resulting in the
decay of the ∆ inside nuclei in intermediate-energy, nucleus–nucleus collisions.
A more realistic energy dependence of the nuclear ∆ decay needed to be found.
In this work, the focus will be on the decay of the excited ∆ particle inside
the nucleus and, in particular, the energy dependence of the ∆ width is derived
where the all important nuclear form factor is included in this model for the
first time. Previous calculations have used the low energy free ∆-decay width
obtained from Guet et al . (1989) which contains the p-wave penetration factor p3

π

(Brown and Weise 1975), where pπ is the pion momentum; however, this width
is of course independent of any nuclear effects. The need for a decay width that
describes the decay of a ∆-isobar inside a nucleus has been discussed by Jain
and Kundu (1996) who used an energy parametrisation that describes the decay
of a ∆ which is produced in proton–nucleus collisions at intermediate energies.
This parametrisation is identical to that used by Gaarde (1992) in his discussion
of ∆ production and decay in light-ion reactions on 12C. These parametrisations
work phenomenologically, but the analytic forms do not explicitly exhibit nuclear
properties in a transparent manner. In slightly different work, on the π+d→ pp
reaction going through a ∆ excitation, Canton et al . (1996) developed their own
phenomenological energy-dependent parametrisation of the isobar width having
concluded that the energy dependence of the relativistically improved free isobar
decay model (RIIM) (Oset et al . 1982) is oversimplified. Finally, a general
discussion of nuclear effects on the ∆ width can be found in the text by Ericson
and Weise (1998), where the free ∆-decay width becomes modified by a change
in the available phase space because of the presence of the nucleus; however,
an explicit form for the energy dependence of the ∆ width is not presented.
It is the purpose of this work to embark on a program to explicitly derive the
energy-dependence for the ∆ width in the presence of a medium-sized nucleus
where the ∆-hole states are produced in a quantum constructively coherent
manner. The energy-dependent nuclear form factor will now be included in the
nuclear ∆ width for the first time in this overall calculation.

As a final comment, it is noted that the development of the description of
pion coherent production due to nucleus–nucleus collisions by a microscopic,
quantum theory is quite challenging. As a way to systematically proceed, a
hierarchy of importance was considered. First, it is known that cross sections
are quite sensitive to nuclear structure. Since the original motivation was to
establish a link between pion production and the coherence coming from nuclear
structure, it was considered prudent to first solve the nuclear structure problem
for both nuclei, without adding in the complications of distortion. Then, from
the progress of that work, it became clear that all energy dependencies needed
to be examined and this examination led to the work described in this paper.
The next feature of importance would be to include pion distorted waves. It
is expected that the cross sections would be somewhat sensitive to pions that
are created in the surface regions of nuclei undergoing peripheral collisions, but
perhaps not as important as more central collisions where pions that are created
deep inside nuclei have a greater likelihood of being absorbed. Peripheral collisions
are considered to be important in our general approach, because nuclei are less
likely to fragment as they would in more central collisions. The nuclear structure
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information would be lost under fragmentation. The question of pion absorption
and distortion is now being examined. Finally, after the pion absorption and
distortion questions are settled, it is envisioned to include the distorted waves
describing the nucleus–nucleus relative motion. It is certainly expected that
internuclear distortion would play a role, but one would like to have the pion
effects in place before examining distortion of the relative motion. This hierarchy
provides a program whereby one can learn of these effects as one proceeds. This
is still a work in progress, but it is envisioned to include all distortion effects in
the future.

2. Derivation of the New ∆ Width

The formal expression to first order for the differential decay width (Rodberg
and Thaler 1967) is given by

1
2π

dΓA(∆)(επ) = |〈F |V∆Nπ|N〉|2 dρ , (1)

where a nucleus containing an unstable isobar decays as A(∆)→ A+π with decay
width ΓA(∆)(επ) of total pion energy επ. The Born approximation is also used
to describe the scattering states. The intermediate state is |N〉 = |A(∆)ΦPN 0π〉,
where |A(∆)〉 is the internal nuclear structure, |ΦPN 〉 is the plane-wave scattering
state of the nucleus of intermediate momentum PN , and |0π〉 is the Fock space
of no pions. The final state is |F 〉 = |A0ΦPF 1π〉, where |A0〉 is the final nucleus
in its ground state with final momentum PF described by the plane wave |ΦPF 〉,
and a plane-wave pion of momentum pπ in the Fock space |1π〉. The differential
two-body density of states is given by

dρ =
V

(2πh̄)3 d
3pπ d

3PA δ(PA(∆) −PA − pπ) δ(EA(∆) − EA − επ) , (2)

where the energy and momentum of the ∆ nucleus is EA(∆) and PA(∆), which
decays into the final nucleus of energy and momentum EA and PA and final pion
of energy and momentum επ and pπ, and V is the integration volume. After
integrating over d3PA, which eliminates the momentum δ-function, and then
changing variables in the energy δ-function to a momentum δ-function containing
the pion momentum pπ, with a final integration over dpπ, the two-body density
of states becomes

dρ =
V

(2πh̄c)3

(pπc)2επEA dΩπ
[(pπc)(επ + EA) + (PA(∆)c)επ cos ΘπA(∆)]

, (3)

where ΘπA(∆) is the angle between the ∆–nucleus momentum PA(∆) and pion
momentum pπ. Since the ∆–nucleus momentum is not directly measurable, it is
necessary to replace PA(∆) by the momentum of the outgoing nucleus PA′ . If
one looks at the overall problem, which is an equal mass nucleus–nucleus collision
producing a ∆ nucleus and subsequently decaying asA+A→ A(∆)+A′ → A+π+A′,
where A is a nucleus in its ground state, A(∆) is the nucleus with a ∆ isobar
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replacing a nucleon, and A′ is the excited nucleus that does not have a ∆
created inside it. Then by choosing the nucleus–nucleus rest frame to measure
all kinematic quantities, one can set PA(∆) = −PA′ , and the two-body phase
space becomes

dρ =
V

(2πh̄c)3 fA(επ,Ωπ) dΩπ , (4)

where the phase-space factor is

fA(επ,Ωπ) =
(pπc)2επEA

(pπc)(επ + EA) + (PA′c)επ cos ΘπA′
. (5)

Here PA′ is the momentum magnitude of the outgoing nucleus A′ and the
angle ΘπA′ between pπ and PA′ is related to outgoing pion and nuclear angles
by the usual expression cos ΘπA′ = cos ΘA′ cos θπ + sin ΘA′ sin θπ sin(ΦA′ − φπ),
where ΘA′ , ΦA′ are the polar and azimuthal angles of the outgoing nucleus A′

and θπ, φπ are the polar and azimuthal angles of the outgoing pion.
The ∆-nucleus state is a coherent linear combination of ∆-hole states which is

|A(∆)〉 =
∑
∆h

x∆h(A) |∆h;LAJAMATATZ(A)〉 , (6)

where the ∆-hole coefficients are x∆h, and the ket states are coupled in angular
momentum and isospin of the ∆-hole states to produce the angular momentum
and isospin of the nucleus A(∆), as has been discussed in Deutchman and Li
(1993). The one-body, ∆-decay interaction operator V∆Nπ has been described in
Maung et al . (1992) and the matrix element 〈F |V∆Nπ|N〉 has been previously
calculated in the general problem of coherent pion production in the collision of
equal-mass nuclei where a ∆ isobar can be created in either the projectile or
target with subsequent decay of the ∆ (Deutchman 1992). The amplitude for
∆ excitation to either nucleus and excitation to a giant spin–isospin resonance
in the other nucleus is given by a sum of projectile and target formation and
decay amplitudes as

CFI =
AT
∗

P (∆)→Pπ

(επ +mnc
2 −m∆c

2) +
i

2
ΓP (∆)(επ)

+
AP

∗

T (∆)→Tπ

(επ +mnc
2 −m∆c

2) +
i

2
ΓT (∆)(επ)

, (7)

where mnc
2 and m∆c

2 are the rest masses of the nucleon and ∆ isobar at
resonance and separate widths are needed for the projectile and target. The
formal expression to first order for the finite width integrated over the density
of states and summed over final states except for the intermediate state is

ΓA(∆)(επ) = 2π
∑
F 6=N

∫
dρ |〈F |V∆Nπ|N〉|2 . (8)
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After integrating over the two-body decay phase space and summing over the
final states, the ∆ width becomes

ΓA(∆)(επ) =
2πV

(2πh̄c)3 |h(pπ)|
2 |FLAJA(kπ)|2

∫
dΩπ fA(επ,Ωπ) |YMa

JA
(Ωπ)|2 . (9)

The pion factor is h(pπ) =
√

4
3 [4πkπ f(pπ)/

√
2επV ]F∆Nπ where the ∆Nπ vertex

form factor of the monopole type is obtained from Machleidt (1989) (Model III),
where

f(pπ) =

[
Λ2

∆Nπ − (mπc
2)2

Λ2
∆Nπ + (pπc)2

]
, (10)

with cut-off parameter Λ∆Nπ = 800 MeV, and the coupling constant is

F 2
∆Nπ =

[
4πα2

(mπc
2/h̄c)2

] (
f2
π

4πh̄c

)
(h̄c)3 ,

where (
f2
π

4πh̄c

)
= 14 ·6

(
mπc

2

2mnc
2

)2

for α =
√

72
25 ,

which was obtained from the quark model. The choice of the monopole type with
a cutoff parameter around 800 MeV is guided by recent studies of the πNN form
factor from lattice QCD calculations (Liu et al. 1995). Those studies indicate that
experimental information can be well fitted with a monopole energy-dependent
form factor with a cutoff of 750± 140 MeV. This choice is an excellent guide for
the ∆Nπ form factor used here.

The important new feature obtained in this decay width is the nuclear form
factor FJALA(kπ) which depends on the nuclear total and orbital momentum
modes JA and LA and is given by

FJALA(kπ) = A iLA+1 L̂A

(
LA 1 JA
0 0 0

)
SLA(kπ) , (11)

where A = (1/4π)
(
8/3
√

3
)
, L̂A =

√
2LA + 1, and the 3-j symbol couples the

nuclear orbital mode LA to unit spin to give the total angular momentum JA
of the nucleus in its intermediate state. The unit spin comes from the difference
between the 3

2 -spin ∆ isobar and the 1
2 -spin nucleon. Furthermore, we have

SLA(kπ) =

C−1
A

∑
n∆l∆
nhlh

[
l̂∆ l̂h

(
l∆ LA lh
0 0 0

)
R∆h
LA(kπ)

]2


1
2

, (12)
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which is a constructive-coherent sum of ∆-hole states which, because of its 3-j
symbol, couples the orbital angular momenta of the ∆ particle and hole state
l∆ and lh in the intermediate state as l∆ + lh = LA and CA = (1/4π)

(
4
3

)2. The
∆-hole states are contained in the energy-dependent, radial ∆-hole interaction
integrals, which is a function of pion wave number kπ and is given by

R∆h
LA(kπ) =

∞∫
0

dξ un∆l∆(ξ) jLA(kπξ)unhlh(ξ) , (13)

where the spherical Bessel functions jLA(kπξ) come from the angular momentum
expansion of the pion plane waves with harmonic oscillator states used to describe
the ∆ state and hole state by un∆l∆(ξ) and unhlh(ξ) . The integral in equation (9)
cannot be done analytically because the variables EA, PA′ and ΘπA′ in the
phase-space factor (equation 5) contain further complicated dependencies on the
pion solid angle Ωπ. By solving the kinematics of two nuclei in the initial
state going to three bodies in the final state, the variables listed above are also
functions of the independent variables pπ, θπ, φπ and ΘP ,ΦP . The additional
dependence upon θπ, φπ is enough to complicate the problem sufficiently to
prevent an analytic integration. In order to obtain an analytic expression, since
this is the first attempt to examine the energy dependence of the width, as
an approximation, cos ΘπA′ is replaced by its angle averaged value cosΘπA′ = 0
which gives the angle-averaged expression

fA(επ) = (pπc)
επEA

(επ + EA)
, (14)

so that the width ΓA(∆)(επ) after integration over dΩπ is replaced by the angle
averaged width

ΓA(∆)(επ) =
2πV

(2πh̄c)3 |h(pπ)|
2 |FLAJA(kπ)|2 fA(επ) . (15)

Finally, rewriting this expression in terms of the width at resonance, where R
refers to the resonance value, the angle-averaged width becomes

ΓA(∆)(επ) = ΓA(∆)(εRπ )

(
pπ

pRπ

)3 (
εRπ + ERA
επ + Eπ

) (
EA

ERA

) [
f2(pπ)
f2(pRπ )

] {
|FLAJA(kπ)|2
|FLAJA(kRπ )|2

}
,

(16)

which is the final expression that is used in these calculations.
A number of improvements have been made to arrive at this final result as

compared to the width of the free ∆ decay which in comparison is given by

Γ∆(επ) = Γ∆(εRπ )

(
pπ

pRπ

)3 (
εRπ
επ

)
, (17)
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as obtained from Guet et al . (1989). Because relativistic kinematics is used, the
first improvement was to generalise the ratio (εRπ /επ) which was obtained using
nonrelativistic, low-energy theory in equation (17) by the ratio (εRπ +ERA)/(επ+EA)
in the new expression. This agrees with the relativistically improved isobar
model (RIIM) found in Ericson and Weise (1988). The second improvement was
to remove the static limit in the kinematics which for the free ∆-decay case,
approximates the total nucleon energy by the nucleon mass (εn → mn). In the
∆-nucleus case the nucleon energy generalises to the nuclear total energy EA.
This gives rise to the ratio (EA/ERA) in equation (16). The third improvement
was the inclusion of the ∆Nπ vertex form factor f(pπ). Energy calculations have
been carried out with each of these factors examined one at a time and it turns
out that the major improvement to the energy dependence comes from the nuclear
form factor FLAJA(επ). As a theoretical check, a low-energy approximation to the
new width (equation 16) was made in order to compare it with the low-energy
behaviour of the free width (equation 17). First, the penetrability factor p3

π still
remains. Secondly, the next two factors in equation (16) approximately cancel out
since both εRπ and επ are small compared to ERA and EA. Thirdly, the form factor
f(pπ) is approximately close to unity for small pπ. Lastly, the nuclear form factor
FLAJA(kπ) is proportional to R∆h

LA
(kπ) which at low momenta is proportional

to pLAπ , since the spherical Bessel function is jLA(kπξ) ≈ (kπξ)LA (2LA + 1)!!.
Therefore the squared factor |FLAJA(kπ)|2 is proportional to p2LA

π . Putting this
all together, at low energies, the ∆-nuclear width is proportional to p2LA+3

π .
Therefore, the effect of the nucleus in general is to include an additional factor
of p2LA

π to the width at low energies. If the nucleus is removed, then there would
be no factor p2LA

π and we would get the low-energy result of equation (17). For
the specific modes considered in this paper, LA = 0, so that the dependence on
LA would disappear; however, if one were to consider higher modes, then the
dependence on LA would become more important.

Finally, if all factors relating to the nucleus are removed from the new expression
of the nuclear width, then it does lead to the relativistically improved isobar
model (RIIM) in the limit of free ∆ decay, except with the addition of the ∆Nπ
vertex form factor. It should be remarked that the free ∆-decay width will blow
up at large pπ values because the original derivation of Brown and Weise (1975)
is done at low energies and the p3

π dependence becomes unphysical at higher
energies; however, with the inclusion of the ∆Nπ vertex form factor, the ∆ width
is protected from the blow up and goes as 1/p2

π at high pion momenta. It is
curious that for the spin–isospin modes considered here, where LA = 0, the p3

π

dependence is obtained at low energies; however, at higher energies, the energy
dependence of the nuclear form factor begins to play an extremely important
role.

3. Energy Dependence of the ∆ Width

Energy calculations of the angle-averaged width ΓA(∆)(επ) in equation (16)
are shown in Fig. 1 from pion kinetic energies from 10 to 150 MeV at projectile
laboratory kinetic energies of 100, 250 and 400 MeV·A for the exclusive reaction
12C +12 C→12 C +12 C∗ (T = 1) + π0. This specific reaction is chosen for several
reasons. First the T=1 excited state for 12C∗ is a giant resonance state at
15 ·11 MeV and decays into a well-known photon via an M1 electromagnetic
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Fig. 1. Nuclear ∆-decay widths as a function of pion kinetic energy tπ in the nucleus–nucleus centre-of-momentum (CM) frame. The bold lines are
the angle-averaged widths labelled at laboratory incident energies of 100, 250 and 400 MeV·A. The dashed lines are the free ∆-decay widths for the
same incident energies. (a) These curves are calculated for A = P , and (b) for A = T . All curves are calculated under the condition of forward pions
(θπ = 0◦) and forward ejectiles (ΘP = 0◦).
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decay (Deutchman and Erazmus 1995). Second, the π0 decays into two γ-ray
photons, which in the rest frame of the π0 would decay back-to-back at an
energy of approximately 70 MeV each (Deutchman and Erazmus 1995). These
photons, if measured in coincidence, along with the identification of the ejectile
and recoil target could then provide a complete measurement for the tell-tail
signature of the quantum, constructive coherent process. Continuing, Fig. 1a
refers to the width of the projectile excited ∆-isobar ΓP (∆)(επ) and Fig. 1b to
the target excited ∆-isobar ΓT (∆)(επ). The bold lines are the new widths at
three different incident energies and the dashed lines are the results from the
previous free ∆-decay width in equation (17) for comparison. In general, it is
seen that the new widths are much flatter or more constant compared to the
free ∆-decay width. (The irony is not lost that it takes quite a bit of work to
finally calculate a constant.) The continual rise of the free ∆-decay widths is
due to its p3

π dependence and these widths would grow without bound at higher
tπ, going beyond its low-energy assumption. This is especially noticeable in
Fig. 1b. Calculations were done with a free ∆-decay width modified by including
the ∆Nπ vertex form factor in equation (10), and it did reduce the slopes and
magnitudes of the free curves somewhat, but not appreciably so over the range
of pion kinetic energies considered here. Even with the inclusion of the nucleon
vertex form factor, the free ∆ widths still get unreasonably large at higher tπ.

The first ingredients needed to calculate the angle-averaged widths are the
parameters ΓA(∆)(εRπ ) and pRπ (A) taken at the ∆-resonance where A = P or
T . This was discussed in more detail in Deutchman (1996). In short, one
has to consider the sequential, relativistic kinematics of two incident nuclei in
the nucleus–nucleus rest frame producing a ∆ isobar in either nucleus in the
intermediate state and then after decay, producing two nuclei and a pion in a
three-body final state. By solving the relativistic energy and momentum equations,
which is not trivial in detail, the pion momentum and energy at resonance,
pRπ and εRπ can be solved in terms of initial and final energies and angles that
can be measured. As a result, it turns out that the pion resonance parameters
pRπ and εRπ are themselves complicated functions of the incident energies in the
nucleus–nucleus reaction. As to the parameter ΓA(∆)(εRπ ) in equation (16), a
relativistic transformation is needed to take one from the nuclear rest frame,
where resonance values are quoted, to the nucleus–nucleus rest frame where the
overall problem of pion production from nucleus–nucleus collisions is calculated.
This is accomplished by using the time-dilation property that an object moving
at a relative speed has a longer lifetime or a narrower energy width. This
implies that ΓA(∆)(εRπ ) = ΓA(∆)(εRπ )/γA(∆) in which the γ factor is obtained from
βA(∆) = PA(∆)c/EA(∆) where PA(∆) and EA(∆) are the momentum magnitude
and energy of the A(∆) nucleus in the nucleus–nucleus rest frame. In general,
for a ∆ inside nuclei, there is an energy shift and changes to the ∆-decay width
because of interactions of the ∆ with the nuclear medium. The energy shift may
involve a second-order process where the ∆-hole doorway states are coupled to
multiple nucleon–hole states in the nucleus (Ericson and Weise 1988). The width
changes may include pion coherent multiple ∆-hole scattering, Pauli quenching
corrections, and ∆-absorptive processes, where ∆-hole states make transitions to
n-particle, n-hole states. At this stage of the calculation, it is more important to
ferret out the basic ingredients in the formalism before higher-order calculations
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are explicitly carried out. These effects, however, can be introduced approximately
by using typical ∆-in-nuclei values for the ∆ mass m∆ and ∆-nucleus width.
From Roy-Stephan (1982) and Moniz (1982), the ∆ has a mass approximately
30 MeV lower and a decay width 40 MeV larger inside nuclei. The values
m∆c

2 = 1202 MeV and ΓA(∆)(εRπ ) = 155 MeV were used in these calculations.
However, it is noted that in this second quantised calculation, to first order, the
Pauli Exclusion principle is included because when the ∆-hole states collapse
upon decay of the ∆ inside the nucleus, the nucleon from the decay process
∆→ nπ can only occupy the hole state when the nucleus returns to its ground
state. The Pauli Exclusion principle automatically excludes the nucleon from
occupying any nuclear shell state other than the hole state. A glance at Table 1
shows the values of the angle-averaged, ∆-width parameter ΓA(∆)(εRπ ) and the
forward going pion-momentum parameters, where the ∆ is produced either in the
projectile, pRπ (P ), or target, pRπ (T ), at resonance for three values of the incident
projectile lab energy. The width parameters ΓA(∆)(εRπ ) are equal for A = P or
T in the case of equal mass collisions since the γ-factors are equal. The values
of the parameters pRπ (P ) and pRπ (T ) are also given in Table 1. They vary as
a function of incident projectile energy in a complicated way such that pRπ (P )
increases, whereas pRπ (T ) decreases as the incident energy increases, and they do
not equal each other.

Table 1. Resonance parameters for the nuclear decay widths

TLAB
P0 (MeV·A) ΓA(∆)(ε

R
π ) (MeV) pRπ (P ) (MeV/c) pRπ (T ) (MeV/c)

100 153 269 181
250 147 317 148
400 143 352 130

In order to understand qualitatively why these momentum parameters behave
as they do, it is useful to consider a simpler problem analogous to the nuclear
decay. First, consider the decay of a free ∆ particle that is initially moving
forward or backward with momenta ±p∆. This will kinematically mimic the
case of a ∆ produced in a forward moving projectile or of a ∆ produced in
a backward moving target as viewed in the nucleus–nucleus rest frame. If the
relativistic equations of conservation of energy and momentum are solved for
∆ → nπ, then there are two values for the forward moving pions depending
on whether the pion decayed from a forward moving ∆ of momentum +p∆, or
from a backward moving ∆ of momentum −p∆. The forward pion momenta at
resonance are given by

pRπ =
ε∆

2

[
M(−)M(+)

m2
∆

]
± p∆

2

(
M

m∆

)2

, (18)

where m∆ is the ∆ mass at resonance (for simplicity the factors of c will be
suppressed in these expressions). The other parameters are

M(−) =
√
m2

∆ − (mn −mπ)2 , (19a)
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M(+) =
√
m2

∆ − (mn +mπ)2 , (19b)

M =
√
m2

∆ −m2
n +m2

π . (19c)

In order to get a feel for the behaviour of the momentum parameters for simplicity,
assume that the ∆ decays into two equal hadron masses or mn = mπ = m. Under
the equal mass assumption, the pion parameters become

pRπ =
m∆

2

√√√√√
1 +

(
p∆

m∆

)2
 1−

(
2m
m∆

)2
± p∆

2
.

At this point, the first term contains the effects of p∆ and the Q-value through
m∆ = Q + 2m, and the second term involves an equal momentum sharing of
±p∆ going to two equal mass decay hadrons. If one assumes high Q-values or
QÀ 2m, then

pRπ ≈
Q

2

√
1 +

p2
∆

Q2 ±
p∆

2
,

and furthermore, for values of Q2 À p2
∆, but only that Q > p∆, one obtains the

final approximation that pRπ (forward) ≈ (Q/2) ± (p∆/2). For backward moving
pions, it turns out that pRπ (backward) ≈ −(Q/2)± (p∆/2). Therefore, for equal
mass decays, both the Q value and the original ∆ momentum are shared evenly
with the decay partners. This simple example shows that a forward moving
hadron that came from a forward moving ∆ has a momentum that is greater
than that of a forward moving hadron that came from a backward moving ∆
due to the difference in sign, ±p∆/2. This is analogous to the condition that
pRπ (P ) > pRπ (T ) in Table 1. Furthermore, in the simple problem, as p∆ increases,
pRπ (forward) increases if the momentum bias is in the forward direction, but
decreases if the momentum bias is in the backward direction. This trend is also
seen in Table 1 for increasing incident energies. Having solved the relativistic,
sequential kinematic problem for the parameters pRπ (P ) and pRπ (T ), the solutions
show that for increasing incident energies, both of the intermediate momenta of
the projectile in the forward direction and the target in the backward direction
increase. This in turn affects the values of the pion momentum parameters as
shown in Table 1. The kinematic solutions for the pion momentum parameters
for the ∆ produced in the projectile and both the pion and ejectile coming out
in the forward directions are

pRπ (P ) =
1

2M2
P (∆)

√
M4(P )P 2

T + 4M2
P (∆)CP + 1

2

M2(P )
M2
P (∆)

PT , (20)
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where

MP (∆) = MP + (m∆ −mn) , (21a)

M2(P ) = M2
P (∆)−M2

P +m2
π , (21b)

M2
P (+) = M2

P (∆)− (MP +mπ)2 , (21c)

M2
P (−) = M2

P (∆)− (MP −mπ)2 , (21d)

CP = 1
4M

2
P (+)M2

P (−)−m2
πP

2
T . (21e)

The ∆-projectile momentum in the nucleus–nucleus rest frame is PP (∆) = −PT .
Therefore, target quantities which are measurable have been substituted into
equations (20) and (21) where PP (∆) = PT and ΘπP (∆) = π−ΘπT . The magnitude
PT is related to the incident energies by

PT =
1

2E0

√
{E2

0 − [M2
P (∆) +M2

T ]}2 − 4M2
P (∆)M2

T , (22)

where E0 = EP0 + ET0 , the sum of total projectile and target initial energies.
Results for pRπ (T ) are obtained by swapping P ↔ T in the above expressions,
except that the last term in equation (22) has a minus sign.

Returning to Fig. 1, the reason the widths are so flat is because of the
inclusion of the nuclear form factor FLAJA(kπ). In these calculations, the valence
and core ∆-hole states (1p∆)(1p)−1 + (2p∆)(1p)−1 + (1s∆)(1s)−1 + (2s∆)(1s)−1

in 12C are included which gives rise to a ∆-intermediate giant resonance
(LA = 0, SA = 1, JA = 1) spin mode. A calculation of |FLAJA(kπ)|2 alone as a
function of kπ starts at a maximum at kπ = 0 and falls very sharply approaching
a negative straight line on a log plot. If re-plotted as a function of tπ, from
10 to 150 MeV, it is essentially a decaying exponential. It is the nuclear form
factor that greatly damps out the p3

π effect in the ∆ width at higher energies.
In equation (16), the penetrability factor (pπ/pRπ )3 and nuclear form factor
|FLAJA(kπ)|2/|FLAJA(kRπ )|2 work against each other and are the main terms
causing the overall effect. The penetrability factor provides the quick rise of the
∆ width at low energy which is soon offset by the nuclear form factor at higher
energies. Calculations of the ∆ width were carried out to tπ = 400 MeV and the
∆ width reaches a flat maximum, drops off and decreases asymptotically as tπ
increases. The reason there are different curves for the ∆ widths in Fig. 1 is that
the resonance parameters pRπ (A) as discussed previously depend on the incident
energies of the nucleus–nucleus collisions. Incident energies of 100, 250 and 400
MeV·A below and above the pion threshold were chosen. In Fig. 1a, for fixed pπ,
the nucleon ∆ width increases as the incident energies increase. This is due to
the increase of pRπ (P ) as the incident energy increases. As pRπ (P ) increases, the
penetrability factor (pπ/pRπ )3 decreases but is more than offset by the increase
of the nuclear form factor |FLP JP (kπ)|2/|FLP JP (kRπ )|2, where the denominator
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Fig. 2. Absolute magnitude squared of the Breit–Wigner denominator (BWD) as a function of pion kinetic energy in the nucleus–nucleus CM frame
taken at laboratory incident energies of 100, 250 and 400 MeV·A: (a) A = P and (b) A = T . All curves are calculated under the condition of forward
pions (θπ = 0◦) and forward ejectiles (Θ P = 0◦).
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Fig. 3. Triple differential cross sections in the exclusive reaction 12C + 12C → 12C + π0 + 12C∗(T = 1) as a function of pion kinetic energy tπ in
the nucleus–nucleus CM frame at (a) 100 MeV·A, (b) 250 MeV·A and (c) 400 MeV·A incident projectile laboratory energies. The bold lines are the
results of the angle-averaged, ∆-nuclear decay widths and the dashed lines are the results with the free ∆-decay widths. All curves are calculated
under the conditions of forward pions (θπ = 0◦) and forward ejectiles (ΘP = 0◦).
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drops quickly as pRπ (= h̄kRπ ) increases. The reverse effect occurs in Fig. 1b since
pRπ (T ) decreases as the incident energies increases. In this case (pπ/pRπ )3 increases
but is not offset by the decrease of |FLT JT (kπ)|2/|FLT JT (kRπ )|2, so that a mild
increase results as the incident energy increases.

Since the nuclear ∆ widths occur in the denominators of the ∆-formation and
decay amplitudes as given in equation (7), Fig. 2 shows the energy dependence
of the denominators separately to see how they affect the pion energy differential
cross sections. In Fig. 2, we have BWD = (επ +mπ −m∆) + iΓA(∆)(επ)/2. The
effects of the projectile ∆-width ΓP (∆)(επ) and the target ∆ width ΓT (∆)(επ)
are shown in the P (∆) and T (∆) panels respectively. These effects are just a
denominator effect which reverses the magnitudes of the incident energy labels.
The wider spread in the P (∆) widths in Fig. 1a show up more dramatically as
a wider difference in Fig. 2a as compared to the T (∆) widths.

Finally, in Fig. 3, forward pion energy distributions are shown for the three
different incident energies, where the bold lines include the new nuclear ∆ widths
and the dashed lines are those of previous calculations using the free ∆-decay
width model. The new calculations are lower in magnitude. At forward pion
angles, the pion energy distributions are mainly due to projectile ∆ production
(Deutchman and Erazmus 1995), so that the shapes are mainly sensitive to
ΓP (∆)(επ). Since the projectile ∆ widths are broader than the free model widths
at these energies, then the magnitudes are increasingly reduced at higher incident
energies. Also, these curves are much smoother and flatter than those using the
free model. This is especially noticeable at 400 MeV·A, where the old width is too
narrow and over emphasises the resonance effect. Also, pion angular distributions
were calculated for the same three incident energies; however, the shapes are very
similar to previous calculations, with only the magnitudes decreasing slightly.

I would like to set the record straight concerning the history that eventually
led to the calculations that are shown in Fig. 3. The original formalism for the
overall amplitude was given in Deutchman (1992), where the projectile and target
amplitudes were included in the formalism, but initial calculations were done with
the target amplitude only. Then, in the following work by Deutchman and Li (1993),
triple differential cross sections were calculated which included the completely,
coherent model for the first time. It is here that I wish to set the record straight.
In Deutchman and Li (1993), the projectile amplitude was not included in the
calculations as erroneously stated. The projectile amplitude was included in the
formalism, but not yet included in the calculations since computer codes had not yet
been written to do so. Later, in the work of Deutchman and Erazmus (1995), both
amplitudes were calculated. For example, the cross section (full line) at 100 MeV·A
in Fig. 4a of Deutchman and Li (1993) is the same as the target-only calculation
(dotted line) of Fig. 1a in Deutchman and Erazmus (1995). The inclusion of the
projectile contribution raises the overall cross section by an order of magnitude. This
is also in agreement with the calculation (dashed line) shown in Fig. 3a of this work.
As first author in the Deutchman and Li (1993) paper, I apologise for the oversight,
the error was solely mine, and should not implicate my co-author in any way.

4. Conclusions

An angle-averaged, nuclear ∆-decay width has been derived that now includes
the all important nuclear form factor describing the ∆-nucleus decay to a pion
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and final nucleus for the collision of 12C +12 C→12 C +12 C∗(T = 1) + π0. Minor
improvements involve removal of the static limit in the relativistic kinematics
as well as inclusion of the energy-dependent ∆Nπ vertex form factor. The
new nuclear width reduces to the relativistically improved isobar model for free
∆ decay when nuclear factors are removed. The energy dependence of the
new nuclear ∆ widths rise more quickly, are much flatter, and do not increase
indefinitely as p3

π at higher energies when compared to the free ∆-decay widths
that were used previously. It is recommended that the free ∆-decay width include
the ∆nπ vertex form factor to prevent this blow up from occurring at higher
energies. As a result of the flatness of the nuclear widths and because they are
broader than the free ∆-decay width, the pion energy distributions are smaller in
magnitude but smoother in shape. The new ∆ widths depend on the constructive
coherence of the ∆-hole states that build up in the nuclear form factor so that
the widths become a measure of this coherence. It is concluded that the new
widths developed here represent an improvement over our past calculations that
describe the ∆ decay from nuclei in the problem of coherent pion production in
nucleus–nucleus collisions.
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