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Abstract

We review recent theoretical investigations of shot-noise suppression in nondegenerate
semiconductor structures surrounded by two contacts acting as thermal reservoirs. Calculations
make use of an ensemble Monte Carlo simulator self-consistently coupled with a one-dimensional
Poisson solver. By taking the doping of the injecting contacts and the applied voltage as variable
parameters, the influence of elastic and inelastic scattering as well as of tunneling between
heterostructures in the active region is investigated. In the case of a homogeneous structure at
T = 300 K the transition from ballistic to diffusive transport regimes under different contact
injecting statistics is analysed and discussed. Provided significant space-charge effects take
place inside the active region, long-range Coulomb interaction is found to play an essential
role in suppressing shot noise at applied voltages much higher than the thermal value. In the
elastic diffusive regime, momentum space dimensionality is found to modify the suppression
factor γ, which within numerical uncertainty takes values respectively of about 1

3 , 1
2 and 0 ·7

in the 3D, 2D and 1D cases. In the inelastic diffusive regime, shot noise is suppressed to the
thermal value. In the case of single and multiple barrier non-resonant heterostructures made
by GaAs/AlGaAs at 77 K, the mechanism of suppression is identified in the carrier inhibition
to come back to the emitter contact after having been reflected from a barrier. This condition
is realised in the presence of strong inelastic scattering associated with emission of optical
phonons. At increasing applied voltages for a two-barrier structure, shot noise is suppressed
up to about a factor of 0 ·50 in close analogy with the corresponding resonant barrier-diode.
For an increasing number of barriers, shot noise is found to be systematically suppressed
to a more significant level by following approximately a 1/(N + 1) behaviour, N being the
number of barriers. This mechanism of suppression is expected to conveniently improve the
signal-to-noise ratio of these devices.

1. Introduction

Electronic noise manifests itself in the stochastic behaviour of the stationary
current as measured in the outside circuit of a two-terminal device under test
∗ Refereed paper based on a talk presented to the Workshop on Nanostructures and Quantum
Confinements, held at the Australian National University, Canberra, in December 1998.
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4 L. Reggiani et al.

when biased with a constant voltage (current-mode operation), as schematically
shown in Fig. 1. Noise is a key feature of any electronic device because it gives
the intrinsic limit of the performance defined by the signal-to-noise ratio figure
of merit. However, besides hindering the signal detection, noise is also a relevant
probe of the microscopic phenomena at hand, thus providing information not
otherwise available from the study of average quantities, like conductance. When
moving toward nanostructures new phenomena have been found to arise and
innovative concepts need to be introduced (de Jong and Beenakker 1996). This
is the case for shot noise and its suppression, which has emerged in recent years
as a very interesting phenomenon not yet fully understood.
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Fig. 1. Schematic drawing of a two-terminal device under test (DUT) in which a stationary
fluctuating current is flowing under constant voltage conditions.

The aim of this paper is to overview recent Monte Carlo (MC) investigations
of shot-noise suppression we have carried out in two-terminal structures of small
dimensions (i.e. with typical submicrometre length scale) undergoing electronic
transport ranging from the ballistic to diffusive regime (here ballistic and diffusive
are synonymous with the absence or presence of scattering respectively). We
consider separately the cases when transport is dominated by scattering only and
when it is mostly controlled by tunneling processes. The MC simulations refer
only to nondegenerate conditions, and the applied voltage U is allowed to be
sufficiently high so that the device can strongly depart from ohmic conditions (i.e.
linear current–voltage characteristics). Furthermore, the phonon bath is assumed
to remain at thermal equilibrium. The main objectives are to analyse separately
the effects of (i) scattering (elastic and inelastic), (ii) tunneling, (iii) space-charge,
and (iv) carrier injection modeling from the contacts, on shot noise and its
suppression. The degenerate conditions have been already widely investigated and,
for the sake of completeness, a brief survey of the existing literature is reported.

The paper is organised as follows. In Section 2 we recall the general definitions
and properties of current fluctuations. Section 3 briefly reviews the phenomenon
of shot-noise suppression providing an up-to-date state of the art summary. The
theoretical model used in MC calculations is given in Section 4. Section 5
displays the results for the two main structures considered here namely: the
homojunction and the tunneling heterojunction structures. Section 6 summarises
the main conclusions.
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2. Current Fluctuations: General Definitions and Properties

With reference to Fig. 1a, the general physical system under investigation is a
two-terminal device in which a stationary fluctuating current I(t) is flowing as
a result of an applied bias constant in time. Ideal leads connecting the device
to the applied voltage are implicitly assumed, so that the current is determined
only by the characteristics of the device under test. By introducing the current
fluctuation δI(t) = I(t) − Ī, the main quantity of interest which provides a
theoretical description of noise is the correlation function of current fluctuations,
defined as

CI(t) = 1
2 [δI(0)δI(t) + δI(t)δI(0)] , (1)

where stationary conditions imply translation invariance in time of the correlator,
the bar denotes time (or ensemble) average by assuming ergodicity, and a
symmetrised notation has been introduced to generalise the description to the
quantum case when dynamic variables are replaced by corresponding operators.

In the frequency domain (typical of the experimental detection of noise)
the counterpart of the correlation function is the spectral density of current
fluctuations SI(f), defined as:

SI(f) = 2
∫ +∞

−∞
CI(t)exp(i2πft)dt . (2)

The noticeable property of the spectral density is to satisfy the power theorem
which relates the variance of current fluctuations δI2 to the spectrum as

δI2 =
∫ ∞

0

SI(f)df . (3)

We remark that an analogous (or dual) representation of noise can be given
for voltage fluctuations as measured at the open terminals of the device under
test. Because of the linearity of the fluctuations we are concerned with, the
Norton/Thevenin circuit theorems relate voltage and current spectra as (van der
Ziel 1954)

SU (f)/SI(f) = |Z(f)|2 , (4)

where Z(f) is the small signal impedance of the device under test. We recall the
relation Z(f) = 1/Y (f) where Y (f) is the small signal admittance of the device.

Since electronic noise is already present at thermal equilibrium due to the
coupling of the device with the environment (thermal reservoir), it is convenient
to introduce the concept of excess noise defined as the contribution which
algebraically adds to that already present under thermal equilibrium. We remark
that the microscopic sources of excess noise differ in general from that of the
thermal one. Examples of excess noise are: 1/f or flicker noise, generation
recombination noise, hot-carrier noise, shot noise, etc.
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(2a) Thermal Noise

Thermal noise is associated with the thermal coupling of carriers with the
environment. It is always present and is rigorously described under thermal
equilibrium conditions by the Nyquist theorem which, in its quantum form, gives
the well known relationship (Kubo et al. 1991)

STh
I (f) = 4Re[Y (f)] hf coth

(
hf

2KT

)
, (5)

where the superscript Th emphasises the thermal source of fluctuations, Re[Y (f)]
is the real part of the small signal admittance of the device at frequency f , h is
the Planck constant, K the Boltzmann constant and T the absolute temperature.

In particular, for a space homogeneous device (conductor), by using the Einstein
relation at zero frequency, we have

STh
I (0) = 4KTG =

4q2

L2 DδN
2 , (6)

with G the static conductance, q the electron charge, L the length of the
conductor, D the diffusion coefficient and δN2 the variance of the number of
carriers inside the conductor, given by the grand canonical relation (Landau and
Lifshitz 1958)

δN2 = N̄KT
∂lnN̄
∂µ0

, (7)

µ0 being the chemical potential.
The following are remarkable properties of thermal noise:

(i) under nondegenerate conditions δN2 = N̄ and, for T → 0, D → 0; thus
noise and diffusion are synonymous.

(ii) under degenerate conditions for T → 0, δN2 → 0 and D 6= 0; thus in
general noise is related to the product of diffusion and variance of carrier
number fluctuations, evidence of the open system characteristics.

(iii) thermal noise does not depend on the discreteness of the charge; i.e. by
halving the charge unit and mass and doubling the carrier number the
conductance remains the same and thus also the current spectral density.

(iv) it is rigorously defined at thermodynamic equilibrium (fluctuation-
dissipation theorem), and its zero frequency value vanishes at T = 0, a
zero-point contribution is present at finite frequencies.

(v) the frequency dependence of the spectrum SI(f) is a fingerprint of carrier
dynamics, and for a relaxation regime it takes a Lorentzian shape.

(2b) Shot Noise

Shot noise is associated with the discreteness of electrical charge. The standard
device exhibiting shot noise is the vacuum diode. Here shot noise is associated
with the fluctuations of the total number of carriers inside the device as a
consequence of the random injection from the cathodic contact, and is given by
the well-known formula
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SSh
I (0) = 2qI γ , (8)

where the superscript Sh emphasises the shot-noise characteristics of fluctuations,
q is the unit of charge responsible for the current (not necessarily equal to the
electron charge) and γ is the suppression (or Fano) factor. The suppression
factor is a measure of the correlation between different current pulses crossing
the device and it can take the following range of values:

γ = 1 → full shot noise (absence of correlations);

γ < 1 → suppressed shot noise (negative correlations);

γ > 1 → enhanced shot noise (positive correlations).

The following are remarkable properties of shot noise:

(i) it is an excess noise and thus it vanishes in the absence of a driving field.
(ii) it linearly scales with the value of the quantum of charge responsible for

the current.
(iii) the frequency dependence of the spectrum SI(f) is a fingerprint of carrier

dynamics.

We point out that we reject the recurrent interpretation of thermal noise at
equilibrium in terms of two shot-noise contributions associated with the thermal
current ITh = GKT/q oppositely injected from the contacts. Indeed, the use of
a thermal voltage KT/q implies SSh

Ith(0) = 2GKT and the fundamental property
(ii) is no longer satisfied because GKT does not depend on the discreteness of
the charge. We concentrate on shot-noise suppression in the next section.

3. Shot-noise Suppression

Shot noise and its suppression was considered for the first time in ballistic
systems, such as vacuum tubes, following the seminal work of Schottky (1918),
and was well understood in terms of the Poissonian statistics of different current
pulses. Within this model, shot noise has been successively investigated also in
other vacuum tubes (Thompson et al. 1940a, 1940b) and in several nonuniform
devices such as Schottky diodes, p–n junctions, tunnel diodes, etc. (van der Ziel
1986).

Contrary to ballistic systems, in macroscopic structures, where inelastic
scattering mechanisms with phonons, impurities and other carriers determine the
transport properties, shot noise is not usually detected and noise levels close to
the thermal value are typically measured (in the frequency range beyond 1/f
and generation-recombination contributions) (Shimizu and Ueda 1992; Shimizu
and Sakaki 1992; Büttiker 1995; Gonzalez et al. 1998a; Reklaitis and Reggiani
1997a, 1997b, 1999).

With the recent advent of mesoscopic devices, shot noise has received renewed
attention. We remark that, with the term mesoscopic here, we generally refer
to both classical (Galperin and Kozub 1991a, 1991b) and quantum structures in
which the common feature is that the length of the active region is much smaller
than that of the energy relaxation, usually called the phase-breaking length in the
quantum case. In particular, being a signature of correlations among particles,
the phenomenon of suppression has emerged as a subject of relevant interest in
the wider field of correlated systems.
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Among the mesoscopic devices exhibiting shot-noise suppression we recall:
resonant and non-resonant tunneling diodes (Li et al. 1990a; Chen and Ting 1991;
Davies et al. 1992; Liu et al. 1995; de Jong and Beenakker 1995; Iannaccone
and Pellegrini 1997; Yan et al. 1997); the vacuum tunneling probe (Yurke and
Kochanski 1990); small-size conductors (e.g. quantum point contacts, quantum
and classical wires, metallic conductors, etc.—see Li et al. 1990a, 1990b; Liefrink
et al. 1994; Reznikov et al. 1995; Kumar et al. 1996; Steinbach et al. 1996;
Schoelkopf et al. 1997); and quantum beam-splitter structures (Liu et al. 1998).

Among the mechanisms responsible for shot-noise suppression (Landauer 1996,
1999) we mention: the long-range Coulomb interaction (space-charge) (van der
Ziel 1954; Gonzalez et al. 1997a, 1997b) and screening (Naveh et al. 1997); the
short-range Coulomb interaction (carrier–carrier interaction) (Hung and Wu 1993;
Kozub and Rudin 1995a, 1995b; Nagaev 1995a, 1995b); the Pauli principle (Liu
et al. 1998; Büttiker 1990; Martin and Landauer 1992; Altshuler et al. 1994;
Liu et al. 1997); tunnelling processes within different transmission regimes (e.g.
partition, coherent, sequential, etc.—see van der Ziel 1954; Dorokhov 1984; Imry
1986; Lesovik 1989; Yurke and Kochansnki 1990; Li et al. 1990a; van de Roer
et al. 1991; Chen and Ting 1991, 1992; Beenakker and Büttiker 1992; Davies
et al. 1992; Hung and Wu 1993; Hershfield et al. 1993; Hanke et al. 1993; Liu
and Yamamoto 1994; Nazarov 1994; Sheng and Chua 1994; Liu et al. 1995; de
Jong and Beenakker 1995; Birk and Schönenberg 1995; Jahan and Anwar 1995;
Reznikov et al. 1995; Iannaccone and Pellegrini 1995, 1997; Kumar et al. 1996;
Yan et al. 1997; Lund and Galperin 1997; Schep and Bauer 1997; Reklaitis and
Reggiani 1997a, 1997b, 1999; Liu et al. 1998); and fractional charge (de Picciotto
et al. 1997; Saminadayar et al. 1997).

Noticeably, most of the predictions concerning shot-noise suppression have
been experimentally confirmed (Li et al. 1990a, 1990b; Liefrink et al. 1994; Liu
et al. 1995, 1998; Reznikov et al. 1995; Kumar et al. 1996; Steinbach et al. 1996;
Yan et al. 1997; Schoelkopf et al. 1997).

A great part of the theoretical work carried out so far considers degenerate
conductors (often at zero temperature to avoid thermal noise), where the Pauli
exclusion principle plays a major role. In contrast, the long-range Coulomb
interaction among carriers and the effect of energy dissipation has received less
attention. Accordingly, the main objective of this review is to provide a systematic
analysis of shot-noise suppression in nondegenerate structures with the inclusion
of Coulomb correlation and/or energy dissipation. Here two objectives are of
main concern: (i) the determination of the suppression value when the transport
regime is controlled by diffusion or tunneling, and (ii) an understanding of the
progressive disappearance of shot noise when passing from the mesoscopic elastic
regime (analogous to the coherent regime in the quantum case) to the macroscopic
inelastic regime of conduction.

Our approach differs from those typically used to analyse shot-noise in
quantum mesoscopic systems. Present calculations are based on an ensemble
MC simulation self-consistently coupled with a Poisson solver (PS, where the
scattering mechanisms and the fluctuations of the self-consistent potential are
naturally accounted for at a kinetic level. In addition, the approach can analyse
increasing applied voltages U , ranging from conditions near thermal equilibrium
(i.e. qU/KT ¿ 1) to conditions very far from equilibrium (i.e. qU/KT À 1),
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without the difficulties that other methods meet (Green and Das 1998). These
latter conditions are those necessary for shot noise to be dominant with respect
to thermal noise.

4. Theoretical Model

The physical system of interest consists of a semiconductor structure sandwiched
between two doped (but nondegenerate) contacts acting as ideal reservoirs, i.e.
completely absorbing and thermalising, as sketched in Fig. 2, where nc and
ND are the doping of the contacts and structure respectively. The structure is
assumed to have a transversal size sufficiently thick to allow a 1D electrostatic
treatment in the x direction and to neglect the effects of boundaries in the y and
z directions. The structure will be specialised according to the transport regime
analysed, i.e. ballistic/diffusive or tunneling controlled. The contacts are assumed
to have no voltage drop inside and to remain always at thermal equilibrium.
Accordingly, when a voltage is applied to the structure, all the potential drop
takes place inside the active region, between the positions x = 0 and x = L. The
time and energy statistics of the injecting contacts is detailed in the next section.

nc nc

thermal

equilibrium

thermal

equilibrium

x=L

ND

x=0

Active region

Contact 1 Contact 2

U
Poissonian 

injection
Poissonian 

injection

STRUCTURE

Fig. 2. Schematic drawing of the structure under investigation which
includes the active region of the structure and the ideal contacts.

(4a) Contact Models

The modeling of carrier injection from the contacts can be crucial for the noise
behaviour in mesoscopic devices, especially in the case of ballistic transport
(Gonzalez et al. 1998b). To provide a complete model for the contacts and thus
define the related sources of randomness in the carrier flux, we have to specify
the velocity distribution of the injected carriers finj(v), the injection rate Γ and
its statistical properties. Here we have denoted v ≡ (vx, vy, vz).

Let us consider the process of electron injection from contact 1 into the active
region at x = 0 (see Fig. 2). According to the equilibrium conditions of the
contacts, the injected carriers follow a Maxwellian distribution weighted by the
velocity component vx normal to the surface of the contact:

finj(v) = vxfMB(v), vx > 0 , (9)

where fMB(v) is the Maxwell–Boltzmann distribution at the lattice temperature.
The injection rate Γ, i.e. the number of carriers per unit time which enter the
sample, is given by
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Γ = ncv̄+S , (10)

where S is the cross-sectional area of the device, and

v̄+ =
∫ ∞

0

∫ ∞
−∞

∫ ∞
−∞

finj(v)dvxdvydvz =

√
KT

2πm
, (11)

with m the carrier effective mass. The injection rate is taken to be independent
of the applied voltage. Thus, the boundary injecting condition at the contacts
is described through the constant injection rate Γ. The maximum current that
a contact can provide in the ballistic limit is the saturation current IS = qΓ.

According to the nondegenerate distribution of carriers, the random injection
at the contacts is taken to follow Poissonian statistics. Thus, the time between
the injection of two consecutive electrons, tinj, is generated with a probability
per unit time given by

P (tinj) = Γexp(−Γtinj) . (12)

In the simulation we make use of equation (12) to generate tinj which, following
the MC technique, is given by tinj = −(1/Γ) ln(r), where r is a random number
uniformly distributed between 0 and 1. Electrons are injected at x = 0 and
x = L into the active region of the structure according to the above stochastic
rate. When a carrier exits through any of the contacts it is canceled from
the simulation statistics, which accounts only for carriers that are inside the
active region at the given time t. Thus, the instantaneous number of carriers
in the sample N(t) is a stochastic quantity which fluctuates in time due to the
random injection/extraction from the contacts, and we can evaluate both the
time-averaged value N̄ and its fluctuations δN(t) = N(t)− N̄ .

Unless otherwise indicated, calculations make use of the above contact model,
which appears to be physically plausible under nondegenerate conditions. However,
to analyse the influence of the contact injecting statistics on the noise behaviour,
alternative models are also used. In particular, for the injected carriers we consider:
(i) a fixed velocity instead of Maxwellian distribution and (ii) uniform-in-time
instead of Poissonian injection. In case (i) we consider the same injection rate
Γ as in the basic model, but all carriers are injected with an identical x-velocity
vx =

√
πKT/2m, which corresponds to the average velocity of the injected

electrons when they follow a Maxwellian distribution. In case (ii) carriers are
injected into the active region equally spaced in time at intervals of 1/Γ. Thus,
the time between the injection of two consecutive electrons, tinj, is generated
with a probability per unit time given by

P (tinj) = δ(t− Γ−1) . (13)

(4b) Kinetic Approach

The kinetic approach makes use of an ensemble MC simulation 3D in momentum
space coupled with a 1D PS (equivalent to a Boltzmann–Langevin approach).
Electrons in the active region are considered as semiclassical particles, interacting
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with the lattice. Elastic and inelastic scattering are considered. Electron
tunneling across barriers is treated as an independent sequential process. Elastic
tunneling probabilities for the triangular and trapezoidal potential are obtained
from analytical solutions of the appropriate Schrödinger equation, as already
used to study hot-carrier instabilities in similar structures (Reklaitis 1996a) and
reported with details by Moglestue (1993), Reklaitis (1996b) and Reklaitis and
Reggiani (1999).

According to the Ramo–Shockley theorem (Ramo 1939; Shockley 1938) and
its generalisation (Pellegrini 1986, 1993a, 1993b), each electron moving inside the
structure with an instantaneous velocity vi(t) along the field direction induces
the instantaneous current evi(t)/L in the external circuit, where L is the sample
length. Therefore the fluctuating current in the external circuit is evaluated as

I(t) =
q

L

N(t)∑
i=1

vi(t) . (14)

From a knowledge of the instantaneous current, the autocorrelation function
of current fluctuations is calculated in the usual way (Varani et al. 1994) and
the associated spectral density is obtained by Fourier transforming the current
autocorrelation function. An uncertainty of 10% and 20% in the worst cases
can be associated with numerical results pertaining to correlation functions and
spectral densities, respectively.

5. Results

(5a) Nondegenerate Homojunction System

In the case of a nondegenerate homojunction system the structure in Fig. 2
consists of a lightly doped active region of a semiconductor sample sandwiched
between two heavily doped contacts (of the same semiconductor) which act as
thermal reservoirs and inject carriers into the active region. The doping of the
contacts nc is taken to be much higher than that of the active region ND. The
carrier density at the contacts corresponds to their doping concentration; all
impurities are assumed to be ionised at the temperature T = 300 K considered
here.

Typically, a 3D momentum space is considered. However, to analyse the
influence of dimensionality on the noise suppression, a 2D and 1D momentum
space is also considered in some specific cases. Static (i.e. a stationary electric
field profile which is time independent) and dynamic PS schemes are used to
analyse the importance of Coulomb correlations. The details of the MC modeling
can be found in Gonzalez et al. (1997a, 1997b).

For the calculations we have used the following set of parameters: a carrier
effective mass m = 0 ·25m0 (m0 being the free electron mass), a dielectric constant
ε = 11 ·7ε0 (ε0 being the vacuum permittivity), L = 2000 Å, nc ranging between
1013 and 1018 cm−3, and ND = 1011 cm−3. The injection rate at the contacts,
Γ, is proportional to nc and determines the level of space charge inside the
active region, which is characterised by the dimensionless parameter λ, defined
as (Gonzalez et al. 1997b, 1998b)

λ =
L

LDc
, (15)
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where LDc =
√
εKT/q2nc is the Debye length corresponding to the carrier

concentration at the contacts. In present calculations λ takes the minimum
value of 0 ·15 (nc = 1013 cm−3), for which the effects of Coulomb repulsion
between electrons are practically negligible, and the maximum values of 30 ·9
(nc = 4 × 1017 cm−3) and 48 ·8 (nc = 1018 cm−3), for which quite significant
electrostatic screening takes place.

Scattering mechanisms are introduced in the simulation in a simple way by
making use of an energy independent relaxation time τ . We consider separately
elastic and inelastic (completely thermalising) interactions, both taken to be
isotropic (Gonzalez et al. 1998a). While L remains constant, the value of τ is
appropriately varied from 10 ps to 1 fs to continuously cover from ballistic to
diffusive transport regimes. The transition between these regimes is characterised
by the ratio between the carrier mean free path `, defined as ` = 2v̄+τ , and the
sample length L. Typical values of the time step and number of meshes in real
space used for the PS are 2 fs and 100, respectively, except for the cases when
τ < 5 fs for which the time step is taken to be 0 ·2 fs. As a test of numerical
reliability we have checked that by reducing the time step or by increasing the
number of meshes the results remain the same. The average number of simulated
particles in the active region ranges between 50 and 2000 depending on contact
doping, transport regime, and applied voltage. The suppression factor is then
evaluated as γ = SI(0)/2qI. To distinguish between the results obtained from the
static and dynamic PS, we denote the corresponding current spectral densities
as SsI and SdI respectively.

The structures considered contain space charge in the active region, and the
total charge neutrality is implicitly guaranteed by the much higher doping of the
contacts with respect to that of the active region. In other words, the external
circuit acts as a large grounding capacitor, thus ensuring charge neutrality in
the whole system (Nagaev 1998a, 1998b). However, the effect of possible charge
fluctuations at the contacts is not included in the calculation of the current. In
any case, these effects are expected to appear at high frequencies (comparable
with those of the plasma), while we are mostly interested in the low-frequency
region of the noise spectrum.

Current–voltage (ballistic and diffusive). Fig. 3 reports the calculated current–
voltage (I−U) characteristics of the structure shown in Fig. 2 for the (a) ballistic
and (b) diffusive regimes. In the ballistic regime, the I−U characteristics exhibit
an almost linear behaviour before saturating to the maximum current the contact
can supply IS . At increasing space-charge effects, the potential minimum near
the cathode increases thus limiting the number of carriers which reach the anode.
Accordingly, the linear behaviour extends at higher voltages until the minimum
disappears and the current saturates.

In the diffusive regime, because of scattering the current remains substantially
lower than the saturation value in the whole voltage range analysed here.
Furthermore, a slight super-ohmic behaviour is evidenced as expected by space-
charge-limited current conditions (Lampert and Mark 1970). In the wide range
of voltages reported in Fig. 3b, the I −U curve exhibits a super-linear behaviour
which is related to the importance of space-charge effects and the increase of the
carrier number inside the active region with the applied voltage for qU >∼ KT .
For the highest applied voltages it is found that I ∝ Ur, where the power r is
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a function of λ. In particular, r = 1 ·7 for λ = 30 ·9 and r = 1 ·8 for λ = 48 ·8.
At low voltages, the determination of SI(0) can be carried out without major
difficulties; however, the lowest value reported for the current corresponds to
I/IS = 10−4. Indeed, below this value the statistical resolution of the simulation
is no longer sufficient and the values of the current become unreliable. For
qU < KT we expect that the I − U characteristic of the structures becomes
linear because of the presence of two injecting contacts.

qU / kBT

0.1 1 10 100

I/
I S

0.01

0.10

1.00

0.15
2.18
4.88
7.72
15.45
30.90

λ

qU / kBT

100 101 102

I/
I S

10-3

10-2

10-1

λ=30.9 elastic
inelastic
elastic
inelastic

λ=48.8

(a) ballistic

(b) diffusive

Fig. 3. Current–voltage characteristics of the homogeneous structure
for the (a) ballistic and (b) diffusive regimes. The current is normalised
to the saturation value and the voltage to the thermal value.

The main results concerning fluctuations are discussed in the next subsections,
which are organised as follows. The first two pertain to a 3D momentum space,
while the next is devoted to 2D and 1D momentum spaces. Most of the reported
results refer to high values of the space-charge parameter λ (typically λ = 30 ·9),
which implies the presence of significant effects related to long-range Coulomb
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interaction in the active region of the structures. In particular, a significant
inhomogeneity in the charge distribution is present, as shown by Gonzalez et al.
(1998b) in the ballistic case. We recall that elastic and inelastic scattering are
considered separately in the simulations. In no case are both types of scattering
taken into account simultaneously.

S I/2
qI

10-1

100

40
80
100

qU/kBT

(a) elastic

l/ L

10-3 10-2 10-1 100 101

S I/2
qI

10-2

10-1

100

(b) inelastic

λ=30.9

Fig. 4. Shot-noise suppression factor versus ballistic parameter `/L
for the cases of (a) elastic and (b) inelastic scattering at different
applied voltages. Calculations are performed by using the dynamic
PS scheme with λ = 30 ·9.

Transition ballistic–diffusive regimes. The behaviour of noise in the crossover
from ballistic to diffusive transport regimes is analysed under far-from-equilibrium
conditions (U À KT/q), since these are necessary for the manifestation of shot
noise. We consider the dynamic PS scheme. Fig. 4 reports γ as a function of
`/L for several values of the applied voltage in the (a) elastic and (b) inelastic
cases respectively. In the perfect ballistic regime the two distinct values of γ
found refer to the presence or absence of the potential barrier related to space
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charge (Gonzalez et al. 1998b). For U = 40 KT/q the barrier is still present and
the suppression is important. For U = 80 and 100 KT/q the barrier has already
disappeared; accordingly the current saturates and the suppression factor takes
on the full shot-noise value. When the diffusive regime is achieved, in the elastic
case γ attains a constant value at further decreasing values of `/L, and takes the
same value of about 1

3 independently of the applied voltage. On the contrary, in
the inelastic case the higher the applied voltage the lower the value which γ is
found to take. Remarkably, the value of `/L at which γ starts decreasing when
the ballistic regime is abandoned is the same in the elastic and inelastic cases for
a given applied voltage (`/L ≈ 0 ·3 and 0 ·1 for 80 and 100 KT/q respectively).
However, when the diffusive regime is approached, a lower value of `/L must
be reached in the inelastic case with respect to the elastic one for γ to take a
constant value. This behaviour can be explained in terms of the different elastic
and inelastic scattering intensity required by the electron system to achieve a
significant equipartition of energy into the three directions of momentum space
(Gonzalez et al. 1999).

To analyse the role played by the modeling of the contact injection on the
suppression of noise, Fig. 5 reports γ as a function of `/L calculated using four
different contact models for the (a) elastic and (b) inelastic cases respectively. They
combine Poissonian/uniform injecting statistics and a Maxwellian/fixed-velocity
distribution of the injected carriers. The Poissonian–Maxwellian injection is the
basic one used in calculations. In the perfect ballistic regime, when carrier
transport is deterministic, γ crucially depends on the injection model. Thus, in
the case of the uniform fixed-velocity model, when the injection introduces no
extra noise in the current flux, γ is found to decrease linearly with an increase
of `/L. The noise does not vanish completely since, unless `/L → ∞, there is
always some probability of undergoing a scattering mechanism. In this limit,
when the noise is produced just by a few scattering events, it is clearly observed
that elastic interactions lead to more important current fluctuations than inelastic
mechanisms. By approaching the perfect diffusive regime the suppression factor
is found to be independent of the model used. We conclude that the noise in
the diffusive regime (and particularly the 1

3 suppression value obtained in the
elastic diffusive case) is independent of the carrier injecting statistics, and it
is only determined by the joint action of scattering mechanisms and Coulomb
correlations.

Diffusive regime. In this subsection we consider scattering times short enough
to ensure a diffusive transport regime (`/L <∼ 3 × 10−3). In this regime the
noise behaviour is closely related to the breadth of the velocity distribution
(Landauer 1993; Nagaev 1995a). Fig. 6 shows SI(0)/2qI as a function of the
applied voltage normalised to the thermal value for two values of the space
charge shown in parts (a) and (b). To emphasise the shot-noise dependence on
the discreteness of charge, in Fig. 6a we show also the results of simulations
performed for the elastic case by scaling q → q/2, m → m/2, nc → 4nc and
S → S/2. This scaling preserves the values of the low-field conductance and λ
(same space charge conditions) considered in Fig. 6a. The two elastic simulations
performed with the unit and scaled value of the charge practically coincide in the
thermal-Nyquist limit. On the contrary, they show shot-noise suppression factors
of about 1

3 and 1
6 , respectively, in the high-voltage limit, in accordance with the
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Fig. 5. Shot-noise suppression factor versus the ballistic parameter
`/L for an applied bias of U = 40KT/q calculated with different
contact models. Calculations refer to the dynamic PS scheme with
λ = 30 ·9 and consider (a) elastic and (b) inelastic scattering.

scaling of the charge. For both charge values, a smooth cross-over between the
thermal-Nyquist and shot-noise regime takes place. From Fig. 6 it is observed
that the the behaviour of γ is quite similar for both values of λ. By comparing
in each part the results corresponding to elastic and inelastic scattering we find
that, near thermal equilibrium conditions (qU < KT ), both cases exhibit the
same value which satisfies the Nyquist relation. On the contrary, at high voltages
(qU/KT >∼ 10) the elastic case reaches the 1

3 limiting value, while the inelastic
case decreases systematically (Gonzalez et al. 1998a).

The MC results in the inelastic case Sinel
I (0) are closely fitted by the expression

Sinel
I (0) = 4KTG0

〈N〉
〈N〉0

, (16)
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Fig. 6. Shot-noise suppression factor versus applied voltage for `/L = 1 ·07×10−3. Calculations
refer to the dynamic PS scheme considering elastic and inelastic scattering with (a) λ = 30 ·9
and (b) λ = 48 ·8. In Fig. 6a open circles correspond to the elastic case with the scaled values
q → q/2, m → m/2, nc → 4nc and S → S/2; and q′ stands for q and q/2 in the results
corresponding to unit and scaled charge. The fittings of equations (16) and (18) are shown
by the dashed and dotted lines respectively.

where

G0 =
q2〈N〉0τ
mL2 (17)

is the conductance and 〈N〉0 the average number of electrons inside the sample,
both in the limit of vanishing bias. Thus, in the case of inelastic scattering the
spectral density can be expressed analogously to that of thermal Nyquist noise
modulated by the variation of carrier number at the given voltage, even in the
presence of a high bias and a net current flowing through the structure. Equation
(16) describes correctly the thermal noise of the present structure, since the
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non-linearity of the I −U characteristic is taken into account through the factor
〈N〉/〈N〉0, which depends on the applied voltage. We conclude that inelastic
scattering strongly suppresses shot noise and makes the noise become macroscopic
(γ ¿ 1) (Gonzalez et al. 1998a). We remark that present findings prove also
that the condition of inelastic scattering alone does not suffice to suppress shot
noise; the presence of the fluctuating self-consistent electric field remaining a
necessary condition (Büttiker 1995). Indeed, as a counter-proof we refer to the
calculations performed with the static PS scheme, where no suppression has been
detected (Gonzalez et al. 1998a). Therefore, as argued by Büttiker (1995), it is
the combination of both Coulomb interaction and inelastic scattering which leads
to the suppression of shot noise. In the elastic case, the values of Sel

I (0) are
nicely reproduced by the following expression:

Sel
I (0) = 8

3KTG0
〈N〉
〈N〉0

+ 2
3q
′Icoth

(
q′U

2KT

)
, (18)

with q′ taking the full q or the reduced q/2 charge value. Equation (18) is
quite similar to that obtained by Nagaev (1992) in a degenerate context, and
describes the smooth crossover from thermal-Nyquist noise for q′U ¿ KT to 1

3
or 1

6 suppressed shot-noise for q′U À KT .
In contrast to other approaches (Beenakker and Büttiker 1992; Nagaev 1992;

de Jong and Beenakker 1995; Liu et al. 1997), our results show that, neither
phase-coherence (Sukhorukov and Loss 1998) nor degenerate statistics are required
for the occurrence of suppressed shot noise in diffusive conductors, and purely
classical physical processes can lead to the same 1

3 factor (Landauer 1998, 1999).
To illustrate the physical origin of the 1

3 value, Fig. 7 reports a typical spectrum
of the suppression factor under elastic diffusive conditions for the static and
dynamic PS schemes. Here the current spectrum is decomposed into velocity,
number, and cross-correlation contributions (Reggiani et al. 1992; Gonzalez and
Pardo 1993; Gonzalez et al. 1997b):

SI(f) = SV (f) + SN (f) + SV N (f) , (19)

with

SV (f) = 2
∫ ∞
−∞

q2

L2 〈N〉
2〈δv(0)δv(t)〉ei2πftdt , (20)

SN (f) = 2
∫ ∞
−∞

q2

L2 〈v〉
2〈δN(0)δN(t)〉ei2πftdt , (21)

SV N (f) = 2
∫ ∞
−∞

q2

L2 〈v〉〈N〉[〈δv(0)δN(t)

+ δN(0)δv(t)〉]ei2πftdt . (22)
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Fig. 7. Spectrum of the shot-noise suppression factor under the diffusive regime (`/L =
2 ·7 × 10−3) calculated within static and dynamic PS schemes for the elastic case and an
applied voltage of U = 100 KT/q. Different contributions to the total spectrum are shown.

In the static PS scheme the spectrum clearly shows that the three terms contribute
to SI(f), and two different time scales can be identified. The longest one is
associated with the transit time of carriers through the active region τT ≈ 5 ps,
and is evidenced in the terms SsN (f) and SsV N (f). The shortest one is related
to the relaxation time of elastic scattering τ = 5 fs, and is manifested in SsV (f).
Remarkably, the velocity contribution yields 1

3 of the full shot-noise value, while
the other two terms provide the remaining 2

3 . Thus, in the static PS scheme the
full shot noise is recovered as sum of all three contributions. On the contrary,
in the dynamic PS scheme SdN (f) and SdV N (f) are found to compensate each
other and, as a result, SdI (f) coincides with SdV (f) in all the frequency range.
Moreover, SdN (f) takes values much smaller than SsN (f). The characteristic
time scale of SdN (f) and SdV N (f) differs from that found within the static PS
scheme, which was related to the transit time τT . Now, in the dynamic case it
is the dielectric relaxation time corresponding to the carrier concentration at the
contacts τd = 0 ·46 ps which determines the cutoff of the contributions belonging
to number fluctuations. In the frequency range between the transit and collision
frequency values it is interesting to notice that both static and dynamic PS
schemes yield γ = 1

3 , thus relating the suppression factor to velocity fluctuations
only. However, at low frequencies only the dynamic scheme takes this value
by virtue of Coulomb correlations, which are responsible for the reduction of
SdN (f) and the mutual compensation of SdN (f) and SdV N (f) contributions. It is
remarkable that SsV (f) = SdV (f) over all the frequency range, which implies that
velocity fluctuations are not affected by the long-range Coulomb interaction, but
only by scattering mechanisms. Coulomb repulsion affects only the contributions
where carrier-number fluctuations are involved.
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Dependence on momentum space dimensionality. The results reported so far
refer to a 3D momentum space. In contrast to degenerate diffusive systems
where, provided quasi-one dimensional conditions in real space are attained, noise
suppression is independent of the number d of momentum space dimensions. An
interesting feature of nondegenerate diffusive systems is that noise suppression can
depend on d. For the inelastic case considered here no dependence on d has been
found, since there is no influence of the velocity components transverse to the
electric field direction on transport and noise properties of the structures. On the
contrary, in the elastic case the suppression factor is found to depend significantly
on d (Gonzalez et al. 1998a) since the transverse velocity components constitute
a channel for energy redistribution which affects the transport properties of the
structure. Therefore, below we focus our analysis on the elastic case. Accordingly,
when d = 2 in the simulation the carrier velocity is randomised in two components
after each scattering event, and when d = 1 the isotropic character of scattering
is accomplished by inverting the carrier velocity with an average (back-scattering)
probability Pb = 0 ·5.

Fig. 8a reports γ as a function of `/L for the 1D, 2D and 3D cases at high
voltages (U = 40KT/q), calculated within the dynamic PS scheme. We notice
that, when calculated within the static PS scheme, the results in the 1D and
2D cases do not exhibit any shot-noise suppression, like in the 3D case. For
the highest values of `/L, in all three cases γ approaches the asymptotic value
corresponding to the ballistic limit (γ = 0 ·045) (Gonzalez et al. 1997b), where
the behaviour is practically independent of d. At a given value of `/L, a higher
deviation from the asymptotic ballistic value is observed for lower d. This is due
to the fact that, on average, elastic interactions introduce higher fluctuations of
the carrier x-velocity the lower the number of available momentum states after
the scattering mechanism (in particular just two in the 1D case). For this same
reason, the increasing presence of scattering as `/L is reduced leads to higher
values of the suppression factor, the lower the dimensionality. Remarkably, within
numerical uncertainty, the limit value reached by γ in the perfect diffusive regime
is found to be, respectively, 1

3 , 1
2 and 0 ·7 for 3D, 2D and 1D. The appearance of

the 1
3 factor in the 1D MC simulation of Liu et al. (1997) does not contradict

the present results because there it was due to the effect of the Pauli exclusion
principle, while here the correlation between electrons comes from their Coulomb
repulsion. Fig. 8b shows γ in the diffusive regime as a function of the applied
voltage, providing evidence that these limit values are independent of the bias
once qU À KT . The origin of the suppression is the same in all three cases: the
joint action of Coulomb correlations and elastic scattering, which leads to the
result SI(0) = SV (0) (as shown in Fig. 7 in the 3D case), where SV (0)/2qI under
the perfect diffusive regime is a function of the dimensionality of momentum
space.

(5b) Tunneling Heterojunction System

In this section the physical systems under investigation are single and multiple
barrier non-resonant diodes. Accordingly, the structure in Fig. 2 consists of
GaAs/AlGaAs heterostructures sandwiched between appropriate emitting and
collecting contacts. Contacts are considered to be ohmic, the voltage drop inside
them being negligible, and to remain always at thermal equilibrium. If not
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stated otherwise, electrons are emitted from the contacts according to a thermal
equilibrium Maxwell–Boltzmann distribution at the temperature T = 77 K and
with a Poissonian distribution in time.
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Fig. 8. Shot-noise suppression factor for the cases of 1, 2 and 3 dimensions
of momentum space calculated within the dynamic PS scheme for elastic
scattering as a function of: (a) the ballistic parameter `/L with an applied
voltage of U = 40 KT/q and (b) the applied bias U under diffusive regime
(`/L = 1 ·07× 10−3).

The thicknesses of the GaAs layers are taken sufficiently large so that interference
effects between AlGaAs barriers can be neglected. Electrons in the GaAs layers
are then considered as semiclassical particles moving in the self-consistent electric
field, interacting with phonons and ionised impurities, and their tunneling across
a given barrier is treated as an independent sequential process occurring locally
in space and time.

The analytical expressions for the energy dependence of the tunneling probabilities
are obtained from analytical solutions of the appropriate Schrödinger equations
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within the transfer matrix approach for triangular (Reklaitis 1996a) and trapezoidal
(Reklaitis 1996b) potential barriers. They account for the discontinuity of effective
masses at the hetero-interfaces. These probabilities are then used in MC
simulations according to the energy of the impinging electron, trapezoidal for
the low energy, and triangular for the high energy, respectively. The energy
dependence of the tunneling probability is calculated for each electron impinging
the barrier. The shapes of the potential barriers are updated each time step
from the solution of the Poisson equation. The tunneling process is then treated
in the MC simulation as a scattering event in what concerns the determination
of the final state.

In the following we report the results of MC simulations on structures with
increasing degrees of complexity.

Single barrier. The single barrier structure investigated here consists of three
layers involving two GaAs layers and one Al0 ·25Ga0 ·75As barrier. The structure
is sandwiched between emitter and collector contacts. The length of the GaAs
layer adjacent to the emitter is taken to be 500 Å, and that of the GaAs layer
adjacent to the collector 800 Å. The length of the undoped Al0 ·25Ga0 ·75 As
barrier is taken to be 40 Å. The GaAs layers adjacent to the emitter and the
collector are doped with 5 × 1015 cm−3 donor concentration. The emitter and
collector contacts are doped with 1017 cm−3 donor concentration. Fig. 9 shows
the potential profile (solid line), and the distribution of electron kinetic energy
(points) for a bias voltage of 0 ·5 V applied to the single barrier diode studied
here in the presence of scattering mechanisms.

Fig. 10 reports the calculated I−U characteristics of the diode shown in Fig. 9
for two cases, namely, when scattering is neglected (ballistic regime) and included
(diffusive regime). In the ballistic regime the I −U characteristic of the diode is
determined by the tunneling probability averaged over the distribution function
of electrons impinging on the barrier. The situation is more complex in the
diffusive regime, especially when inelastic scattering by optical phonons becomes
relevant. In this condition, the diode switches from a low conductance state to
a high conductance state at U ' 0 ·9 V (see Fig. 10). In both regimes, at the
highest voltages the current saturates to a value corresponding to the maximum
current the contact can supply, IS , which in the present case corresponds to a
current density of about 80 KA cm−2. Fig. 11 shows the Fano factor versus
voltage (to avoid thermal noise we consider the condition qU À KT ) for the
diode of Fig. 9 in the diffusive regime. Values of γ obtained from the calculated
values of SI(0) and I (MC results) are compared with those calculated by the
average partition expression (Davies et al. 1992; Reklaitis and Reggiani 1999):

γ = 1− 〈D
2〉

〈D〉 , (23)

where 〈D〉 and 〈D2〉 are the tunneling probabilities and its square velocity-weighted
averaged over the distribution function of the incident stream. Full shot noise
is found at low bias voltages when the energy of electrons is much lower than
that of the barrier and, in turn, the tunneling probability is much less than
unity. At increasing voltages the electrons impinging the barrier become more
energetic and shot noise is found to be suppressed. Here, the Fano factor directly
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Fig. 9. Potential profile (solid line) and distribution of electron kinetic energy (points) for a
voltage of 0 ·5 V applied to the single barrier diode studied here at T = 77 K.

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

ballistic

diffusive

GaAs/Al
0.25

Ga
0.75

As/GaAs

77 K

C
ur

re
nt

 d
en

si
ty

  (
 k

A
/c

m
2  )

Bias voltage  ( V )

Fig. 10. Current–voltage characteristic of the diode in Fig. 9 for the ballistic (without
scattering) and diffusive (with scattering) transport regimes.



24 L. Reggiani et al.

obtained from MC exhibits a minimum value of about 0 ·86 at 0 ·5 V which is
mostly attributed to the mechanism of suppression of independently transmitted
electrons associated with optical phonon emission (Reklaitis and Reggiani 1999).
Indeed, due to inelastic emission processes electrons have insufficient energy to
come back to the emitter contact and remain confined in the region before the
well. This confinement implies a nonuniformity of the electron flux incident on
the barrier, since the temporal distribution of the electrons impinging the barrier
depends on the number of tunneled electrons during a previous time moment.
Suppression of shot noise is thus obtained as a consequence of this correlation.
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Fig. 11. Fano factor versus bias voltage obtained for the single barrier structure of Fig. 9
in the diffusive regime from direct MC calculations (open circles) and evaluated from the
analytical partition relation (solid line).

It should be pointed out that the result is found to be essentially independent
of the statistics used to inject electrons from the contacts. On the other hand,
the Fano factor calculated by the partition expression remains practically equal
to 1 up to voltages of about 0 ·8 V, as shown by the continuous curve in
Fig. 11. At the highest applied voltages, the situation is the opposite because
here the tunneling probability approaches unity. Accordingly, direct results are
conditioned by the raised thermal fluctuations of hot electrons which are induced
by phonon scattering, and the corresponding γ approaches unity (Gonzalez et al.
1998a). On the contrary, results calculated with the average partition expression
of equation (23) drop quickly to zero. Anyway, the simple expression given by
equation (23), being appropriate for a uniform injection of carriers impinging on
a barrier and otherwise moving within a ballistic regime, is no longer justified
at high voltages.

Double barrier. The double barrier structure investigated here consists of five
layers involving three GaAs layers and two Al0 ·25Ga0 ·75As barriers. The length
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Fig. 12. Potential profile (solid line) and distribution of electron kinetic energy (points) for
a voltage of 0 ·3 V applied to the double barrier diode studied here at T = 77 K.
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Fig. 13. Current–voltage characteristic of the diode in Fig. 12 for the ballistic (without
scattering) and diffusive (with scattering) transport regimes. For comparison the characteristics
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of the GaAs layer adjacent to the emitter is taken to be 500 Å, that of the
GaAs layer separated by the barriers 500 Å, and that of the GaAs layer adjacent
to the collector 300 Å. The lengths of the undoped Al0 ·25Ga0 ·75As barriers
are taken to be 40 Å each. The GaAs layers adjacent to the emitter and the
collector are doped with 5 × 1015 cm−3 donor concentration. The emitter and
collector contacts are doped with 1017 cm−3 donor concentration. Fig. 12 shows
the potential (solid line) and the distribution of electron kinetic energy (points)
for an applied voltage of 0 ·3 V in the diffusive regime.

Fig. 13 reports the calculated I−U characteristic of the structure shown in Fig. 12
for the ballistic and diffusive regimes. For comparison the same characteristics of
the single barrier diode are also reported. The I −U characteristics of the single
and double barriers do not differ significantly from each other and both exhibit
a superlinear behaviour before saturating (when the current reaches the contact
injecting value). Indeed, the I − U characteristic is controlled by the tunneling
current across the barrier adjacent to the emitter in the range of bias voltage
U > KT/q. The barrier adjacent to the collector has little effect on the current
in this range of voltages because most electrons, after tunneling through the first
barrier, are successfully tunneled across the second one, and do not come back
to the emitter.

Fig. 14 reports the tunneling probabilities mentioned above as obtained from
MC calculations in the presence of scattering. Here the subscripts 1 and 2 refer
to the barrier label and the superscripts + and − to the case when an electron
impinges on the barrier from the left and the right side respectively. The average
values 〈〉 are over the corresponding distribution functions of impinging electrons.
Note that these distributions are different for electrons impinging from the left
and from the right. In the MC procedure the value of the total transmission
probability 〈D1〉 and 〈D2〉 for each barrier is calculated by summing the D+(k)
and D−(k) (k being the wave-vector of the impinging electron) contribution and
then averaging the sum over the distribution function. Fig. 15 reports the Fano
factor versus applied voltage of the double barrier of Fig. 12. Here the data refer
to the diffusive regime as obtained directly from MC simulations together with
that calculated in another context from a semiclassical theory by de Jong and
Beenakker (1995) as

γ =
〈D2

1〉(1− 〈D2〉) + 〈D2
2〉(1− 〈D1〉)

(〈D1〉+ 〈D2〉 − 〈D1〉〈D2〉)2 , (24)

where the angle bracket mean a velocity-weighted average over the distribution
function of the incident stream across the emitter (1) and collector (2) barriers
respectively. The curve by Chen and Ting (1991) in Fig. 15 corresponds to the
simplified version of equation (24) when 〈D1〉, 〈D2〉 ¿ 1 are assumed.

In the range of low voltages we find that shot noise is significantly suppressed
to a minimum level of γ = 0 ·58 and thus essentially less than unity. At the
highest voltages γ tends to unity. The calculations from equation (24) are found
to agree satisfactorily with those obtained from the simulation (open circles) at
the lowest voltages, while at increasing voltages they systematically overestimate
the MC results. Accordingly, a value of γ close to 0 ·5 is obtained at the
lowest voltage U = 0 ·2 V when the tunneling probabilities across the emitter and
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collector barriers are nearly equal and both much less than unity (see Fig. 14).
At higher voltages, the barriers become asymmetric, i.e. 〈D1〉 ¿ 〈D2〉 ' 1, and
the values of γ increase towards unity. We notice that equation (24) has been
obtained for a suppression mechanism associated with the Pauli principle and
when elastic tunneling between the two barriers is considered. Thus, the overall
agreement found with the present case, where the suppression mechanism is mostly
attributed to inelastic scattering, remains an intriguing and not yet explained
result. The repeated occurrence of a minimum value of γ ' 0 ·5 for a double
barrier structure when the tunneling probabilities are much smaller than unity
leads us to believe that this must be more than a numerical coincidence (Macucci
and Pellegrini 1995). We conjecture that the presence of inelastic scattering is
analogous to the presence of a resonance inside the barriers in the sense that both
destroy the otherwise uncorrelated motion of carriers between the two barriers,
thus leading to shot-noise suppression when the tunneling probabilities are much
smaller than one.

In order to check the influence on the shot noise of carrier injection statistics
from the heavily doped contacts, we have also performed calculations considering
a uniform model, instead of the Poissonian injection model. No difference has
been observed between the results obtained with the two injection models.

The feedback between the fluctuating electron space charge in the GaAs
well and the tunneling probabilities 〈D1〉 and 〈D2〉 can also influence the noise
characteristics. In order to check this possible influence we have carried out MC
simulations by using the self-consistent, but non-fluctuating, potential distribution.
No difference has been detected for the low-frequency noise thus confirming the
expectation that, for the chosen doping concentration, space-charge fluctuations
play no role.

We conclude that the main contribution to the current noise is associated with
tunneling processes and that equation (24), even if obtained under degenerate
conditions and in the absence of scattering, is sufficiently adequate even under
nondegenerate conditions and in the presence of scattering.

In the range of low voltages where shot noise is significantly suppressed to a
level with γ ' 0 ·5, existing theories (Chen and Ting 1991, 1992; Davies et al.
1992; de Jong and Beenakker 1995; de Jong 1996; Iannaccone and Pellegrini 1997)
predict that such a suppression is basically due to correlations coming from the
Pauli exclusion principle. Here, we have found that the shot-noise suppression
can be explained within a simplified model which considers electron transmission
from the first barrier, their oscillating motion in the well under the presence of
inelastic scattering mechanisms which inhibit their return to the emitter, and
their final tunneling across the second barrier with constant probability (Reklaitis
and Reggiani 1999).

Extension to a multiple barrier. The features of shot-noise suppression are
essentially changed when a third or more barrier structure is considered. Then
the regulation of the electron motion due to the presence of inelastic scattering
by optical-phonon emission can lead to a further suppression of shot noise.
To this purpose, we have investigated the noise properties of GaAs/AlGaAs
heterostructures which involve an increasing number of barriers up to four, which
represents an upper limit of application for the present code. The unit cell of
the multibarrier structures investigated here involves an undoped GaAs layer
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followed by an undoped Al0 ·25Ga0 ·75As barrier. The length of the GaAs layer
is taken to be 500 Å, and that of the Al0 ·25Ga0 ·75As barriers to be 40 Å. In
each structure, an undoped GaAs layer of 300 Å length is sandwiched between
the last barrier and the collector. The doping concentration of the contacts is
taken at a low value of 1014 cm−3.

The undoped heterostructures are taken to avoid the correlations which may
be induced by long-range Coulomb interaction, thus being in the position to
investigate the properties of the proposed model. Calculations for a realistic
(from the experimental point of view) contact doping concentration of 1017 cm−3

are also carried out for the sake of comparison.
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Fig. 16. Fano factor versus bias voltage for one, two, three and four barrier structures
obtained from direct MC calculations. Solid lines report the results obtained for contact
concentrations of 1014 cm−3. The dashed line reports the results for the four-barrier structure
with a contact doping concentration of 1017 cm−3.

Results are reported in Fig. 16. By increasing the number of barriers, the
Fano factor is found to reduce systematically, besides exhibiting a significant
voltage dependence. The suppression factor in the structure consisting of four
barriers and low-doping contacts is found to be essentially below the level of 1

3
which is predicted by diffusive transport under elastic scattering conditions in
degenerate (Beenakker and Büttiker 1992; Nagaev 1992; Altshuler et al. 1994;
de Jong and Beenakker 1995; Liu et al. 1997; Blanter and Büttiker 1997) and
nondegenerate (Gonzalez et al. 1998a) conductors (as shown in the previous
results for the homojunction system). In particular, the minimum value of
suppression is practically independent of voltage and follows approximately a
1/(N + 1) behaviour, with N the number of barriers. This behaviour agrees
with that expected for (N + 1) uncorrelated noise generators, as predicted by
Landauer (1996; 1999) for a chain of thermionic diodes in series. The present
mechanism, however, does not require the large number of electrons necessary
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to realise an independent reservoir for each diode in the chain, thus offering a
complementary model of suppression. For the sake of completeness, simulations
of the four barrier structure with a contact doping concentration of 1017 cm−3

are also carried out. The corresponding results reported in Fig. 16 show that the
Fano factor of that structure lies between those of the three- and four-barrier
structures with lower contact doping. This result demonstrates that the presence
of highly doped contacts, by simply implying an initial region with a nearly flat
potential profile, would not change the essence of the results.

It should be pointed out that the I − U characteristics of all the diodes with
low-doped contacts are very close to each other. This behaviour is explained by
the fact that the current in all diodes is controlled by the tunneling current across
the barrier adjacent to the emitter in the range of bias voltage ∆U > KT/q,
∆U being the potential drop in the GaAs layer adjacent to the emitter. As a
consequence, the remaining barriers have a small effect on the dc current since
most electrons, after tunneling through the first barrier and after subsequent
phonon emission, are successfully tunneled across the remaining barriers, and do
not come back to the emitter. Thus we obtain the interesting situation that in
the intermediate range of voltages (0 ·1–0 ·5 V) the signal-to-noise ratio of the
structures considered here can be significantly improved by increasing the number
of barriers.

6. Conclusions

We have provided a microscopic analysis of shot-noise suppression in nondegenerate
ballistic and diffusive semiconductor structures. To this purpose, the carrier
dynamics in the active region of the structure under the dominant influence of
(i) elastic or inelastic scattering and (ii) elastic tunneling processes has been
simulated by using an ensemble Monte Carlo technique self-consistently coupled
with a PS.

For the case of a homogeneous structure the essential role played by the
long-range Coulomb interaction on the shot-noise suppression factor γ has been
demonstrated, since no suppression is found in the absence of the self-consistent
potential fluctuations. We have analysed shot-noise suppression in the region of
crossover from ballistic to diffusive transport regimes. In the diffusive regime
a value of γ independent of sample length is not achieved until a significant
energy redistribution among momentum directions takes place. For high voltages
qU/KT À 1 and long samples `/L ¿ 1, in the elastic case shot noise is found
to be suppressed to a value of 1

3 , while in the inelastic case we have found a
stronger suppression the higher the applied voltage. Noticeably, in the perfect
diffusive regime γ is found to be independent of carrier injecting statistics, which
implies that in this regime the noise is just a property of the sample.

Our results show that neither phase coherence nor Fermi statistics are necessary
for the appearance of the 1

3 suppression factor in an elastic diffusive conductor.
In our model, the appearance of this factor requires the simultaneous fulfillment
of the following three conditions: `/L ¿ 1, λ À 1 and qU/KT À 1. The first
implies a perfect diffusive regime, the second strong space-charge effects, and the
third very far-from-equilibrium conditions. Inelastic scattering is found to further
contribute in suppressing shot noise, by reducing it to values close to thermal
Nyquist noise under strong dissipative conditions. However, for this suppression
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to take place the presence of the long-range Coulomb interaction is necessary.
The action of Coulomb repulsion in suppressing shot noise takes place through

the reduction of the contributions associated with carrier-number fluctuations to
the total noise spectral density. In particular, the compensation between number
and velocity-number terms implies that the total noise is finally determined only
by the contribution of velocity fluctuations.

In the elastic case, γ depends on the momentum space dimensionality, the
suppression being less pronounced the lower the dimension of momentum space.
This fact spoils the possible universality of the 1

3 reduction found in the 3D
nondegenerate case (Landauer 1998, 1999). Moreover, for a given dimensionality
the consideration of an energy dependent scattering rate can also lead to different
suppression factors (Beenakker 1998; Nagaev 1998c).

For the case of single and many barriers systems, when transport is controlled by
tunneling mechanisms, we have analysed shot-noise suppression of independently
transmitted electrons in semiconductor heterostructure diodes. The mechanism
of suppression is based on the confinement of electrons in each well of the
heterostructures due to inelastic scattering through polar-optical phonon emission,
thus implying a nonuniformity of the electron flux incident on the barrier which,
in turn, correlates the transmission process of electrons through the barrier. MC
simulations of realistic structures confirm this model. Moreover, the results of
the simulations show that shot noise is suppressed to a higher extent when the
number of barriers is increased, and that the Fano factor exhibits a significant
voltage dependence with a characteristic minimum value due to the non-linearity
of the current–voltage characteristics. For the case of a double barrier structure,
the comparison between analytical and direct MC calculations on the dependence
of the Fano factor with applied voltage shows the degree of applicability of
available analytical expressions. In particular, a suppression to a maximum value
of γ ' 0 ·5 has been found in close analogy with the case of a resonant structure
where suppression is, however, associated with the Pauli principle. As a general
trend, the presence of scattering mechanisms, especially non-elastic, is found to
favour the suppression of shot noise. On the other hand, an increase of the lattice
temperature is found to make suppression less significant. In all cases studied
here, in the absence of any applied voltage, thermal equilibrium Johnson–Nyquist
noise is obtained. This represents a valuable test of the theoretical approach and
confirms the conjecture that shot noise and thermal-equilibrium noise are special
forms of a more general noise formula (Stanton and Wilkins 1985; Büttiker 1986,
1992; Landauer 1989, 1993, 1998; Iannaccone and Pellegrini 1997).

Most of the calculations have been carried out for realistic structures thus
opening the possibility of an experimental verification of the predicted phenomena.
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Blanter, Y. M., and Büttiker, M. (1997). Phys. Rev. B 56, 2127.
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